3// Copyright (C) 2003-2021 Free Software Foundation, Inc.
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
25/** @file include/mutex
26 * This is a Standard C++ Library header.
30#define _GLIBCXX_MUTEX 1
32#pragma GCC system_header
34#if __cplusplus < 201103L
35# include <bits/c++0x_warning.h>
42#include <system_error>
43#include <bits/std_mutex.h>
44#include <bits/unique_lock.h>
45#if ! _GTHREAD_USE_MUTEX_TIMEDLOCK
46# include <condition_variable>
49#include <ext/atomicity.h> // __gnu_cxx::__is_single_threaded
51#if defined _GLIBCXX_HAS_GTHREADS && ! defined _GLIBCXX_HAVE_TLS
52# include <bits/std_function.h> // std::function
55namespace std _GLIBCXX_VISIBILITY(default)
57_GLIBCXX_BEGIN_NAMESPACE_VERSION
64#ifdef _GLIBCXX_HAS_GTHREADS
66 // Common base class for std::recursive_mutex and std::recursive_timed_mutex
67 class __recursive_mutex_base
70 typedef __gthread_recursive_mutex_t __native_type;
72 __recursive_mutex_base(const __recursive_mutex_base&) = delete;
73 __recursive_mutex_base& operator=(const __recursive_mutex_base&) = delete;
75#ifdef __GTHREAD_RECURSIVE_MUTEX_INIT
76 __native_type _M_mutex = __GTHREAD_RECURSIVE_MUTEX_INIT;
78 __recursive_mutex_base() = default;
80 __native_type _M_mutex;
82 __recursive_mutex_base()
84 // XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
85 __GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex);
88 ~__recursive_mutex_base()
89 { __gthread_recursive_mutex_destroy(&_M_mutex); }
93 /// The standard recursive mutex type.
94 class recursive_mutex : private __recursive_mutex_base
97 typedef __native_type* native_handle_type;
99 recursive_mutex() = default;
100 ~recursive_mutex() = default;
102 recursive_mutex(const recursive_mutex&) = delete;
103 recursive_mutex& operator=(const recursive_mutex&) = delete;
108 int __e = __gthread_recursive_mutex_lock(&_M_mutex);
110 // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
112 __throw_system_error(__e);
118 // XXX EINVAL, EAGAIN, EBUSY
119 return !__gthread_recursive_mutex_trylock(&_M_mutex);
125 // XXX EINVAL, EAGAIN, EBUSY
126 __gthread_recursive_mutex_unlock(&_M_mutex);
130 native_handle() noexcept
131 { return &_M_mutex; }
134#if _GTHREAD_USE_MUTEX_TIMEDLOCK
135 template<typename _Derived>
136 class __timed_mutex_impl
139 template<typename _Rep, typename _Period>
141 _M_try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
143#if _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
144 using __clock = chrono::steady_clock;
146 using __clock = chrono::system_clock;
149 auto __rt = chrono::duration_cast<__clock::duration>(__rtime);
150 if (ratio_greater<__clock::period, _Period>())
152 return _M_try_lock_until(__clock::now() + __rt);
155 template<typename _Duration>
157 _M_try_lock_until(const chrono::time_point<chrono::system_clock,
160 auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
161 auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
163 __gthread_time_t __ts = {
164 static_cast<std::time_t>(__s.time_since_epoch().count()),
165 static_cast<long>(__ns.count())
168 return static_cast<_Derived*>(this)->_M_timedlock(__ts);
171#ifdef _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
172 template<typename _Duration>
174 _M_try_lock_until(const chrono::time_point<chrono::steady_clock,
177 auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
178 auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
180 __gthread_time_t __ts = {
181 static_cast<std::time_t>(__s.time_since_epoch().count()),
182 static_cast<long>(__ns.count())
185 return static_cast<_Derived*>(this)->_M_clocklock(CLOCK_MONOTONIC,
190 template<typename _Clock, typename _Duration>
192 _M_try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
194#if __cplusplus > 201703L
195 static_assert(chrono::is_clock_v<_Clock>);
197 // The user-supplied clock may not tick at the same rate as
198 // steady_clock, so we must loop in order to guarantee that
199 // the timeout has expired before returning false.
200 auto __now = _Clock::now();
202 auto __rtime = __atime - __now;
203 if (_M_try_lock_for(__rtime))
205 __now = _Clock::now();
206 } while (__atime > __now);
211 /// The standard timed mutex type.
213 : private __mutex_base, public __timed_mutex_impl<timed_mutex>
216 typedef __native_type* native_handle_type;
218 timed_mutex() = default;
219 ~timed_mutex() = default;
221 timed_mutex(const timed_mutex&) = delete;
222 timed_mutex& operator=(const timed_mutex&) = delete;
227 int __e = __gthread_mutex_lock(&_M_mutex);
229 // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
231 __throw_system_error(__e);
237 // XXX EINVAL, EAGAIN, EBUSY
238 return !__gthread_mutex_trylock(&_M_mutex);
241 template <class _Rep, class _Period>
243 try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
244 { return _M_try_lock_for(__rtime); }
246 template <class _Clock, class _Duration>
248 try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
249 { return _M_try_lock_until(__atime); }
254 // XXX EINVAL, EAGAIN, EBUSY
255 __gthread_mutex_unlock(&_M_mutex);
259 native_handle() noexcept
260 { return &_M_mutex; }
263 friend class __timed_mutex_impl<timed_mutex>;
266 _M_timedlock(const __gthread_time_t& __ts)
267 { return !__gthread_mutex_timedlock(&_M_mutex, &__ts); }
269#if _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
271 _M_clocklock(clockid_t clockid, const __gthread_time_t& __ts)
272 { return !pthread_mutex_clocklock(&_M_mutex, clockid, &__ts); }
276 /// recursive_timed_mutex
277 class recursive_timed_mutex
278 : private __recursive_mutex_base,
279 public __timed_mutex_impl<recursive_timed_mutex>
282 typedef __native_type* native_handle_type;
284 recursive_timed_mutex() = default;
285 ~recursive_timed_mutex() = default;
287 recursive_timed_mutex(const recursive_timed_mutex&) = delete;
288 recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
293 int __e = __gthread_recursive_mutex_lock(&_M_mutex);
295 // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
297 __throw_system_error(__e);
303 // XXX EINVAL, EAGAIN, EBUSY
304 return !__gthread_recursive_mutex_trylock(&_M_mutex);
307 template <class _Rep, class _Period>
309 try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
310 { return _M_try_lock_for(__rtime); }
312 template <class _Clock, class _Duration>
314 try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
315 { return _M_try_lock_until(__atime); }
320 // XXX EINVAL, EAGAIN, EBUSY
321 __gthread_recursive_mutex_unlock(&_M_mutex);
325 native_handle() noexcept
326 { return &_M_mutex; }
329 friend class __timed_mutex_impl<recursive_timed_mutex>;
332 _M_timedlock(const __gthread_time_t& __ts)
333 { return !__gthread_recursive_mutex_timedlock(&_M_mutex, &__ts); }
335#ifdef _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
337 _M_clocklock(clockid_t clockid, const __gthread_time_t& __ts)
338 { return !pthread_mutex_clocklock(&_M_mutex, clockid, &__ts); }
342#else // !_GTHREAD_USE_MUTEX_TIMEDLOCK
348 condition_variable _M_cv;
349 bool _M_locked = false;
353 timed_mutex() = default;
354 ~timed_mutex() { __glibcxx_assert( !_M_locked ); }
356 timed_mutex(const timed_mutex&) = delete;
357 timed_mutex& operator=(const timed_mutex&) = delete;
362 unique_lock<mutex> __lk(_M_mut);
363 _M_cv.wait(__lk, [&]{ return !_M_locked; });
370 lock_guard<mutex> __lk(_M_mut);
377 template<typename _Rep, typename _Period>
379 try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
381 unique_lock<mutex> __lk(_M_mut);
382 if (!_M_cv.wait_for(__lk, __rtime, [&]{ return !_M_locked; }))
388 template<typename _Clock, typename _Duration>
390 try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
392 unique_lock<mutex> __lk(_M_mut);
393 if (!_M_cv.wait_until(__lk, __atime, [&]{ return !_M_locked; }))
402 lock_guard<mutex> __lk(_M_mut);
403 __glibcxx_assert( _M_locked );
409 /// recursive_timed_mutex
410 class recursive_timed_mutex
413 condition_variable _M_cv;
415 unsigned _M_count = 0;
417 // Predicate type that tests whether the current thread can lock a mutex.
420 // Returns true if the mutex is unlocked or is locked by _M_caller.
422 operator()() const noexcept
423 { return _M_mx->_M_count == 0 || _M_mx->_M_owner == _M_caller; }
425 const recursive_timed_mutex* _M_mx;
426 thread::id _M_caller;
431 recursive_timed_mutex() = default;
432 ~recursive_timed_mutex() { __glibcxx_assert( _M_count == 0 ); }
434 recursive_timed_mutex(const recursive_timed_mutex&) = delete;
435 recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
440 auto __id = this_thread::get_id();
441 _Can_lock __can_lock{this, __id};
442 unique_lock<mutex> __lk(_M_mut);
443 _M_cv.wait(__lk, __can_lock);
445 __throw_system_error(EAGAIN); // [thread.timedmutex.recursive]/3
453 auto __id = this_thread::get_id();
454 _Can_lock __can_lock{this, __id};
455 lock_guard<mutex> __lk(_M_mut);
465 template<typename _Rep, typename _Period>
467 try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
469 auto __id = this_thread::get_id();
470 _Can_lock __can_lock{this, __id};
471 unique_lock<mutex> __lk(_M_mut);
472 if (!_M_cv.wait_for(__lk, __rtime, __can_lock))
481 template<typename _Clock, typename _Duration>
483 try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
485 auto __id = this_thread::get_id();
486 _Can_lock __can_lock{this, __id};
487 unique_lock<mutex> __lk(_M_mut);
488 if (!_M_cv.wait_until(__lk, __atime, __can_lock))
500 lock_guard<mutex> __lk(_M_mut);
501 __glibcxx_assert( _M_owner == this_thread::get_id() );
502 __glibcxx_assert( _M_count > 0 );
512#endif // _GLIBCXX_HAS_GTHREADS
514 /// @cond undocumented
515 template<typename _Lock>
516 inline unique_lock<_Lock>
517 __try_to_lock(_Lock& __l)
518 { return unique_lock<_Lock>{__l, try_to_lock}; }
520 template<int _Idx, bool _Continue = true>
521 struct __try_lock_impl
523 template<typename... _Lock>
525 __do_try_lock(tuple<_Lock&...>& __locks, int& __idx)
528 auto __lock = std::__try_to_lock(std::get<_Idx>(__locks));
529 if (__lock.owns_lock())
531 constexpr bool __cont = _Idx + 2 < sizeof...(_Lock);
532 using __try_locker = __try_lock_impl<_Idx + 1, __cont>;
533 __try_locker::__do_try_lock(__locks, __idx);
541 struct __try_lock_impl<_Idx, false>
543 template<typename... _Lock>
545 __do_try_lock(tuple<_Lock&...>& __locks, int& __idx)
548 auto __lock = std::__try_to_lock(std::get<_Idx>(__locks));
549 if (__lock.owns_lock())
558 /** @brief Generic try_lock.
559 * @param __l1 Meets Lockable requirements (try_lock() may throw).
560 * @param __l2 Meets Lockable requirements (try_lock() may throw).
561 * @param __l3 Meets Lockable requirements (try_lock() may throw).
562 * @return Returns -1 if all try_lock() calls return true. Otherwise returns
563 * a 0-based index corresponding to the argument that returned false.
564 * @post Either all arguments are locked, or none will be.
566 * Sequentially calls try_lock() on each argument.
568 template<typename _Lock1, typename _Lock2, typename... _Lock3>
570 try_lock(_Lock1& __l1, _Lock2& __l2, _Lock3&... __l3)
573 auto __locks = std::tie(__l1, __l2, __l3...);
574 __try_lock_impl<0>::__do_try_lock(__locks, __idx);
578 /** @brief Generic lock.
579 * @param __l1 Meets Lockable requirements (try_lock() may throw).
580 * @param __l2 Meets Lockable requirements (try_lock() may throw).
581 * @param __l3 Meets Lockable requirements (try_lock() may throw).
582 * @throw An exception thrown by an argument's lock() or try_lock() member.
583 * @post All arguments are locked.
585 * All arguments are locked via a sequence of calls to lock(), try_lock()
586 * and unlock(). If the call exits via an exception any locks that were
587 * obtained will be released.
589 template<typename _L1, typename _L2, typename... _L3>
591 lock(_L1& __l1, _L2& __l2, _L3&... __l3)
595 using __try_locker = __try_lock_impl<0, sizeof...(_L3) != 0>;
596 unique_lock<_L1> __first(__l1);
598 auto __locks = std::tie(__l2, __l3...);
599 __try_locker::__do_try_lock(__locks, __idx);
608#if __cplusplus >= 201703L
609#define __cpp_lib_scoped_lock 201703
610 /** @brief A scoped lock type for multiple lockable objects.
612 * A scoped_lock controls mutex ownership within a scope, releasing
613 * ownership in the destructor.
615 template<typename... _MutexTypes>
619 explicit scoped_lock(_MutexTypes&... __m) : _M_devices(std::tie(__m...))
620 { std::lock(__m...); }
622 explicit scoped_lock(adopt_lock_t, _MutexTypes&... __m) noexcept
623 : _M_devices(std::tie(__m...))
624 { } // calling thread owns mutex
627 { std::apply([](auto&... __m) { (__m.unlock(), ...); }, _M_devices); }
629 scoped_lock(const scoped_lock&) = delete;
630 scoped_lock& operator=(const scoped_lock&) = delete;
633 tuple<_MutexTypes&...> _M_devices;
640 explicit scoped_lock() = default;
641 explicit scoped_lock(adopt_lock_t) noexcept { }
642 ~scoped_lock() = default;
644 scoped_lock(const scoped_lock&) = delete;
645 scoped_lock& operator=(const scoped_lock&) = delete;
648 template<typename _Mutex>
649 class scoped_lock<_Mutex>
652 using mutex_type = _Mutex;
654 explicit scoped_lock(mutex_type& __m) : _M_device(__m)
655 { _M_device.lock(); }
657 explicit scoped_lock(adopt_lock_t, mutex_type& __m) noexcept
659 { } // calling thread owns mutex
662 { _M_device.unlock(); }
664 scoped_lock(const scoped_lock&) = delete;
665 scoped_lock& operator=(const scoped_lock&) = delete;
668 mutex_type& _M_device;
672#ifdef _GLIBCXX_HAS_GTHREADS
673 /// Flag type used by std::call_once
676 constexpr once_flag() noexcept = default;
678 /// Deleted copy constructor
679 once_flag(const once_flag&) = delete;
680 /// Deleted assignment operator
681 once_flag& operator=(const once_flag&) = delete;
684 // For gthreads targets a pthread_once_t is used with pthread_once, but
685 // for most targets this doesn't work correctly for exceptional executions.
686 __gthread_once_t _M_once = __GTHREAD_ONCE_INIT;
688 struct _Prepare_execution;
690 template<typename _Callable, typename... _Args>
692 call_once(once_flag& __once, _Callable&& __f, _Args&&... __args);
695 /// @cond undocumented
696# ifdef _GLIBCXX_HAVE_TLS
697 // If TLS is available use thread-local state for the type-erased callable
698 // that is being run by std::call_once in the current thread.
699 extern __thread void* __once_callable;
700 extern __thread void (*__once_call)();
702 // RAII type to set up state for pthread_once call.
703 struct once_flag::_Prepare_execution
705 template<typename _Callable>
707 _Prepare_execution(_Callable& __c)
709 // Store address in thread-local pointer:
710 __once_callable = std::__addressof(__c);
711 // Trampoline function to invoke the closure via thread-local pointer:
712 __once_call = [] { (*static_cast<_Callable*>(__once_callable))(); };
715 ~_Prepare_execution()
717 // PR libstdc++/82481
718 __once_callable = nullptr;
719 __once_call = nullptr;
722 _Prepare_execution(const _Prepare_execution&) = delete;
723 _Prepare_execution& operator=(const _Prepare_execution&) = delete;
727 // Without TLS use a global std::mutex and store the callable in a
728 // global std::function.
729 extern function<void()> __once_functor;
732 __set_once_functor_lock_ptr(unique_lock<mutex>*);
737 // RAII type to set up state for pthread_once call.
738 struct once_flag::_Prepare_execution
740 template<typename _Callable>
742 _Prepare_execution(_Callable& __c)
744 // Store the callable in the global std::function
745 __once_functor = __c;
746 __set_once_functor_lock_ptr(&_M_functor_lock);
749 ~_Prepare_execution()
752 __set_once_functor_lock_ptr(nullptr);
756 // XXX This deadlocks if used recursively (PR 97949)
757 unique_lock<mutex> _M_functor_lock{__get_once_mutex()};
759 _Prepare_execution(const _Prepare_execution&) = delete;
760 _Prepare_execution& operator=(const _Prepare_execution&) = delete;
765 // This function is passed to pthread_once by std::call_once.
766 // It runs __once_call() or __once_functor().
767 extern "C" void __once_proxy(void);
769 /// Invoke a callable and synchronize with other calls using the same flag
770 template<typename _Callable, typename... _Args>
772 call_once(once_flag& __once, _Callable&& __f, _Args&&... __args)
774 // Closure type that runs the function
775 auto __callable = [&] {
776 std::__invoke(std::forward<_Callable>(__f),
777 std::forward<_Args>(__args)...);
780 once_flag::_Prepare_execution __exec(__callable);
782 // XXX pthread_once does not reset the flag if an exception is thrown.
783 if (int __e = __gthread_once(&__once._M_once, &__once_proxy))
784 __throw_system_error(__e);
787#else // _GLIBCXX_HAS_GTHREADS
789 /// Flag type used by std::call_once
792 constexpr once_flag() noexcept = default;
794 /// Deleted copy constructor
795 once_flag(const once_flag&) = delete;
796 /// Deleted assignment operator
797 once_flag& operator=(const once_flag&) = delete;
800 // There are two different std::once_flag interfaces, abstracting four
801 // different implementations.
802 // The single-threaded interface uses the _M_activate() and _M_finish(bool)
803 // functions, which start and finish an active execution respectively.
804 // See [thread.once.callonce] in C++11 for the definition of
805 // active/passive/returning/exceptional executions.
806 enum _Bits : int { _Init = 0, _Active = 1, _Done = 2 };
808 int _M_once = _Bits::_Init;
810 // Check to see if all executions will be passive now.
812 _M_passive() const noexcept;
814 // Attempts to begin an active execution.
817 // Must be called to complete an active execution.
818 // The argument is true if the active execution was a returning execution,
819 // false if it was an exceptional execution.
820 void _M_finish(bool __returning) noexcept;
822 // RAII helper to call _M_finish.
823 struct _Active_execution
825 explicit _Active_execution(once_flag& __flag) : _M_flag(__flag) { }
827 ~_Active_execution() { _M_flag._M_finish(_M_returning); }
829 _Active_execution(const _Active_execution&) = delete;
830 _Active_execution& operator=(const _Active_execution&) = delete;
833 bool _M_returning = false;
836 template<typename _Callable, typename... _Args>
838 call_once(once_flag& __once, _Callable&& __f, _Args&&... __args);
841 // Inline definitions of std::once_flag members for single-threaded targets.
844 once_flag::_M_passive() const noexcept
845 { return _M_once == _Bits::_Done; }
848 once_flag::_M_activate()
850 if (_M_once == _Bits::_Init) [[__likely__]]
852 _M_once = _Bits::_Active;
855 else if (_M_passive()) // Caller should have checked this already.
858 __throw_system_error(EDEADLK);
862 once_flag::_M_finish(bool __returning) noexcept
863 { _M_once = __returning ? _Bits::_Done : _Bits::_Init; }
865 /// Invoke a callable and synchronize with other calls using the same flag
866 template<typename _Callable, typename... _Args>
868 call_once(once_flag& __once, _Callable&& __f, _Args&&... __args)
870 if (__once._M_passive())
872 else if (__once._M_activate())
874 once_flag::_Active_execution __exec(__once);
876 // _GLIBCXX_RESOLVE_LIB_DEFECTS
877 // 2442. call_once() shouldn't DECAY_COPY()
878 std::__invoke(std::forward<_Callable>(__f),
879 std::forward<_Args>(__args)...);
881 // __f(__args...) did not throw
882 __exec._M_returning = true;
885#endif // _GLIBCXX_HAS_GTHREADS
888_GLIBCXX_END_NAMESPACE_VERSION
893#endif // _GLIBCXX_MUTEX