Using the GNU Compiler Collection

For ccc version 12.3.0

(GCC)

Richard M. Stallman and the GCC Developer Community

Published by:

GNU Press Website: http://www.gnupress.org
a division of the General: press@gnu.org

Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (©) 1988-2022 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

http://www.gnupress.org
mailto:press@gnu.org
mailto:sales@gnu.org

Short Contents

Introduction 1
1 Programming Languages Supported by GCC............... 3
2 Language Standards Supported by GCC D
3 GCC Command Optionst vvn it eenn.. 11
4 C Implementation-Defined Behavior 513
5 C++ Implementation-Defined Behavior 523
6 Extensions to the C Language Family 525
7 Extensions to the C++ Language 885
8 GNU Objective-C Featureso, 899
9 Binary Compatibility 915
10 gcov—a Test Coverage Program 919
11 gcov-tool—an Offline Geda Profile Processing Tool 933
12 gcov-dump—an Offline Geda and Geno Profile Dump Tool .. 937
13 1lto-dump—Tool for dumping LTO object files. 939
14 Known Causes of Trouble with GCC.................... 941
15 Reporting Bugs......... i 957
16 How To Get Help with GCC 959
17 Contributing to GCC Development 961
Funding Free Software 963
The GNU Project and GNU/Linux., 965
GNU General Public License. 967
GNU Free Documentation License 979
Contributors to GCC e 987
Option Index. i 1005

Keyword Indexo 1033

Table of Contents

Introduction 1

1 Programming Languages Supported by GCC

... 3

2 Language Standards Supported by GCC 5
21 CLangUAGEottt 5
2.2 CH+4 Languageot 6
2.3 Objective-C and Objective-C++ Languages 7
24 GO Language.ot 8
25 D Ianguage. . ..o 8
2.6 References for Other Languages ..., 9
3 GCC Command Options...................... 11
3.1 Option SUMMATY ...ttt 11
3.2 Options Controlling the Kind of Output....................... 33
3.3 Compiling C+4 Programsccoouiiiiiiiiiiien.. 43
3.4 Options Controlling C Dialect.............. ..o, 44
3.5 Options Controlling C++ Dialect 51
3.6 Options Controlling Objective-C and Objective-C++ Dialects.. 74
3.7 Options to Control Diagnostic Messages Formatting 78
3.8 Options to Request or Suppress Warnings 89
3.9 Options That Control Static Analysis........................ 145
3.10 Options for Debugging Your Program 153
3.11 Options That Control Optimization......................... 161
3.12 Program Instrumentation Options........................... 234
3.13 Options Controlling the Preprocessor........................ 251
3.14 Passing Options to the Assembler........................... 259
3.15 Options for Linking......... i i 259
3.16 Options for Directory Search................ 264
3.17 Options for Code Generation Conventions................... 267
3.18 GCC Developer Optionsc.cveeiiiiieiiiiieeniinaann. 278
3.19 Machine-Dependent Optionsooiiiiiiiii . 294
3.19.1 AArch64 Optionsovurieii i 294
3.19.1.1 ‘-march’ and ‘-mcpu’ Feature Modifiers............ 300
3.19.2 Adapteva Epiphany Optionsc.ou... 302
3.19.3 AMD GCN Options.oveviiieeiiiiie i, 304
3.19.4 ARC Optionsvviii e 305
3.19.5 ARM Options.oueiirii e 315
3.19.6 AVR Optionscooiiiii i 331

3.19.6.1 EIND and Devices with More Than 128 Ki Bytes of

iii

v

Using the GNU Compiler Collection (GCC)

3.19.6.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special

Function Registers........o i 338
3.19.6.3 AVR Built-in Macros..................oiiii.. 338
3.19.7 Blackfin Options........ ... i 341
3.19.8 COHX Options. .. ouetnt i 344
3.19.9 CRIS OptionS. . cvvove et 344
3.19.10 CRI6 Optionsovuutit i 346
3.19.11 C-SKY Options......cvuiii e 346
3.19.12 Darwin Options., 349
3.19.13 DEC Alpha Optionsoeviiiiiiiiiiiinnn... 352
3.19.14 eBPF Options ..o 357
3.19.15 FR30 Optionsc.vvurieirtii i i 358
3.19.16 FT32 Optionsovvuiiinii i 358
3.19.17 FRV Optionsvvint e 358
3.19.18 GNU/Linux Options.........covveiuiiiiueinennenan.. 362
3.19.19 H8/300 Options.evuniiiiiiiiiiiiiiii e 363
3.19.20 HPPA Options......cooiuuiiiiiiii i 363
3.19.21 TA-64 Optionsovetit i e 366
3.19.22 LM32 Options ..o vvettei i i 370
3.19.23 LoongArch Options...........c.ooiiiiiiiiiine... 370
3.19.24 M32C Options . . .ovvtet i i 373
3.19.25 M32R/D Optionsouviuiniiiiiiiiiiiean.. 373
3.19.26 M680X0 Optionsvuueeeii i iaeen 375
3.19.27 MCore Optionsc.oviiiiiiiiii e 380
3.19.28 MeP Optionscouuviiii i 381
3.19.29 MicroBlaze Options...........cooiiiiiiiiiinnniina., 383
3.19.30 MIPS Optionso.ueiii e 384
3.19.31 MMIX Optionsviiii e 399
3.19.32 MN10300 Optionscouurereeiit i, 400
3.19.33 Moxie OptionS ... o.uvtteeii i 401
3.19.34 MSP430 Options.ovviiriii i 401
3.19.35 NDS32 Optionsvviii e 404
3.19.36 Nios IT Optionsoueeiinii i 405
3.19.37 Nvidia PTX Options. 411
3.19.38 OpenRISC Optionscovuiiiii i 412
3.19.39 PDP-11 Optionsovuttiitei i i eee e 413
3.19.40 picoChip Options........covviiiiiiii .. 414
3.19.41 PowerPC Options. ..., 415
3.19.42 PRU OptionsS . .. vovuiii i e 415
3.19.43 RISC-V Options........coiiii . 416
3.19.44 RL78 Options.......c.ovuiiiiiii i, 419
3.19.45 IBM RS/6000 and PowerPC Options.................. 421
3.19.46 RX Options . ..oveetie e e 436
3.19.47 S/390 and zSeries Optionscooiiiina.. 439
3.19.48 Score Options.viiirt i 443
3.19.49 SH Optionsooiuuiieii e 444
3.19.50 Solaris 2 Optionscouiiiiiiiii i 450
3.19.51 SPARC Optionsouuiiiii i 451

3.19.52 Options for System V... 457

3.19.53 TILE-Gx Options.ooiuuiiiiii i 457
3.19.54 TILEPro Optionsoouuiiiiiiiiiii i, 457
3.19.55 V850 Options. . ..ovuteiei i 458
3.19.56 VAX OptionsS . ..ooeiiii i 460
3.19.57 Visium Optionst 461
3.19.58 VMS Optionsoueeiiit e 461
3.19.59 VxWorks Options. 462
3.19.60 X866 OPtIONS ..ottt 462
3.19.61 x86 Windows Options.............ooooiiiiiiiii ... 490
3.19.62 Xstormyl6 Options.........ccoeiiiiiiiiniiienn... 491
3.19.63 Xtensa Options..........c.coiiiiiiiiiiiii .. 491
3.19.64 zSeries Optionsoouiiiiii i 493
3.20 Specifying Subprocesses and the Switches to Pass to Them .. 493
3.21 Environment Variables Affecting GCC 502
3.22 Using Precompiled Headersoooiiiiian. 506
323 CH+ Modules 507
3.23.1 Module Mapper.........cooiiiiiii 509
3.23.2 Module Preprocessing. ... 511
3.23.3 Compiled Module Interface................. 511

C Implementation-Defined Behavior 513
4.1 Translation 513
4.2 Environment.. ... 513
4.3 Identifiers........ooiiiiii 513
4.4 CRaracterS. ...ttt e 514
4.5 INbegers. ..ottt 515
4.6 Floating Point i 515
4.7 Arrays and Pointers........ i 516
4.8 HiInts ..o 517
4.9 Structures, Unions, Enumerations, and Bit-Fields............. 517
410 Qualifiers. ... 518
411 Declaratorso 519
412 Statementst 519
4.13 Preprocessing Directives ... 519
4.14 Library Functions.........o i 520
4.15 Architecture...........c.oiiiiiin e 520
4.16 Locale-Specific Behavior L. 521

C++4 Implementation-Defined Behavior ... 523

5.1 Conditionally-Supported Behavior............................ 523
5.2 Exception Handling............ ... i i 523

vi Using the GNU Compiler Collection (GCC)

6 Extensions to the C Language Family...... 525
6.1 Statements and Declarations in Expressions.................. 525
6.2 Locally Declared Labels................. oo i, 527
6.3 Labelsas Values........c..oiiiiiiiiiiiii i 528
6.4 Nested Functionsot 529
6.5 Nonlocal GOtos ... e 530
6.6 Constructing Function Calls................... 531
6.7 Referring to a Type with typeof o it 533
6.8 Conditionals with Omitted Operands......................... 534
6.9 128-bit Integerso 535
6.10 Double-Word Integers. 535
6.11 Complex Numbersoouiiiiiiii .. 535
6.12 Additional Floating Typescooiiiiiiiiiiii ... 536
6.13 Half-Precision Floating Point 537
6.14 Decimal Floating Types.........c.ooiiiiiiiiiiiiii i .. 538
6.15 Hex Floats. e 539
6.16 Fixed-Point Types.......ccoiiuiiiiii i 539
6.17 Named Address SPacesvviiiit i 541

6.17.1 AVR Named Address Spacescoovvirieennnnn... 541
6.17.2 M32C Named Address Spaces..........ccovviiieeann.. 543
6.17.3 PRU Named Address Spacesccooveieiinno... 543
6.17.4 RL78 Named Address Spaces...........coovviieinne ... 543
6.17.5 x86 Named Address Spacescooviieninnan... 543
6.18 Arrays of Length Zero ..., 544
6.19 Structures with No Members.............., 545
6.20 Arrays of Variable Length........ 545
6.21 Macros with a Variable Number of Arguments............... 546
6.22 Slightly Looser Rules for Escaped Newlines.................. 547
6.23 Non-Lvalue Arrays May Have Subscripts.................... 547
6.24 Arithmetic on void- and Function-Pointers.................. o047
6.25 Pointer Arguments in Variadic Functions.................... 548
6.26 Pointers to Arrays with Qualifiers Work as Expected 548
6.27 Non-Constant Initializers it 548
6.28 Compound Literals ... 548
6.29 Designated Initializers o L. 549
6.30 Case Ranges.ot 551
6.31 Cast toa Union Type... ..o 551
6.32 Mixed Declarations, Labels and Code 552
6.33 Declaring Attributes of Functions........................... 552
6.33.1 Common Function Attributes.......................... 553
6.33.2 AArch64 Function Attributes 579
6.33.2.1 Inlining rules........... ... i i, 581
6.33.3 AMD GCN Function Attributes........................ 581
6.33.4 ARC Function Attributes.............................. 582
6.33.5 ARM Function Attributes............ 583
6.33.6 AVR Function Attributes 585
6.33.7 Blackfin Function Attributes........................... 587

6.33.8 BPF Function Attributes. ..., 588

6.33.9 CRI16 Function Attributes................., 588
6.33.10 C-SKY Function Attributes........................... 588
6.33.11 Epiphany Function Attributes......................... 588
6.33.12 H8/300 Function Attributes........................... 589
6.33.13 TA-64 Function Attributes........... 590
6.33.14 M32C Function Attributes............................ 590
6.33.15 M32R/D Function Attributes......................... 591
6.33.16 m68k Function Attributes............. ..., 591
6.33.17 MCORE Function Attributescooo. ... 592
6.33.18 MeP Function Attributes 592
6.33.19 MicroBlaze Function Attributes....................... 592
6.33.20 Microsoft Windows Function Attributes............... 593
6.33.21 MIPS Function Attributes 594
6.33.22 MSP430 Function Attributes..................... ..., 596
6.33.23 NDS32 Function Attributes........................... 597
6.33.24 Nios II Function Attributes ia... 598
6.33.25 Nvidia PTX Function Attributes...................... 599
6.33.26 PowerPC Function Attributes......................... 599
6.33.27 RISC-V Function Attributes 602
6.33.28 RL78 Function Attributes............... 602
6.33.29 RX Function Attributes.......... 603
6.33.30 S/390 Function Attributes................c.coiiuin.. 604
6.33.31 SH Function Attributes.............cooiiiiiiiiinn.. 605
6.33.32 Symbian OS Function Attributes...................... 606
6.33.33 V850 Function Attributes............ 606
6.33.34 Visium Function Attributes................. 606
6.33.35 x86 Function Attributes............. ..., 606
6.33.36 Xstormyl6 Function Attributes....................... 618
6.34 Specifying Attributes of Variables........................... 618
6.34.1 Common Variable Attributes........................... 618
6.34.2 ARC Variable Attributes. ... 626
6.34.3 AVR Variable Attributes............ 626
6.34.4 Blackfin Variable Attributes............................ 628
6.34.5 H8/300 Variable Attributes 628
6.34.6 TA-64 Variable Attributes 629
6.34.7 M32R/D Variable Attributes........................... 629
6.34.8 MeP Variable Attributes............... 629
6.34.9 Microsoft Windows Variable Attributes................. 630
6.34.10 MSP430 Variable Attributes 631
6.34.11 Nvidia PTX Variable Attributes 631
6.34.12 PowerPC Variable Attributes 631
6.34.13 RL78 Variable Attributes 631
6.34.14 V850 Variable Attributes i, 632
6.34.15 x86 Variable Attributes.............. 632
6.34.16 Xstormyl6 Variable Attributes........................ 632
6.35 Specifying Attributes of Types ..., 632
6.35.1 Common Type Attributes............... ..., 633
6.35.2 ARC Type Attributes. ..., 640

vii

viii

Using the GNU Compiler Collection (GCC)
6.35.3 ARM Type Attributes ..., 641
6.35.4 BPF Type Attributes ... 641
6.35.5 MeP Type Attributes.............cooiiiiiiiiiiiiL. 641
6.35.6 PowerPC Type Attributes................. 641
6.35.7 x86 Type Attributes i i 641
6.36 Label Attributes....... ... 642
6.37 Enumerator Attributes.......... 643
6.38 Statement Attributes 643
6.39 Attribute Syntax 644
6.40 Prototypes and Old-Style Function Definitions 647
6.41 C+H+ Style Commentsc.ooviiiiiiiiiii .. 648
6.42 Dollar Signs in Identifier Names............. 648
6.43 The Character ESC in Constantsooiia... 648
6.44 Determining the Alignment of Functions, Types or Variables
.. 648
6.45 An Inline Function is As Fast Asa Macro................... 649
6.46 When is a Volatile Object Accessed? 650
6.47 How to Use Inline Assembly Language in C Code 651
6.47.1 Basic Asm — Assembler Instructions Without Operands
... 652
6.47.2 Extended Asm - Assembler Instructions with C Expression
Operands.ot 653
6.47.2.1 Volatile.... 655
6.47.2.2 Assembler Template............... 657
6.47.2.3 Output Operandsccoviiiiiiiieeninn.n. 659
6.47.2.4 Flag Output Operandscooveiieinn... 661
6.47.2.5 Input Operands..............ccoiiiiiiiiiiaaa.. 663
6.47.2.6 Clobbers and Scratch Registers.................... 664
6.47.2.7 Goto Labels........... .o i 667
6.47.2.8 x86 Operand Modifiers....................cooun.. 669
6.47.2.9 x86 Floating-Point asm Operands.................. 671
6.47.2.10 MSP430 Operand Modifiers...................... 672
6.47.3 Constraints for asm Operands 673
6.47.3.1 Simple Constraints.............. ..o, 673
6.47.3.2 Multiple Alternative Constraints 675
6.47.3.3 Constraint Modifier Characters.................... 676
6.47.3.4 Constraints for Particular Machines 677
6.47.4 Controlling Names Used in Assembler Code 704
6.47.5 Variables in Specified Registers......................... 705
6.47.5.1 Defining Global Register Variables................. 705
6.47.5.2 Specifying Registers for Local Variables............ 707
6.47.6 Sizeof an asm........... ..t 708
6.48 Alternate Keywords. ... 708
6.49 Incomplete enum Typeso .. 709
6.50 Function Names as Strings. ..., 709
6.51 Getting the Return or Frame Address of a Function......... 710
6.52 Using Vector Instructions through Built-in Functions........ 711
6.53 Support for offsetof..... ... 715

6.54 Legacy __sync Built-in Functions for Atomic Memory Access
.. 715
6.55 Built-in Functions for Memory Model Aware Atomic Operations
.. 17
6.56 Built-in Functions to Perform Arithmetic with Overflow Checking
.. 721
6.57 x86-Specific Memory Model Extensions for Transactional Memory
.. 724
6.58 Object Size Checking Built-in Functions..................... 724
6.59 Other Built-in Functions Provided by GCC 726
6.60 Built-in Functions Specific to Particular Target Machines.... 743
6.60.1 AArch64 Built-in Functions 743
6.60.2 Alpha Built-in Functions................, 743
6.60.3 Altera Nios IT Built-in Functions....................... 744
6.60.4 ARC Built-in Functions............ ..., 746
6.60.5 ARC SIMD Built-in Functions 748
6.60.6 ARM iWMMX¢t Built-in Functions..................... 752
6.60.7 ARM C Language Extensions (ACLE) 754
6.60.8 ARM Floating Point Status and Control Intrinsics. 755
6.60.9 ARM ARMv8-M Security Extensions................... 755
6.60.10 AVR Built-in Functions......................, 755
6.60.11 Blackfin Built-in Functions............................ 757
6.60.12 BPF Built-in Functions.................., 757
6.60.13 FR-V Built-in Functions 757
6.60.13.1 Argument Types.........ooiuiiiiiiiiniani . 758
6.60.13.2 Directly-Mapped Integer Functions............... 758
6.60.13.3 Directly-Mapped Media Functions................ 759
6.60.13.4 Raw Read/Write Functions 761
6.60.13.5 Other Built-in Functions......................... 761
6.60.14 MIPS DSP Built-in Functions......................... 761
6.60.15 MIPS Paired-Single Support 766
6.60.16 MIPS Loongson Built-in Functions.................... 766
6.60.16.1 Paired-Single Arithmetic......................... 768
6.60.16.2 Paired-Single Built-in Functions.................. 769
6.60.16.3 MIPS-3D Built-in Functions...................... 770
6.60.17 MIPS SIMD Architecture (MSA) Support............. 772
6.60.17.1 MIPS SIMD Architecture Built-in Functions...... 773
6.60.18 Other MIPS Built-in Functions........................ 786
6.60.19 MSP430 Built-in Functions 786
6.60.20 NDS32 Built-in Functions............... 786
6.60.21 picoChip Built-in Functions........................... 787
6.60.22 Basic PowerPC Built-in Functions..................... 787
6.60.22.1 Basic PowerPC Built-in Functions Available on all
Configurations 787
6.60.22.2 Basic PowerPC Built-in Functions Available on ISA
20D 791

2.06. .. 793

ix

Using the GNU Compiler Collection (GCC)

6.60.22.4 Basic PowerPC Built-in Functions Available on ISA

2 0T 793
6.60.22.5 Basic PowerPC Built-in Functions Available on ISA

3. 0 e 793
6.60.22.6 Basic PowerPC Built-in Functions Available on ISA

B 700 796

6.60.23 PowerPC AltiVec/VSX Built-in Functions............. 797

6.60.23.1 PowerPC AltiVec Built-in Functions on ISA 2.05.. 799
6.60.23.2 PowerPC AltiVec Built-in Functions Available on ISA

206 . 808
6.60.23.3 PowerPC AltiVec Built-in Functions Available on ISA
20T 810
6.60.23.4 PowerPC AltiVec Built-in Functions Available on ISA
B0 813
6.60.23.5 PowerPC AltiVec Built-in Functions Available on ISA
0 P 818

6.60.24 PowerPC Hardware Transactional Memory Built-in
Functions ... 828
6.60.24.1 PowerPC HTM Low Level Built-in Functions..... 828
6.60.24.2 PowerPC HTM High Level Inline Functions 830
6.60.25 PowerPC Atomic Memory Operation Functions 832
6.60.26 PowerPC Matrix-Multiply Assist Built-in Functions ... 833
6.60.27 PRU Built-in Functions............................... 834
6.60.28 RISC-V Built-in Functions............................ 835
6.60.29 RX Built-in Functions oL 835
6.60.30 S/390 System z Built-in Functions 836
6.60.31 SH Built-in Functions.......................ooooo. ... 838
6.60.32 SPARC VIS Built-in Functions........................ 839
6.60.33 TI C6X Built-in Functions............................ 842
6.60.34 TILE-Gx Built-in Functions........................... 843
6.60.35 TILEPro Built-in Functions........................... 843
6.60.36 x86 Built-in Functions 844
6.60.37 x86 Transactional Memory Intrinsics.................. 869
6.60.38 x86 Control-Flow Protection Intrinsics 870
6.61 Format Checks Specific to Particular Target Machines....... 871
6.61.1 Solaris Format Checks 871
6.61.2 Darwin Format Checks...................cooo... 871
6.62 Pragmas Accepted by GCC....... 871
6.62.1 AArch64 Pragmas ..., 872
6.62.2 ARM Pragmas...........coiiiiiiiiiiienananns 872
6.62.3 M32C Pragmasoouutitiiii i 872
6.62.4 MeP Pragmas.........ccooiiiiiiiiiiiii i 872
6.62.5 PRU Pragmascoooiiiiiiiiiiiiiii i, 873
6.62.6 RS/6000 and PowerPC Pragmas 873
6.62.7 S/390 Pragmasouuiuiuiiiiii i 874
6.62.8 Darwin Pragmas............ . . i i 874
6.62.9 Solaris Pragmas. ... 874

6.62.10 Symbol-Renaming Pragmas........................... 875

6.62.11 Structure-Layout Pragmas............................ 875
6.62.12 Weak Pragmas..............coiiiiiiiiiiiiiiii 876
6.62.13 Diagnostic Pragmas............. ... o it 876
6.62.14 Visibility Pragmas............. e, 878
6.62.15 Push/Pop Macro Pragmas 878
6.62.16 Function Specific Option Pragmas..................... 879
6.62.17 Loop-Specific Pragmas................ 879
6.63 Unnamed Structure and Union Fields....................... 880
6.64 Thread-Local Storage...........coooiiiiiiiii .. 881
6.64.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage..... 881
6.64.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage. ... 882
6.65 Binary Constants using the ‘Ob’ Prefix 884
Extensions to the C++ Language.......... 885
7.1 When is a Volatile C++ Object Accessed? 885
7.2 Restricting Pointer Aliasing........... 885
7.3 Vague Linkageo 886
7.4 C++ Interface and Implementation Pragmas................. 887
7.5 Where’s the Template?........ .. i, 888
7.6 Extracting the Function Pointer from a Bound Pointer to Member
Functiono 890

7.7 C++-Specific Variable, Function, and Type Attributes 891
7.8 Function Multiversioning............. ... 892
7.9 Type Traits. ... e 893
710 CH4 Concepts . vvvv et 895
7.11 Deprecated Features.......... ..., 896
7.12 Backwards Compatibilityc.ooiiiiiiiii ... 896
GNU Objective-C Features.................. 899
8.1 GNU Objective-C Runtime API.......... 899
8.1.1 Modern GNU Objective-C Runtime APIT................. 899
8.1.2 Traditional GNU Objective-C Runtime API............. 900
8.2 +load: Executing Code before main.......................... 900
8.2.1 What You Can and Cannot Do in +load 901
8.3 Type Encoding 902
8.3.1 Legacy Type Encoding.................ooiiiiiiia.. 904
8.3.2 BencCodeo 904
8.3.3 Method Signatures.......... ...t 905
8.4 Garbage Collection......... ..., 905
8.5 Constant String Objectsc.coiiiiiiiiii i, 906
8.6 compatibility_alias..........ccooiiiiiiiiiiiiiia, 907
8.7 EXCEPIONS. ..o 908
8.8 Synchronization........... 909
8.9 Fast Enumeration............. oo 909
8.9.1 Using Fast Enumeration................... 909
8.9.2 (C99-Like Fast Enumeration Syntax...................... 910
8.9.3 Fast Enumeration Details o 910

8.9.4 Fast Enumeration Protocol.......... 911

xi

xii Using the GNU Compiler Collection (GCC)

8.10 Messaging with the GNU Objective-C Runtime.............. 912
8.10.1 Dynamically Registering Methods...................... 912
8.10.2 Forwarding Hook o i 913

9 Binary Compatibility 915
10 gcov—a Test Coverage Program........... 919

10.1 Introduction to gCov...... ..ot 919

10.2 InvoKing gCov .. .ottt 919

10.3 Using gcov with GCC Optimization......................... 929

10.4 Brief Description of gcov Data Files......................... 931

10.5 Data File Relocation to Support Cross-Profiling............. 931

11 gcov-tool—an Offline Gcda Profile Processing

Tool... 933
11.1 Introduction to gcov—tool............ ..o, 933
11.2 Invoking gcov—tooluiiuiiiiiiiiii i, 933

12 gcov-dump—an Offline Gcda and Gceno Profile

Dump Tool 937
12.1 Introduction to gcov—dump...........cooviiiiiiiiiiiin... 937
12.2 Invoking gcov—qumpcoouiiuiiiiiiiiniinneennenn.. 937

13 1lto-dump—Tool for dumping LTO object files.

... 939
13.1 Introduction to 1to—dump..........cooviiiiiiiiiiinennenn.. 939
13.2 Invoking 1to—dump............ovuiuiiniiiiiiiiiiieneann.. 939

14 Known Causes of Trouble with GCC...... 941
14.1 Actual Bugs We Haven’t Fixed Yet 941
14.2 Interoperationccoouiiiiiiiiiiiiiiieeenaan 941
14.3 Incompatibilities of GCC....... i i, 943
14.4 Fixed Header Files........ ..o i 946
14.5 Standard Libraries........... ..o 946
14.6 Disappointments and Misunderstandings 947
14.7 Common Misunderstandings with GNU C++ 948

14.7.1 Declare and Define Static Members 948
14.7.2 Name Lookup, Templates, and Accessing Members of Base

ClaSSES .+« vttt 949

14.7.3 Temporaries May Vanish Before You Expect............ 950

14.7.4 TImplicit Copy-Assignment for Virtual Bases............ 951

14.8 Certain Changes We Don’t Want to Make................... 952

14.9 Warning Messages and Error Messages...................... 955

15 Reporting Bugs............................. 957
15.1 Have You Found a Bug? i i 957
15.2 How and Where to Report Bugs 957

16 How To Get Help with GCC 959

17 Contributing to GCC Development 961

Funding Free Software........................... 963

The GNU Project and GNU/Linux 965

GNU General Public License 967

GNU Free Documentation License 979
ADDENDUM: How to use this License for your documents........ 986

Contributors to GCC 987

Option Index................ 1005

Keyword Index 1033

xiii

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and incom-
patibilities, and how to report bugs. It corresponds to the compilers (GCC) version 12.3.0.
The internals of the GNU compilers, including how to port them to new targets and some
information about how to write front ends for new languages, are documented in a separate
manual. See Section “Introduction” in GNU Compiler Collection (GCC) Internals.

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Fortran, Ada, D, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Mercury,
and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C Language

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. The ANSI standard,
but not the ISO standard, also came with a Rationale document. This standard, in both
its forms, is commonly known as C89, or occasionally as C90, from the dates of ratifi-
cation. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c90’ or
‘~std=1509899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 44.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘-std=1s09899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/TEC 9899:1999, and
is commonly known as C99. (While in development, drafts of this standard version were
referred to as C9X.) GCC has substantially complete support for this standard version;
see https://gcc.gnu.org/c99status . html for details. To select this standard, use
‘-std=c99’ or ‘-std=1s09899:1999".

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. (While in development, drafts of this standard version were referred to as C1X.)
GCC has substantially complete support for this standard, enabled with ‘-std=c11’ or
‘-5td=15809899:2011’. A version with corrections integrated was prepared in 2017 and pub-
lished in 2018 as ISO/IEC 9899:2018; it is known as C17 and is supported with ‘-std=c17’

or ‘-std=is09899:2017’; the corrections are also applied with ‘-std=c11’, and the only
difference between the options is the value of __STDC_VERSION__.

A further version of the C standard, known as C2X, is under development; experimental
and incomplete support for this is enabled with ‘-std=c2x’.

By default, GCC provides some extensions to the C language that, on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 525.
Some features that are part of the C99 standard are accepted as extensions in C90 mode,
and some features that are part of the C11 standard are accepted as extensions in C90 and
C99 modes. Use of the ‘-std’ options listed above disables these extensions where they

https://gcc.gnu.org/c99status.html

6 Using the GNU Compiler Collection (GCC)

conflict with the C standard version selected. You may also select an extended version of
the C language explicitly with ‘~std=gnu90’ (for C90 with GNU extensions), ‘-std=gnu99’
(for C99 with GNU extensions) or ‘-std=gnuil’ (for C11 with GNU extensions).

The default, if no C language dialect options are given, is ‘-std=gnul7’.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library
facilities; a conforming freestanding implementation is only required to provide certain
library facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since
AMD1, also those in <iso646.h>; since C99, also those in <stdbool.h> and <stdint.h>;
and since C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex
types, added in C99, are not required for freestanding implementations.

The standard also defines two environments for programs, a freestanding environment,
required of all implementations and which may not have library facilities beyond those
required of freestanding implementations, where the handling of program startup and ter-
mination are implementation-defined; and a hosted environment, which is not required,
in which all the library facilities are provided and startup is through a function int main
(void) or int main (int, char *[]1). An OS kernel is an example of a program running
in a freestanding environment; a program using the facilities of an operating system is an
example of a program running in a hosted environment.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it acts as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘-ffreestanding’; it then defines __STDC_HOSTED__ to O and does not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 44.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations on all platforms. To
use the facilities of a hosted environment, you need to find them elsewhere (for example, in
the GNU C library). See Section 14.5 [Standard Libraries], page 946.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC emits a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see https://gcc.gnu.org/readings.html

2.2 C++ Language
GCC supports the original ISO C++ standard published in 1998, and the 2011, 2014, 2017
and mostly 2020 revisions.

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These

https://gcc.gnu.org/readings.html

Chapter 2: Language Standards Supported by GCC 7

standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select
this standard in GCC, use one of the options ‘-ansi’, ‘-std=c++98’, or ‘-std=c++03’; to
obtain all the diagnostics required by the standard, you should also specify ‘-pedantic’ (or
‘-pedantic-errors’ if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is referred
to as C++11; before its publication it was commonly referred to as C++0x. C++11 contains
several changes to the C++ language, all of which have been implemented in GCC. For
details see https://gcc.gnu.org/projects/cxx-status.html#cxxll. To select this
standard in GCC, use the option ‘-std=c++11’.

Another revised ISO C++ standard was published in 2014 as ISO/IEC 14882:2014, and is
referred to as C++14; before its publication it was sometimes referred to as C++1y. C++14
contains several further changes to the C++ language, all of which have been implemented
in GCC. For details see https://gcc.gnu.org/projects/cxx-status.html#cxx14. To
select this standard in GCC, use the option ‘-std=c++14’.

The C++ language was further revised in 2017 and ISO/IEC 14882:2017 was published.
This is referred to as C++17, and before publication was often referred to as C++1z. GCC
supports all the changes in that specification. For further details see https://gcc.gnu.
org/projects/cxx-status.html#cxx17. Use the option ‘-std=c++17’ to select this vari-
ant of C++.

Another revised ISO C++ standard was published in 2020 as ISO/IEC 14882:2020, and
is referred to as C++20; before its publication it was sometimes referred to as C++2a. GCC
supports most of the changes in the new specification. For further details see https://
gcc.gnu.org/projects/cxx-status.html#cxx20. To select this standard in GCC, use
the option ‘-std=c++20’.

More information about the C++ standards is available on the ISO C++ committee’s web
site at http://www.open-std.org/jtcl/sc22/wg21/.

To obtain all the diagnostics required by any of the standard versions described above
you should specify ‘~-pedantic’ or ‘-pedantic-errors’, otherwise GCC will allow some
non-ISO C++ features as extensions. See Section 3.8 [Warning Options], page 89.

By default, GCC also provides some additional extensions to the C++ language that
on rare occasions conflict with the C++ standard. See Section 3.5 [C++ Dialect Options],
page 51. Use of the ‘-std’ options listed above disables these extensions where they they
conflict with the C++ standard version selected. You may also select an extended version
of the C++ language explicitly with ‘-std=gnu++98’ (for C++98 with GNU extensions), or
‘-std=gnu++11’ (for C++11 with GNU extensions), or ‘-std=gnu++14’ (for C++14 with GNU
extensions), or ‘-std=gnu++17’ (for C++17 with GNU extensions), or ‘-std=gnu++20’ (for
C++20 with GNU extensions).

The default, if no C++ language dialect options are given, is ‘~std=gnu++17’.

2.3 Objective-C and Objective-C++ Languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration

https://gcc.gnu.org/projects/cxx-status.html#cxx11
https://gcc.gnu.org/projects/cxx-status.html#cxx14
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/projects/cxx-status.html#cxx17
https://gcc.gnu.org/projects/cxx-status.html#cxx20
https://gcc.gnu.org/projects/cxx-status.html#cxx20
http://www.open-std.org/jtc1/sc22/wg21/

8 Using the GNU Compiler Collection (GCC)

(only for Objective-C), method attributes and the @Qoptional and @required keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options ‘-fgnu-runtime’
and ‘-fnext-runtime’ allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The author-
itative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and
the Objective-C Language”: http://www.gnustep.org/resources/documentation/
ObjectivCBook.pdf is the original NeXTstep document.

The Objective-C exception and synchronization syntax (that is, the keywords @try,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with
the option ‘~fobjc-exceptions’. The syntax is briefly documented in this manual and in
the Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled;
they include properties (via the @property, @synthesize and @dynamic keywords),
fast enumeration (not available in Objective-C++), attributes for methods (such as
deprecated, noreturn, sentinel, format), the unused attribute for method arguments,
the @package keyword for instance variables and the @optional and @required keywords
in protocols. You can disable all these Objective-C 2.0 language extensions with the
option ‘~fobjc-std=objcl’, which causes the compiler to recognize the same Objective-C
language syntax recognized by GCC 4.0, and to produce an error if one of the new features
is used.

GCC has currently no support for non-fragile instance variables.
The authoritative manual on Objective-C 2.0 is available from Apple:

e https: / /developer . apple . com / library / archive / documentation / Cocoa /
Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

For more information concerning the history of Objective-C that is available online, see
https://gcc.gnu.org/readings.html

2.4 Go Language

As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, described at
https://golang.org/doc/gol.

2.5 D language

GCC supports the D 2.0 programming language. The D language itself is currently de-
fined by its reference implementation and supporting language specification, described at
https://dlang.org/spec/spec.html.

http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://gcc.gnu.org/readings.html
https://golang.org/doc/go1
https://dlang.org/spec/spec.html

Chapter 2: Language Standards Supported by GCC 9

2.6 References for Other Languages

See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

Chapter 3: GCC Command Options 11

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘=c’ option says not to run the linker. Then the output consists of object files output
by the assembler. See Section 3.2 [Options Controlling the Kind of Output], page 33.

Other options are passed on to one or more stages of processing. Some options control
the preprocessor and others the compiler itself. Yet other options control the assembler and
linker; most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

The usual way to run GCC is to run the executable called gcc, or machine-gcc when
cross-compiling, or machine-gcc-version to run a specific version of GCC. When you
compile C++ programs, you should invoke GCC as g++ instead. See Section 3.3 [Compiling
C++ Programs|, page 43, for information about the differences in behavior between gcc and
g++ when compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dv’ is very
different from ‘-4 -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘-L’ more than once, the directories are searched in the order specified. Also,
the placement of the ‘-1’ option is significant.

Many options have long names starting with ‘-f’ or with ‘-W—for example,
‘~fmove-loop-invariants’, ‘-Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘-ffoo’ is ‘~fno-foo’. This manual documents only
one of these two forms, whichever one is not the default.

Some options take one or more arguments typically separated either by a space or by
the equals sign (‘=’) from the option name. Unless documented otherwise, an argument
can be either numeric or a string. Numeric arguments must typically be small unsigned
decimal or hexadecimal integers. Hexadecimal arguments must begin with the ‘0x’ prefix.
Arguments to options that specify a size threshold of some sort may be arbitrarily large
decimal or hexadecimal integers followed by a byte size suffix designating a multiple of bytes
such as kB and KiB for kilobyte and kibibyte, respectively, MB and MiB for megabyte and
mebibyte, GB and GiB for gigabyte and gigibyte, and so on. Such arguments are designated
by byte-size in the following text. Refer to the NIST, IEC, and other relevant national and
international standards for the full listing and explanation of the binary and decimal byte
size prefixes.

See [Option Index], page 1005, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

12 Using the GNU Compiler Collection (GCC)

Owerall Options
See Section 3.2 [Options Controlling the Kind of Output], page 33.
-c -S -E -o file
-dumpbase dumpbase -dumpbase-ext auxdropsuf
-dumpdir dumppfx -x language
-v -### --help[=class[,...]] --target-help --version
-pass-exit-codes -pipe -specs=file -wrapper
@file -ffile-prefix-map=old=new
-fplugin=file -fplugin-arg-name=arg
-fdump-ada-spec|[-slim] -fada-spec-parent=unit -fdump-go-spec=file

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 44.

-ansi -std=standard -aux-info filename
-fallow-parameterless-variadic-functions -fno-asm
-fno-builtin -fno-builtin-function -fcond-mismatch
-ffreestanding -fgimple -fgnu-tm -fgnu89-inline -fhosted
-flax-vector-conversions -fms-extensions

-foffload=arg -foffload-options=arg

-fopenacc -fopenacc-dim=geom

-fopenmp -fopenmp-simd
-fpermitted-flt-eval-methods=standard

-fplan9-extensions -fsigned-bitfields -funsigned-bitfields
-fsigned-char -funsigned-char -fsso-struct=endianness

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect], page 51.

-fabi-version=n -fno-access-control
-faligned-new=n -fargs-in-order=n -fchar8_t -fcheck-new
-fconstexpr-depth=n -fconstexpr-cache-depth=n
-fconstexpr-loop-limit=n -fconstexpr-ops-limit=n
-fno-elide-constructors

-fno-enforce-eh-specs

-fno-gnu-keywords

-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines

-fmodule-header[=kind] -fmodule-only -fmodules-ts
-fmodule-implicit-inline

-fno-module-lazy

-fmodule-mapper=specification
-fmodule-version-ignore

-fms-extensions

-fnew-inheriting-ctors

-fnew-ttp-matching

-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags -fpermissive
-fno-pretty-templates

-fno-rtti -fsized-deallocation
-ftemplate-backtrace-limit=n

-ftemplate-depth=n

-fno-threadsafe-statics -fuse-cxa-atexit
-fno-weak -nostdinc++
-fvisibility-inlines-hidden
-fvisibility-ms-compat

-fext-numeric-literals
-flang-info-include-translate[=header]
-flang-info-include-translate-not

Chapter 3: GCC Command Options 13

-flang-info-module-cmi[=module]

-stdlib=1ibstdc++,libc++

-Wabi-tag -Wcatch-value -Wcatch-value=n
-Wno-class-conversion -Wclass-memaccess

-Wcomma-subscript -Wconditionally-supported
-Wno-conversion-null -Wctad-maybe-unsupported
-Wctor-dtor-privacy -Wno-delete-incomplete
-Wdelete-non-virtual-dtor -Wno-deprecated-array-compare
-Wdeprecated-copy -Wdeprecated-copy-dtor
-Wno-deprecated-enum-enum-conversion -Wno-deprecated-enum-float-conversion [}
-Weffc++ -Wno-exceptions -Wextra-semi -Wno-inaccessible-base
-Wno-inherited-variadic-ctor -Wno-init-list-lifetime
-Winvalid-imported-macros

-Wno-invalid-offsetof -Wno-literal-suffix
-Wmismatched-new-delete -Wmismatched-tags
-Wmultiple-inheritance -Wnamespaces -Wnarrowing

-Wnoexcept -Wnoexcept-type -Wnon-virtual-dtor
-Wpessimizing-move -Wno-placement-new -Wplacement-new=n
-Wrange-loop-construct -Wredundant-move -Wredundant-tags
-Wreorder -Wregister

-Wstrict-null-sentinel -Wno-subobject-linkage -Wtemplates
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions -Wsign-promo
-Wsized-deallocation -Wsuggest-final-methods
-Wsuggest-final-types -Wsuggest-override

-Wno-terminate -Wuseless-cast -Wno-vexing-parse
-Wvirtual-inheritance

-Wno-virtual-move-assign -Wvolatile -Wzero-as-null-pointer-constant

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 74.
-fconstant-string-class=class—name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-abi-version=n
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions
-fobjc-gc
-fobjc-nilcheck
-fobjc-std=objcl
-fno-local-ivars
-fivar-visibility=[public|protected|private|package]
-freplace-objc-classes
-fzero-link
-gen-decls
-Wassign-intercept -Wno-property-assign-default
-Wno-protocol -Wobjc-root-class -Wselector
-Wstrict-selector-match
-Wundeclared-selector

Diagnostic Message Formatting Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 78.
-fmessage-length=n
-fdiagnostics-plain-output
-fdiagnostics-show-location=[once|every-line]
-fdiagnostics-color=[auto|never|always

14 Using the GNU Compiler Collection (GCC)

-fdiagnostics-urls=[auto|never|always]
-fdiagnostics-format=[text|json]

-fno-diagnostics-show-option -fno-diagnostics-show-caret
-fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers
-fno-diagnostics-show-cwe
-fdiagnostics-minimum-margin-width=width
-fdiagnostics-parseable-fixits -fdiagnostics-generate-patch
-fdiagnostics—-show-template-tree -fno-elide-type
-fdiagnostics-path-format=[none|separate-events|inline-events]
-fdiagnostics—-show-path-depths

-fno-show-column

-fdiagnostics-column-unit=[display|byte]
-fdiagnostics-column-origin=origin
-fdiagnostics-escape-format=[unicode|bytes]

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 89.

-fsyntax-only -fmax-errors=n -Wpedantic

-pedantic-errors

-w -Wextra -Wall -Wabi=n

-Waddress -Wno-address-of-packed-member -Waggregate-return
-Walloc-size-larger-than=byte-size -Walloc-zero

-Walloca -Walloca-larger-than=byte-size
-Wno-aggressive-loop-optimizations

-Warith-conversion

-Warray-bounds -Warray-bounds=n -Warray-compare
-Wno-attributes -Wattribute-alias=n -Wno-attribute-alias
-Wno-attribute-warning

-Wbidi-chars=[none|unpaired|any|ucn]

-Wbool-compare -Wbool-operation
-Wno-builtin-declaration-mismatch

-Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-cll-compat
-Wcll-c2x-compat

-Wc++-compat -Wc++ll-compat -Wc++14-compat -Wc++17-compat
-Wc++20-compat

-Wno-c++11-extensions -Wno-c++14-extensions -Wno-c++17-extensions
-Wno-c++20-extensions -Wno-c++23-extensions

-Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual
-Wchar-subscripts

-Wclobbered -Wcomment

-Wconversion -Wno-coverage-mismatch -Wno-cpp

-Wdangling-else -Wdangling-pointer -Wdangling-pointer=n
-Wdate-time

-Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init
-Wdisabled-optimization

-Wno-discarded-array-qualifiers -Wno-discarded-qualifiers
-Wno-div-by-zero -Wdouble-promotion

-Wduplicated-branches -Wduplicated-cond

-Wempty-body -Wno-endif-labels -Wenum-compare -Wenum-conversion
-Werror -Werror=* -Wexpansion-to-defined -Wfatal-errors
-Wfloat-conversion -Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-extra-args
-Wformat-nonliteral -Wformat-overflow=n

-Wformat-security -Wformat-signedness -Wformat-truncation=n
-Wformat-y2k -Wframe-address

-Wframe-larger-than=byte-size -Wno-free-nonheap-object
-Wno-if-not-aligned -Wno-ignored-attributes
-Wignored-qualifiers -Wno-incompatible-pointer-types

Chapter 3: GCC Command Options 15

-Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=n
-Wno-implicit-function-declaration -Wno-implicit-int
-Winfinite-recursion

-Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context
-Wno-int-to-pointer-cast -Wno-invalid-memory-model

-Winvalid-pch -Wjump-misses-init -Wlarger-than=byte-size
-Wlogical-not-parentheses -Wlogical-op -Wlong-long
-Wno-lto-type-mismatch -Wmain -Wmaybe-uninitialized
-Wmemset-elt-size -Wmemset-transposed-args
-Wmisleading-indentation -Wmissing-attributes -Wmissing-braces
-Wmissing-field-initializers -Wmissing-format-attribute
-Wmissing-include-dirs -Wmissing-noreturn -Wno-missing-profile
-Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare
-Wnormalized=[none|id|nfc|nfkc]

-Wnull-dereference -Wno-odr

-Wopenacc-parallelism

-Wopenmp-simd

-Wno-overflow -Woverlength-strings -Wno-override-init-side-effects
-Wpacked -Wno-packed-bitfield-compat -Wpacked-not-aligned -Wpadded
-Wparentheses -Wno-pedantic-ms-format

-Wpointer-arith -Wno-pointer-compare -Wno-pointer-to-int-cast
-Wno-pragmas -Wno-prio-ctor-dtor -Wredundant-decls

-Wrestrict -Wno-return-local-addr -Wreturn-type
-Wno-scalar-storage-order -Wsequence-point

-Wshadow -Wshadow=global -Wshadow=local -Wshadow=compatible-local
-Wno-shadow-ivar

-Wno-shift-count-negative -Wno-shift-count-overflow -Wshift-negative-value |}
-Wno-shift-overflow -Wshift-overflow=n

-Wsign-compare -Wsign-conversion

-Wno-sizeof-array-argument

-Wsizeof-array-div

-Wsizeof-pointer-div -Wsizeof-pointer-memaccess

-Wstack-protector -Wstack-usage=byte-size -Wstrict-aliasing
-Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=n
-Wstring-compare

-Wno-stringop-overflow -Wno-stringop-overread
-Wno-stringop-truncation

-Wsuggest-attribute=[pure|const |noreturn|format|malloc]

-Wswitch -Wno-switch-bool -Wswitch-default -Wswitch-enum
-Wno-switch-outside-range -Wno-switch-unreachable -Wsync-nand
-Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs
-Wtrivial-auto-var-init -Wtsan -Wtype-limits -Wundef
-Wuninitialized -Wunknown-pragmas

-Wunsuffixed-float-constants -Wunused

-Wunused-but-set-parameter -Wunused-but-set-variable
-Wunused-const-variable -Wunused-const-variable=n
-Wunused-function -Wunused-label -Wunused-local-typedefs
-Wunused-macros

-Wunused-parameter -Wno-unused-result

-Wunused-value -Wunused-variable

-Wno-varargs -Wvariadic-macros

-Wvector-operation-performance

-Wvla -Wvla-larger-than=byte-size -Wno-vla-larger-than
-Wvolatile-register-var -Wwrite-strings

-Wzero-length-bounds

Static Analyzer Options
-fanalyzer
-fanalyzer-call-summaries

16 Using the GNU Compiler Collection (GCC)

-fanalyzer-checker=name
-fno-analyzer-feasibility
-fanalyzer-fine-grained
-fno-analyzer-state-merge
-fno-analyzer-state-purge
-fanalyzer-transitivity
-fanalyzer-verbose-edges
-fanalyzer-verbose-state-changes
-fanalyzer-verbosity=level
-fdump-analyzer
-fdump-analyzer-callgraph
-fdump-analyzer-exploded-graph
-fdump-analyzer-exploded-nodes
-fdump-analyzer-exploded-nodes-2
-fdump-analyzer-exploded-nodes-3
-fdump-analyzer-exploded-paths
-fdump-analyzer-feasibility
-fdump-analyzer-json
-fdump-analyzer-state-purge
-fdump-analyzer-stderr
-fdump-analyzer-supergraph
-fdump-analyzer-untracked
-Wno-analyzer-double-fclose
-Wno-analyzer-double-free
-Wno-analyzer-exposure-through-output-file
-Wno-analyzer-file-leak
-Wno-analyzer-free-of-non-heap
-Wno-analyzer-malloc-leak
-Wno-analyzer-mismatching-deallocation
-Wno-analyzer-null-argument
-Wno-analyzer-null-dereference
-Wno-analyzer-possible-null-argument
-Wno-analyzer-possible-null-dereference
-Wno-analyzer-shift-count-negative
-Wno-analyzer-shift-count-overflow
-Wno-analyzer-stale-set jmp-buffer
-Wno-analyzer-tainted-allocation-size
-Wno-analyzer-tainted-array-index
-Wno-analyzer-tainted-divisor
-Wno-analyzer-tainted-offset
-Wno-analyzer-tainted-size
-Wanalyzer-too-complex
-Wno-analyzer-unsafe-call-within-signal-handler
-Wno-analyzer-use-after-free
-Wno-analyzer-use-of-pointer-in-stale-stack-frame
-Wno-analyzer-use-of-uninitialized-value
-Wno-analyzer-write-to-const
-Wno-analyzer-write-to-string-literal

C and Objective-C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
-Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.10 [Options for Debugging Your Program], page 153.

Chapter 3: GCC Command Options 17

-g -glevel -gdwarf -gdwarf-version

-gbtf -gctf -gctflevel

-ggdb -grecord-gcc-switches -gno-record-gcc-switches

-gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf
-gas-loc-support -gno-as-loc-support

-gas—-locview-support -gno-as-locview-support

-gcolumn-info -gno-column-info -gdwarf32 -gdwarf64
-gstatement-frontiers -gno-statement-frontiers
-gvariable-location-views -gno-variable-location-views
-ginternal-reset-location-views -gno-internal-reset-location-views
-ginline-points -gno-inline-points

-gvms -gxcoff -gxcoff+ -gz[=type

-gsplit-dwarf -gdescribe-dies -gno-describe-dies
-fdebug-prefix-map=old=new -fdebug-types-section
-fno-eliminate-unused-debug-types
-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed|=spec-1ist]
-fno-eliminate-unused-debug-symbols -femit-class-debug-always
-fno-merge-debug-strings -fno-dwarf2-cfi-asm

-fvar-tracking -fvar-tracking-assignments

Optimization Options
See Section 3.11 [Options that Control Optimization], page 161.

-faggressive-loop-optimizations

-falign-functions[=n[:m: [n2[:m2]]]]

-falign-jumps[=n[:m: [n2[:m2]11]

-falign-labels[=n[:m: [n2[:m2]]1]]

-falign-loops[=n[:m: [n2[:m2]1]1]1]

-fno-allocation-dce -fallow-store-data-races

-fassociative-math -fauto-profile -fauto-profile[=path]

-fauto-inc-dec -fbranch-probabilities

-fcaller-saves

-fcombine-stack-adjustments -fconserve-stack

-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range

-fdata-sections -fdce -fdelayed-branch

-fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively
-fdevirtualize-at-ltrans -fdse

-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects
-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=style
-ffinite-loops

-fforward-propagate -ffp-contract=style -ffunction-sections

-fgcse -fgcse-after-reload -fgcse-las -fgcse-1m -fgraphite-identity
-fgcse-sm -fhoist-adjacent-loads -fif-conversion

-fif-conversion2 -findirect-inlining

-finline-functions -finline-functions-called-once -finline-limit=n
-finline-small-functions -fipa-modref -fipa-cp -fipa-cp-clone
-fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const
-fipa-reference -fipa-reference-addressable

-fipa-stack-alignment -fipa-icf -fira-algorithm=algorithm
-flive-patching=level

-fira-region=region -fira-hoist-pressure

-fira-loop-pressure -fno-ira-share-save-slots
-fno-ira-share-spill-slots

-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute
-fivopts -fkeep-inline-functions -fkeep-static-functions
-fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage

18 Using the GNU Compiler Collection (GCC)

-floop-block -floop-interchange -floop-strip-mine
-floop-unroll-and-jam -floop-nest-optimize

-floop-parallelize-all -flra-remat -flto -flto-compression-level
-flto-partition=alg -fmerge-all-constants

-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants -fmove-loop-stores -fno-branch-count-reg
-fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse
-fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole
-fno-peephole2 -fno-printf-return-value -fno-sched-interblock
-fno-sched-spec -fno-signed-zeros

-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-sibling-calls

-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays

-fprofile-correction

-fprofile-use -fprofile-use=path -fprofile-partial-training
-fprofile-values -fprofile-reorder-functions

-freciprocal-math -free -frename-registers -freorder-blocks
-freorder-blocks-algorithm=algorithm

-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsave-optimization-record

-fsched2-use-superblocks -fsched-pressure

-fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]
-fsched-group-heuristic -fsched-critical-path-heuristic
-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-fusion

-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling2

-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate
-fsignaling-nans

-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops
-fsplit-paths

-fsplit-wide-types -fsplit-wide-types-early -fssa-backprop -fssa-phiopt
-fstdarg-opt -fstore-merging -fstrict-aliasing -fipa-strict-aliasing
-fthread-jumps -ftracer -ftree-bit-ccp

-ftree-builtin-call-dce -ftree-ccp -ftree-ch

-ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts
-ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting
-ftree-loop-if-convert -ftree-loop-im

-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-loop-vectorize

-ftree-parallelize-loops=n -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra
-ftree-switch-conversion -ftree-tail-merge

-ftree-ter -ftree-vectorize -ftree-vrp -ftrivial-auto-var-init
-funconstrained-commons -funit-at-a-time -funroll-all-loops
-funroll-loops -funsafe-math-optimizations -funswitch-loops

-fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt
-fweb -fwhole-program -fwpa -fuse-linker-plugin -fzero-call-used-regs
--param name=value -0 -00 -01 -02 -03 -0Os -Ofast -0g -0z

Program Instrumentation Options
See Section 3.12 [Program Instrumentation Options|, page 234.

Chapter 3: GCC Command Options

-p -pg -fprofile-arcs --coverage -ftest-coverage
-fprofile-abs-path

-fprofile-dir=path -fprofile-generate -fprofile-generate=path
-fprofile-info-section -fprofile-info-section=name
-fprofile-note=path -fprofile-prefix-path=path
-fprofile-update=method -fprofile-filter-files=regex
-fprofile-exclude-files=regex
-fprofile-reproducible=[multithreaded|parallel-runs|serial]
-fsanitize=style -fsanitize-recover -fsanitize-recover=style
-fasan-shadow-offset=number -fsanitize-sections=s1,s2,...
-fsanitize-undefined-trap-on-error -fbounds-check
-fcf-protection=[full|branch|return|none|check
-fharden-compares -fharden-conditional-branches
-fstack-protector -fstack-protector-all -fstack-protector-strong
-fstack-protector-explicit -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fno-stack-limit -fsplit-stack
-fvtable-verify=[std|preinit|none]

-fvtv-counts -fvtv-debug

-finstrument-functions
-finstrument-functions-exclude-function-list=sym,sym,...
—-finstrument-functions-exclude-file-list=file,file,...

-fprofile-prefix-map=old=new

Preprocessor Options
See Section 3.13 [Options Controlling the Preprocessor], page 251.

-Aquestion=answer

-A-question[=answer]

-C -CC -Dmacro[=defn]

-dD -dI -dM -dN -dU

-fdebug-cpp -fdirectives-only -fdollars-in-identifiers
-fexec-charset=charset -fextended-identifiers
-finput-charset=charset -flarge-source-files
-fmacro-prefix-map=old=new -fmax-include-depth=depth
-fno-canonical-system-headers -fpch-deps -fpch-preprocess
-fpreprocessed -ftabstop=width -ftrack-macro-expansion
-fwide-exec-charset=charset -fworking-directory

-H -imacros file -include file

-M -MD -MF -MG -MM -MMD -MP -MQ -MT -Mno-modules
-no-integrated-cpp -P -pthread -remap

-traditional -traditional-cpp -trigraphs

-Umacro -undef

-Wp,option -Xpreprocessor option

Assembler Options
See Section 3.14 [Passing Options to the Assembler|, page 259.

-Wa,option -Xassembler option

Linker Options

See Section 3.15 [Options for Linking], page 259.
object-file-name -fuse-ld=linker -llibrary
-nostartfiles -nodefaultlibs -nolibc -nostdlib
-e entry --entry=entry
-pie -pthread -r -rdynamic
-s -static -static-pie -static-libgcc -static-libstdc++
-static-libasan -static-libtsan -static-liblsan -static-libubsan

19

20 Using the GNU Compiler Collection (GCC)

-shared -shared-libgcc -symbolic
-T script -Wl,option -Xlinker option
-u symbol -z keyword

Directory Options
See Section 3.16 [Options for Directory Search], page 264.
-Bprefix -Idir -I-
-idirafter dir
-imacros file -imultilib dir
-iplugindir=dir -iprefix file
-iquote dir -isysroot dir -isystem dir
-iwithprefix dir -iwithprefixbefore dir
-Ldir -no-canonical-prefixes --no-sysroot-suffix
-nostdinc -nostdinc++ --sysroot=dir

Code Generation Options
See Section 3.17 [Options for Code Generation Conventions|, page 267.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables
-fasynchronous-unwind-tables

-fno-gnu-unique

-finhibit-size-directive -fcommon -fno-ident
-fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt
-fno-jump-tables -fno-bit-tests
-frecord-gcc-switches

-freg-struct-return -fshort-enums -fshort-wchar
-fverbose-asm -fpack-struct [=n]

-fleading-underscore -ftls-model=model
-fstack-reuse=reuse_level

-ftrampolines -ftrapv -fwrapv
-fvisibility=[default|internal|hidden|protected]
-fstrict-volatile-bitfields -fsync-libcalls

Developer Options
See Section 3.18 [GCC Developer Options], page 278.

-dletters —-dumpspecs —-dumpmachine -dumpversion
-dumpfullversion -fcallgraph-info[=su,da] -fchecking -fchecking=n -fdbg-cnt-Jj
list

-fdbg-cnt=counter-value-list
-fdisable-ipa-pass_name

-fdisable-rtl-pass_name
-fdisable-rtl-pass—-name=range-1list
-fdisable-tree-pass_name
-fdisable-tree-pass-name=range-list

-fdump-debug -fdump-earlydebug

-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-final-insns[=file]

-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-lang-all

-fdump-lang-switch

-fdump-lang-switch-options
-fdump-lang-switch-options=filename

-fdump-passes

-fdump-rtl-pass -fdump-rtl-pass=filename
-fdump-statistics

-fdump-tree-all

-fdump-tree-switch

Chapter 3: GCC Command Options 21

-fdump-tree-switch-options

-fdump-tree-switch-options=filename

-fcompare-debug[=opts| -fcompare-debug-second

-fenable-kind-pass

-fenable-kind-pass=range-list

-fira-verbose=n

-flto-report -flto-report-wpa -fmem-report-wpa

-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report
-fopt-info -fopt-info-options[=file]

-fprofile-report

-frandom-seed=string -fsched-verbose=n

-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstats -fstack-usage -ftime-report -ftime-report-details
-fvar-tracking-assignments-toggle -gtoggle
-print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-prog-name=program -print-search-dirs -Q

-print-sysroot -print-sysroot-headers-suffix

-save-temps -save-temps=cwd -save-temps=obj -time[=file]

Machine-Dependent Options
See Section 3.19 [Machine-Dependent Options], page 294.

AArch64 Options
-mabi=name -mbig-endian -mlittle-endian
-mgeneral-regs-only
-mcmodel=tiny -mcmodel=small -mcmodel=large
-mstrict-align -mno-strict-align
-momit-leaf-frame-pointer
-mtls-dialect=desc -mtls-dialect=traditional
-mtls-size=size
-mfix-cortex-ab3-835769 -mfix-cortex-a53-843419
-mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div
-mpc-relative-literal-loads
-msign-return-address=scope
-mbranch-protection=nonel| standard|pac-ret[+leaf +b-key]|bti
-mharden-sls=opts
-march=name -mcpu=name -mtune=name
-moverride=string -mverbose-cost-dump
-mstack-protector-guard=guard -mstack-protector-guard-reg=sysreg
-mstack-protector-guard-offset=offset -mtrack-speculation
-moutline-atomics

Adapteva Epiphany Options
-mhalf-reg-file -mprefer-short-insn-regs
-mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf
-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=num
-mround-nearest -mlong-calls -mshort-calls -msmallil6
-mfp-mode=mode -mvect-double -max-vect-align=num
-msplit-vecmove-early -mlreg-reg

AMD GCN Options

-march=gpu -mtune=gpu -mstack-size=bytes

ARC Options

-mbarrel-shifter -mjli-always

-mcpu=cpu -mA6 -mARC600 -mA7 -mARC700

-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr
-mea -mno-mpy -mmul32x16 -mmul64 -matomic

Using the GNU Compiler Collection (GCC)

-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap
-mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape
-mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof
-mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved
-mrgf-banked-regs -mlpc-width=width -G num

-mvolatile-cache -mtp-regno=regno

-malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc
-mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi
-mexpand-adddi -mindexed-loads -mlra -mlra-priority-none
-mlra-priority-compact -mlra-priority-noncompact -mmillicode
-mmixed-code -mg-class -mRcq -mRcw -msize-level=level

-mtune=cpu -mmultcost=num -mcode-density-frame
-munalign-prob-threshold=probability -mmpy-option=multo

-mdiv-rem -mcode-density -mll64 -mfpu=fpu -mrfl6 -mbranch-index

ARM Options

-mapcs-frame -mno-apcs-frame

-mabi=name

-mapcs-stack-check -mno-apcs-stack-check
-mapcs-reentrant -mno-apcs-reentrant
-mgeneral-regs-only

-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian

-mbe8 -mbe32

-mfloat-abi=name

-mfpl6-format=name -mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mtune=name -mprint-tune-info
-mstructure-size-boundary=n
-mabort-on-noreturn

-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg

-mnop-fun-dllimport

-mpoke-function-name

-mthumb -marm -mflip-thumb

-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name -mtls-dialect=dialect
-mword-relocations

-mfix-cortex-m3-1ldrd
-mfix-cortex-ab7-aes-1742098
-mfix-cortex-a72-aes-1655431
-munaligned-access

-mneon-for-64bits

-mslow-flash-data

-masm-syntax-unified

-mrestrict-it

-mverbose-cost-dump

-mpure-code

-mcmse

-mfix-cmse-cve-2021-35465
-mstack-protector-guard=guard -mstack-protector-guard-offset=offset
-mfdpic

AVR Options

-mmcu=mcu -mabsdata -maccumulate-args
-mbranch-cost=cost
-mcall-prologues -mgas-isr-prologues -mint8

Chapter 3: GCC Command Options 23

-mdouble=bits -mlong-double=bits

-mn_flash=size -mno-interrupts

-mmain-is-0S_task -mrelax -mrmw -mstrict-X -mtiny-stack
-mfract-convert-truncate

-mshort-calls -nodevicelib -nodevicespecs
-Waddr-space-convert -Wmisspelled-isr

Blackfin Options
-mcpu=cpu[-sirevision|
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-11 -mid-shared-library
-mno-id-shared-library -mshared-library-id=n
-mleaf-id-shared-library -mno-leaf-id-shared-library
-msep-data -mno-sep-data -mlong-calls -mno-long-calls
-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
-micplb

C6X Options

-mbig-endian -mlittle-endian -march=cpu
-msim -msdata=sdata-type

CRIS Options
-mcpu=cpu -march=cpu -mtune=cpu -mmax-stack-frame=n
-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue
-melf -maout -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

CR16 Options

-mmac
-mcri6cplus -mcri6ec
-msim -mint32 -mbit-ops -mdata-model=model

C-SKY Options
-march=arch -mcpu=cpu
-mbig-endian -EB -mlittle-endian -EL
-mhard-float -msoft-float -mfpu=fpu -mdouble-float -mfdivdu
-mfloat-abi=name
-melrw -mistack -mmp -mcp -mcache -msecurity -mtrust
-mdsp -medsp -mvdsp
-mdiv -msmart -mhigh-registers -manchor
-mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt
-mbranch-cost=n -mcse-cc -msched-prolog -msim

Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework

-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms
-nofixprebinding -nomultidefs -noprebind -noseglinkedit

24

Using the GNU Compiler Collection (GCC)

-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=version
-mkernel -mone-byte-bool

DEC Alpha Options
-mno-fp-regs -msoft-float
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time

eBPF Options
-mbig-endian -mlittle-endian -mkernel=version -mframe-limit=bytes -mxbpf -
mco-re -mno-co-re -mjmpext -mjmp32 -malu32 -mcpu=version

FR30 Options

-msmall-model -mno-lsim

FT32 Options

-msim -mlra -mnodiv -mft32b -mcompress -mnopm

FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=cpu

GNU/Linuz Options
-mglibc -muclibc -mmusl -mbionic -mandroid
-tno-android-cc -tno-android-1d

H8/300 Options

-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300

HPPA Options

Chapter 3: GCC Command Options 25

IA-64

LM52

-march=architecture-type

-mcaller-copies -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-1ld -mhp-1d
-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float
-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

Options

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata

-mconstant-gp -mauto-pic -mfused-madd

-minline-float-divide-min-latency

-minline-float-divide-max-throughput

-mno-inline-float-divide

-minline-int-divide-min-latency

-minline-int-divide-max-throughput

-mno-inline-int-divide

-minline-sqrt-min-latency -minline-sqrt-max-throughput

-mno-inline-sqrt

-mdwarf2-asm -mearly-stop-bits

-mfixed-range=register-range -mtls-size=tls-size

-mtune=cpu-type -milp32 -mlp64

-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-1ldc -msched-spec-control-ldc
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=max-insns
Options

-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled

LoongArch Options

-march=cpu-type -mtune=cpu-type -mabi=base-abi-type
-mfpu=fpu-type -msoft-float -msingle-float -mdouble-float
-mbranch-cost=n -mcheck-zero-division -mno-check-zero-division
-mcond-move-int -mno-cond-move-int

-mcond-move-float -mno-cond-move-float

-memcpy -mno-memcpy -mstrict-align -mno-strict-align
-mmax-inline-memcpy-size=n

-mcmodel=code-model

MS32R/D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type
-mno-flush-func -mflush-func=name

26 Using the GNU Compiler Collection (GCC)

-mno-flush-trap -mflush-trap=number
-G num

M32C Options
-mcpu=cpu -msim -memregs=number
M680x0 Options

-march=arch -mcpu=cpu -mtune=tune

-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040

-m68060 -mcpu32 -m5200 -m5206e -m528x -mb5307 -mb5407

-mcfvde -mbitfield -mno-bitfield -mc68000 -mc68020

-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort

-mno-short -mhard-float -m68881 -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library
-mxgot -mno-xgot -mlong-jump-table-offsets

MCore Options

-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MeP Options
-mabsdiff -mall-opts -maverage -mbased=n -mbitops
-mc=n -mclip -mconfig=name -mcop -mcop32 -mcop64 -mivc2
-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax
-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
-mtiny=n

MicroBlaze Options

-msoft-float -mhard-float -msmall-divides -mcpu=cpu

-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-app-model
-mpic-data-is-text-relative

MIPS Options

-EL -EB -march=arch -mtune=arch

-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5
-mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6
-mips16 -mno-mips16 -mflip-mipsi6

-minterlink-compressed -mno-interlink-compressed
-minterlink-mips16 -mno-interlink-mipsi16

-mabi=abi -mabicalls -mno-abicalls

-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot

-mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float
-mno-float -msingle-float -mdouble-float

-modd-spreg -mno-odd-spreg

-mabs=mode -mnan=encoding

-mdsp -mno-dsp -mdspr2 -mno-dspr2

-mmcu -mmno-mcu

-meva -mno-eva

-mvirt -mno-virt

-mxpa -mno-xpa

-mCrc -mno-crc

-mginv -mno-ginv

-mmicromips -mno-micromips

Chapter 3: GCC Command Options

-mmsa -mno-msa

-mloongson-mmi -mno-loongson-mmi

-mloongson-ext -mno-loongson-ext

-mloongson-ext2 -mno-loongson-ext2

-mfpu=£fpu-type

-msmartmips -mno-smartmips

-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32

-Gnum -mlocal-sdata -mno-local-sdata

-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=setting

-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks

-mload-store-pairs -mno-load-store-pairs
-munaligned-access -mno-unaligned-access

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp
-mfix-24k -mno-fix-24k

-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r5900 -mno-fix-r5900

-mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000
-mfix-vr4120 -mno-fix-vr4120

-mfix-vr4130 -mno-fix-vr4130 -mfix-sbl -mno-fix-sbil
-mflush-func=func -mno-flush-func

-mbranch-cost=num -mbranch-likely -mno-branch-likely
-mcompact-branches=policy

-mfp-exceptions -mno-fp-exceptions

-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mlxcl-sxcl -mno-lxcl-sxcl -mmadd4 -mno-madd4
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address
-mframe-header-opt -mno-frame-header-opt

MMIX Options

-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit

MN10300 Options

-mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34
-mtune=cpu-type
-mreturn-pointer-on-do0

-mno-crt0 -mrelax -mliw -msetlb

Mozxie Options

-meb -mel -mmul.x -mno-crt0

MSP430 Options

-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax
-mwarn-mcu

-mcode-region= -mdata-region=

-msilicon-errata= -msilicon-errata-warn=

-mhwmult= -minrt -mtiny-printf -mmax-inline-shift=

27

Using the GNU Compiler Collection (GCC)

NDS82 Options
-mbig-endian -mlittle-endian
-mreduced-regs -mfull-regs
—mCmovV -mno-cmov
-mext-perf -mno-ext-perf
-mext-perf2 -mno-ext-perf2
-mext-string -mno-ext-string
-mv3push -mno-v3push
-m16bit -mno-16bit
-misr-vector-size=num
-mcache-block-size=num
-march=arch
-mcmodel=code-model
-mctor-dtor -mrelax

Nios II Options
-G num -mgpopt=option -mgpopt -mno-gpopt
-mgprel-sec=regexp -mrOrel-sec=regexp
-mel -meb
-mno-bypass-cache -mbypass-cache
-mno-cache-volatile -mcache-volatile
-mno-fast-sw-div -mfast-sw-div
-mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div
-mcustom-insn=N -mno-custom-insn
-mcustom-fpu-cfg=name
-mhal -msmallc -msys-crtO=name -msys-lib=name
-march=arch -mbmx -mno-bmx -mcdx -mno-cdx

Nvidia PTX Options

-m64 -mmainkernel -moptimize

OpenRISC Options

-mboard=name -mnewlib -mhard-mul -mhard-div

-msoft-mul -msoft-div

-msoft-float -mhard-float -mdouble-float -munordered-float
-mcmov -mror -mrori -msext -msfimm -mshftimm
-mcmodel=code-model

PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -m10

-mint32 -mno-int16 -mint16 -mno-int32

-msplit -munix-asm -mdec-asm -mgnu-asm -mlra
picoChip Options

-mae=ae_type -mvliw-lookahead=N

-msymbol-as-address -mno-inefficient-warnings

PowerPC Options See RS/6000 and PowerPC Options.
PRU Options

-mmcu=mcu -minrt -mno-relax -mloop
-mabi=variant

RISC-V Options

-mbranch-cost=N-instruction
-mplt -mno-plt
-mabi=ABI-string

-mfdiv -mno-fdiv

-mdiv -mno-div

Chapter 3: GCC Command Options

-misa-spec=ISA-spec-string
-march=ISA-string
-mtune=processor-string
-mpreferred-stack-boundary=num
-msmall-data-limit=N-bytes
-msave-restore -mno-save-restore
-mshorten-memrefs -mno-shorten-memrefs
-mstrict-align -mno-strict-align
-mcmodel=medlow -mcmodel=medany
-mexplicit-relocs -mno-explicit-relocs
-mrelax -mno-relax

-mriscv-attribute -mmo-riscv-attribute
-malign-data=type

-mbig-endian -mlittle-endian
-mstack-protector-guard=guard -mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset

RL78 Options

-msim -mmul=none -mmul=gl3 -mmul=gl4 -mallregs
-mcpu=gl0 -mcpu=gl3 -mcpu=gl4 -mgl0 -mgl3 -mgl4d
-m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts

RS/6000 and PowerPC Options

-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-mpowerpc64

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
-mfprnd -mno-fprnd

-mcmpb -mno-cmpb -mhard-dfp -mno-hard-dfp

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mno-multiple
-mupdate -mno-update

-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -mswdiv -msingle-pic-base
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme

-mcall-aixdesc -mcall-eabi -mcall-freebsd

-mcall-linux -mcall-netbsd -mcall-openbsd

-mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi
-mtraceback=traceback_type

-maix-struct-return -msvr4-struct-return

-mabi=abi-type -msecure-plt -mbss-plt

-mlongcall -mno-longcall -mpltseq -mno-pltseq
-mblock-move-inline-limit=num
-mblock-compare-inline-limit=num
-mblock-compare-inline-loop-limit=num
-mno-block-ops-unaligned-vsx
-mstring-compare-inline-limit=num

29

30

Using the GNU Compiler Collection (GCC)

-misel -mno-isel

-mvrsave -—mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mreadonly-in-sdata -mvxworks -G num

-mrecip -mrecip=opt -mno-recip -mrecip-precision
-mno-recip-precision

-mveclibabi=type -mfriz -mno-friz

-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect

-mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector
-mcrypto -mno-crypto -mhtm -mno-htm

-mquad-memory -mno-quad-memory

-mquad-memory-atomic -mno-quad-memory-atomic

-mcompat-align-parm -mno-compat-align-parm

-mfloat128 -mno-float128 -mfloatl128-hardware -mno-float128-hardware
-mgnu-attribute -mno-gnu-attribute

-mstack-protector-guard=guard -mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset -mprefixed -mno-prefixed
-mpcrel -mno-pcrel -mmma -mno-mmma -mrop-protect -mno-rop-protect
-mprivileged -mno-privileged

RX Options

S/390

-m64bit-doubles -m32bit-doubles -fpu -nofpu
-mcpu=

-mbig-endian-data -mlittle-endian-data
-msmall-data

-msim -mno-sim

-mas100-syntax -mno-as100-syntax

-mrelax

-mmax-constant-size=

-mint-register=

-mpid

-mallow-string-insns -mno-allow-string-insns
-mjsr

-mno-warn-multiple-fast-interrupts
-msave-acc-in-interrupts

and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
-mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mhtm -mvx -mzvector

-mtpf-trace -mno-tpf-trace -mtpf-trace-skip -mno-tpf-trace-skip
-mfused-madd -mno-fused-madd

-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
-mhotpatch=halfwords,halfwords

Score Options

-meb -mel

-mnhwloop

-muls

-mmac

-mscoreb -mscorebu -mscore7 -mscore7d

Chapter 3: GCC Command Options

SH Options
-ml -m2 -m2e
-m2a-nofpu -m2a-single-only -m2a-single -m2a
-m3 -m3e
-m4-nofpu -mé4-single-only -mé4-single -m4
-m4a-nofpu -m4a-single-only -m4a-single -m4a -mdal
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name -mfixed-range=register-range
-maccumulate-outgoing-args
-matomic-model=atomic-model
-mbranch-cost=num -mzdcbranch -mno-zdcbranch
-mcbranch-force-delay-slot
-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra
-mpretend-cmove -mtas

Solaris 2 Options

-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text
-pthreads

SPARC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-mmemory-model=mem-model
-m32 -m64 -mapp-regs -—mno-app-regs
-mfaster-structs -mno-faster-structs -mflat -mno-flat
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mno-stack-bias
-mstd-struct-return -mno-std-struct-return
-munaligned-doubles -mno-unaligned-doubles
-muser-mode -mno-user-mode
-mv8plus -mno-v8plus -mvis -mno-vis
-mvis2 -mno-vis2 -mvis3 -mno-vis3
-mvis4 -mno-vis4 -mvis4b -mno-vis4b
-mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld
-mpopc -mno-popc —msubxc -mno-subxc
-mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc
-mlra -mno-lra

System V Options
-Qy -Qn -YP,paths -Ym,dir
TILE-Gx Options

-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian
-mcmodel=code-model

TILEPro Options
-mcpu=cpu -m32
V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
-mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e2v3 -mv850e2 -mv850el -mv850es

31

Using the GNU Compiler Collection (GCC)

-mv850e -mv850 -mv850e3vh
-mloop

-mrelax

-mlong-jumps

-msoft-float

-mhard-float

-mgcc-abi

-mrh850-abi

-mbig-switch

VAX Options
-mg -mgnu -munix -mlra
Visium Options

-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float
-mcpu=cpu-type -mtune=cpu-type -msv-mode -muser-mode

VMS Options

-mvms-return-codes -mdebug-main=prefix -mmalloc64
-mpointer-size=size

VxWorks Options

-mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now

286 Options
-mtune=cpu-type -march=cpu-type
-mtune-ctrl=feature-list -mdump-tune-features -mno-default
-mfpmath=unit
-masm=dialect -mno-fancy-math-387
-mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num
-mincoming-stack-boundary=num
-mcld -mcx16 -msahf -mmovbe -mcrc32 -mmwait
-mrecip -mrecip=opt
-mvzeroupper -mprefer-avx128 -mprefer-vector-width=opt
-mmove-max=bits -mstore-max=bits
-mmmx -msse -msse2 -msse3 -mssse3 -msse4.l -msse4.2 -msse4 -mavx
-mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl
-mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes
-mpclmul -mfsgsbase -mrdrnd -mfi6c -mfma -mpconfig -mwbnoinvd
-mptwrite -mprefetchwtl -mclflushopt -mclwb -mxsavec -mxsaves
-msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop
-madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp
-mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes -mwaitpkg
-mshstk -mmanual-endbr -mforce-indirect-call -mavx512vbmi2 -mavx512bf16 -

mengcmd

-mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq
-mavx5124fmaps -mavx512vnni -mavx5124vnniw -mprfchw -mrdpid
-mrdseed -msgx -mavxb512vp2intersect -mserialize -mtsxldtrk
-mamx-tile -mamx-int8 -mamx-bf16 -muintr -mhreset -mavxvnni
-mavx512fp16
-mcldemote -mms-bitfields -mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=alg
-mkl -mwidekl
-mmemcpy-strategy=strategy -mmemset-strategy=strategy
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128
-mregparm=num -msseregparm

Chapter 3: GCC Command Options 33

-mveclibabi=type -mvect8-ret-in-mem

-mpc32 -mpc64 -mpc80 -mstackrealign

-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model -mabi=name -maddress-mode=mode

-m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=num
-msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv
-minstrument-return=type -mfentry-name=name -mfentry-section=name
-mavx256-split-unaligned-load -mavx256-split-unaligned-store
-malign-data=type -mstack-protector-guard=guard
-mstack-protector-guard-reg=reg
-mstack-protector-guard-offset=offset
-mstack-protector-guard-symbol=symbol

-mgeneral-regs-only -mcall-ms2sysv-xlogues -mrelax-cmpxchg-loop
-mindirect-branch=choice -mfunction-return=choice
-mindirect-branch-register -mharden-sls=choice
-mindirect-branch-cs-prefix -mneeded -mno-direct-extern-access

86 Windows Options
-mconsole -mcygwin -mno-cygwin -mdll
-mnop-fun-dllimport -mthread
-municode -mwin32 -mwindows -fno-set-stack-executable
Xstormyl6 Options
-msim
Xtensa Options

-mconst1l6 -mno-constl16

-mfused-madd -mno-fused-madd

-mforce-no-pic

-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mauto-litpools -mno-auto-litpools

-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

-mabi=abi-type

zSeries Options See S/390 and zSeries Options.

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:
file.c C source code that must be preprocessed.
file.i C source code that should not be preprocessed.
file.ii C++ source code that should not be preprocessed.

file.m Objective-C source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C program work.

file.mi Objective-C source code that should not be preprocessed.

34

file.
file.

file.

file.

file.
file.
file.
file.
file.
file.
file.

file.
file.

file.

file.
file.
file.
file.
file.
file.
file.
file.

file.
file.
file.

file.
file.

file

file.
file.
file.
file.

mii

cc
cp
cXX

cpp
CPP
c++

mii
hh

hp
hxx

hpp
HPP
h++

tcc

for
ftn

FOR

.fpp
file.

file.

FPP
FTN

£90
£95
£03
08

Using the GNU Compiler Collection (GCC)

Objective-C++ source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

Objective-C++ source code that should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header (default), or C, C++ header file to be turned into an Ada spec (via
the ‘~fdump-ada-spec’ switch).

C++ source code that must be preprocessed. Note that in ‘.cxx’, the last two
letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

Objective-C++ source code that must be preprocessed.

Objective-C++ source code that should not be preprocessed.

C++ header file to be turned into a precompiled header or Ada spec.

Fixed form Fortran source code that should not be preprocessed.

Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Free form Fortran source code that should not be preprocessed.

Chapter 3: GCC Command Options 35

file.F90

file.F95

file.F03

file.F08 Free form Fortran source code that must be preprocessed (with the traditional
preprocessor).

file.go Go source code.

file.d D source code.

file.di D interface file.

file.dd D documentation code (Ddoc).

file.ads Ada source code file that contains a library unit declaration (a declaration of a
package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

file.adb Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

file.s Assembler code.

file.S
file.sx Assembler code that must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘-x’ option. Possible values for language
are:

¢ c-header cpp-output
c++ c++-header c++-system-header c++-user-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
d
£77 £77-cpp-input £95 f£95-cpp-input
go
-X none Turn off any specification of a language, so that subsequent files are handled

according to their file name suffixes (as they are if ‘-x’ has not been used at
all).

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘~c’, ‘-8’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

36

-o file

Using the GNU Compiler Collection (GCC)

Compile or assemble the source files, but do not link. The linking stage simply

is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix

‘.’ fai fLe), ete., with ‘Lo’

Unrecognized input files, not requiring compilation or assembly, are ignored.

Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the

P4)

suffix .c¢’, “.i’, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.

Input files that don’t require preprocessing are ignored.

Place the primary output in file file. This applies to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code.

If ‘-0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source.suffix.gch’, and all preprocessed C source
on standard output.

Though ‘-0’ names only the primary output, it also affects the naming of aux-
iliary and dump outputs. See the examples below. Unless overridden, both
auxiliary outputs and dump outputs are placed in the same directory as the
primary output. In auxiliary outputs, the suffix of the input file is replaced
with that of the auxiliary output file type; in dump outputs, the suffix of the
dump file is appended to the input file suffix. In compilation commands, the
base name of both auxiliary and dump outputs is that of the primary output;
in compile and link commands, the primary output name, minus the executable
suffix, is combined with the input file name. If both share the same base name,
disregarding the suffix, the result of the combination is that base name, other-
wise, they are concatenated, separated by a dash.

gcc -c foo.c ...

will use ‘foo.o’ as the primary output, and place aux outputs and dumps
next to it, e.g.,, aux file ‘foo.dwo’ for ‘-gsplit-dwarf’, and dump file
‘foo.c.???r.final’ for ‘~-fdump-rtl-final’.

If a non-linker output file is explicitly specified, aux and dump files by default
take the same base name:

gcc -c foo.c -o dir/foobar.o ...
will name aux outputs ‘dir/foobar.*’ and dump outputs ‘dir/foobar.c.x*’.

A linker output will instead prefix aux and dump outputs:

gcc foo.c bar.c -o dir/foobar ...

Chapter 3: GCC Command Options 37

will generally name aux outputs ‘dir/foobar-foo.*" and ‘dir/foobar-bar.*’,
and dump outputs ‘dir/foobar-foo.c.*” and ‘dir/foobar-bar.c.*’.

The one exception to the above is when the executable shares the base name
with the single input:

gcec foo.c -o dir/foo ...
in which case aux outputs are named ‘dir/foo.*’ and dump outputs named
‘dir/foo.c.*’.
The location and the names of auxiliary and dump outputs can be adjusted
by the options ‘-~dumpbase’, ‘~dumpbase-ext’, ‘~dumpdir’, ‘-save-temps=cwd’,
and ‘-save-temps=obj’.

—dumpbase dumpbase
This option sets the base name for auxiliary and dump output files. It does
not affect the name of the primary output file. Intermediate outputs, when
preserved, are not regarded as primary outputs, but as auxiliary outputs:
gcc -save-temps -S foo.c

saves the (no longer) temporary preprocessed file in ‘foo.i’, and then compiles
to the (implied) output file ‘foo.s’, whereas:

gcc -save-temps -dumpbase save-foo -c foo.c
preprocesses to in ‘save-foo.i’, compiles to ‘save-foo.s’ (now an interme-
diate, thus auxiliary output), and then assembles to the (implied) output file
‘foo.o’.

Absent this option, dump and aux files take their names from the input file,
or from the (non-linker) output file, if one is explicitly specified: dump output
files (e.g. those requested by ‘~fdump-*’ options) with the input name suffix,
and aux output files (those requested by other non-dump options, e.g. -save-
temps, —~gsplit-dwarf, -fcallgraph-info) without it.
Similar suffix differentiation of dump and aux outputs can be attained for
explicitly-given ‘~dumpbase basename.suf’ by also specifying ‘~dumpbase-ext
.suf’.
If dumpbase is explicitly specified with any directory component, any dumppfx
specification (e.g. ‘-dumpdir’ or ‘-save-temps=+’) is ignored, and instead of
appending to it, dumpbase fully overrides it:

gcc foo.c -¢ -o dir/foo.o -dumpbase alt/foo \

—dumpdir pfx- -save-temps=cwd ...

creates auxiliary and dump outputs named ‘alt/foo.*’, disregarding ‘dir/’ in
‘-0’ the *./’ prefix implied by ‘-save-temps=cwd’, and ‘pfx-’ in ‘~dumpdir’.
When ‘-dumpbase’ is specified in a command that compiles multiple inputs,
or that compiles and then links, it may be combined with dumppfx, as spec-
ified under ‘-dumpdir’. Then, each input file is compiled using the combined
dumppfx, and default values for dumpbase and auxdropsuf are computed for
each input file:

gcc foo.c bar.c -c -dumpbase main ...
creates ‘foo.o’” and ‘bar.o’ as primary outputs, and avoids overwriting the aux-
iliary and dump outputs by using the dumpbase as a prefix, creating auxiliary
and dump outputs named ‘main-foo.*’ and ‘main-bar.x*’.

38

Using the GNU Compiler Collection (GCC)

An empty string specified as dumpbase avoids the influence of the output base-
name in the naming of auxiliary and dump outputs during compilation, com-
puting default values :

gcc -c foo.c -o dir/foobar.o -dumpbase ’’ ...

will name aux outputs ‘dir/foo.*’ and dump outputs ‘dir/foo.c.*’. Note
how their basenames are taken from the input name, but the directory still
defaults to that of the output.

The empty-string dumpbase does not prevent the use of the output basename
for outputs during linking;:

gcc foo.c bar.c -o dir/foobar -dumpbase ’’ -flto ...
The compilation of the source files will name auxiliary outputs ‘dir/foo.*’
and ‘dir/bar.*’, and dump outputs ‘dir/foo.c.*” and ‘dir/bar.c.*’. LTO
recompilation during linking will use ‘dir/foobar.’ as the prefix for dumps
and auxiliary files.

—dumpbase-ext auxdropsuf

When forming the name of an auxiliary (but not a dump) output file, drop trail-
ing auxdropsuf from dumpbase before appending any suffixes. If not specified,
this option defaults to the suffix of a default dumpbase, i.e., the suffix of the
input file when ‘~dumpbase’ is not present in the command line, or dumpbase
is combined with dumppfx.

gcc foo.c —c -o dir/foo.o -dumpbase x-foo.c -dumpbase-ext .c ...
creates ‘dir/foo.o’ as the main output, and generates auxiliary outputs in
‘dir/x-foo.*’, taking the location of the primary output, and dropping the ‘. c’
suffix from the dumpbase. Dump outputs retain the suffix: ‘dir/x-foo.c.*’.
This option is disregarded if it does not match the suffix of a specified dumpbase,
except as an alternative to the executable suffix when appending the linker
output base name to dumppfx, as specified below:

gcc foo.c bar.c -o main.out -dumpbase-ext .out ...
creates ‘main.out’ as the primary output, and avoids overwriting the auxiliary
and dump outputs by using the executable name minus auxdropsuf as a prefix,
creating auxiliary outputs named ‘main-foo.*’ and ‘main-bar.*’ and dump
outputs named ‘main-foo.c.*’ and ‘main-bar.c.*’.

—dumpdir dumppfx

When forming the name of an auxiliary or dump output file, use dumppfx as a
prefix:

gcc —dumpdir pfx- -c foo.c ...
creates ‘foo.o’ as the primary output, and auxiliary outputs named
‘pfx-foo.*’, combining the given dumppfx with the default dumpbase derived
from the default primary output, derived in turn from the input name. Dump
outputs also take the input name suffix: ‘pfx-foo.c.*’.
If dumppfx is to be used as a directory name, it must end with a directory
separator:

gcc —dumpdir dir/ -c foo.c -o obj/bar.o ...
creates ‘obj/bar.o’ as the primary output, and auxiliary outputs named
‘dir/bar.*’, combining the given dumppfx with the default dumpbase derived

Chapter 3: GCC Command Options 39

from the primary output name. Dump outputs also take the input name
suffix: ‘dir/bar.c.x*’.

It defaults to the location of the output file, unless the output file is a special file
like /dev/null. Options ‘-save-temps=cwd’ and ‘-save-temps=obj’ override
this default, just like an explicit ‘~dumpdir’ option. In case multiple such
options are given, the last one prevails:

gcc —dumpdir pfx- -c foo.c -save-temps=obj ...

outputs ‘foo.o’, with auxiliary outputs named ‘foo.*’ because
‘-save-temps=+*" overrides the dumppfx given by the earlier ‘-dumpdir’
option. It does not matter that ‘=obj’ is the default for ‘-save-temps’, nor
that the output directory is implicitly the current directory. Dump outputs
are named ‘foo.c.*’.

When compiling from multiple input files, if ‘~dumpbase’ is specified, dumpbase,
minus a auxdropsuf suffix, and a dash are appended to (or override, if contain-
ing any directory components) an explicit or defaulted dumppfx, so that each
of the multiple compilations gets differently-named aux and dump outputs.

gcc foo.c bar.c -¢ -dumpdir dir/pfx- -dumpbase main ...

outputs auxiliary dumps to ‘dir/pfx-main-foo.*’ and ‘dir/pfx-main-bar.*’,
appending dumpbase- to dumppfx. Dump outputs retain the input file suffix:
‘dir/pfx-main-foo.c.*’ and ‘dir/pfx-main-bar.c.*’, respectively. Contrast
with the single-input compilation:

gcc foo.c -c —dumpdir dir/pfx- -dumpbase main ...

that, applying ‘-dumpbase’ to a single source, does not compute and append
a separate dumpbase per input file. Its auxiliary and dump outputs go in
‘dir/pfx-main.*’.

When compiling and then linking from multiple input files, a defaulted or ex-
plicitly specified dumppfx also undergoes the dumpbase- transformation above
(e.g. the compilation of ‘foo.c’ and ‘bar.c’ above, but without ‘-¢’). If nei-
ther ‘~dumpdir’ nor ‘-~dumpbase’ are given, the linker output base name, minus
auxdropsuf, if specified, or the executable suffix otherwise, plus a dash is ap-
pended to the default dumppfx instead. Note, however, that unlike earlier cases
of linking;:

gcc foo.c bar.c -dumpdir dir/pfx- -o main ...

does not append the output name ‘main’ to dumppfx, because ‘~dumpdir’ is ex-
plicitly specified. The goal is that the explicitly-specified dumppfx may contain
the specified output name as part of the prefix, if desired; only an explicitly-
specified ‘-dumpbase’ would be combined with it, in order to avoid simply
discarding a meaningful option.

When compiling and then linking from a single input file, the linker output
base name will only be appended to the default dumppfx as above if it does
not share the base name with the single input file name. This has been covered
in single-input linking cases above, but not with an explicit ‘~dumpdir’ that
inhibits the combination, even if overridden by ‘-save-temps=x*":

gcc foo.c —dumpdir alt/pfx- -o dir/main.exe -save-temps=cwd ...

40

—H###

--help

Using the GNU Compiler Collection (GCC)

Auxiliary outputs are named ‘foo.*’, and dump outputs ‘foo.c.*’, in the
current working directory as ultimately requested by ‘-save-temps=cwd’.

Summing it all up for an intuitive though slightly imprecise data flow:
the primary output name is broken into a directory part and a basename
part; dumppfx is set to the former, unless overridden by ‘-dumpdir’ or
‘-save-temps=*’, and dumpbase is set to the latter, unless overriden by
‘~dumpbase’. If there are multiple inputs or linking, this dumpbase may be
combined with dumppfx and taken from each input file. Auxiliary output
names for each input are formed by combining dumppfx, dumpbase minus
suffix, and the auxiliary output suffix; dump output names are only different
in that the suffix from dumpbase is retained.

When it comes to auxiliary and dump outputs created during LTO recompi-
lation, a combination of dumppfx and dumpbase, as given or as derived from
the linker output name but not from inputs, even in cases in which this com-
bination would not otherwise be used as such, is passed down with a trailing
period replacing the compiler-added dash, if any, as a ‘-dumpdir’ option to
lto-wrapper; being involved in linking, this program does not normally get
any ‘-dumpbase’ and ‘-dumpbase-ext’, and it ignores them.

When running sub-compilers, 1to-wrapper appends LTO stage names to the
received dumppfx, ensures it contains a directory component so that it overrides
any ‘—dumpdir’, and passes that as ‘~dumpbase’ to sub-compilers.

Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Like ‘-v’ except the commands are not executed and arguments are quoted
unless they contain only alphanumeric characters or ./-_. This is useful for
shell scripts to capture the driver-generated command lines.

Print (on the standard output) a description of the command-line options under-
stood by gcc. If the ‘~v’ option is also specified then ‘--help’ is also passed on
to the various processes invoked by gcc, so that they can display the command-
line options they accept. If the ‘-Wextra’ option has also been specified (prior to
the ‘--help’ option), then command-line options that have no documentation
associated with them are also displayed.

-—target-help

Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

--help={class||["|qualifier}|,...]

Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

‘optimizers’
Display all of the optimization options supported by the compiler.

Chapter 3: GCC Command Options 41

‘warnings’
Display all of the options controlling warning messages produced
by the compiler.

‘target’ Display target-specific options. Unlike the ‘--target-help’ option
however, target-specific options of the linker and assembler are not
displayed. This is because those tools do not currently support the
extended ‘--help=’ syntax.

‘params’ Display the values recognized by the ‘~-param’ option.

language Display the options supported for language, where language is the
name of one of the languages supported in this version of GCC. If
an option is supported by all languages, one needs to select ‘common’
class.

‘common’ Display the options that are common to all languages.
These are the supported qualifiers:

‘undocumented’
Display only those options that are undocumented.

‘joined’ Display options taking an argument that appears after an equal sign
in the same continuous piece of text, such as: ‘--help=target’.

‘separate’
Display options taking an argument that appears as a separate word
following the original option, such as: ‘-0 output-file’.

Thus for example to display all the undocumented target-specific switches sup-
ported by the compiler, use:
--help=target,undocumented

)

The sense of a qualifier can be inverted by prefixing it with the ‘~’ character,
so for example to display all binary warning options (i.e., ones that are either
on or off and that do not take an argument) that have a description, use:

--help=warnings, ~joined, “undocumented
The argument to ‘--help="should not consist solely of inverted qualifiers.

Combining several classes is possible, although this usually restricts the output
so much that there is nothing to display. One case where it does work, however,
is when one of the classes is target. For example, to display all the target-specific
optimization options, use:

--help=target,optimizers

The ‘--help=" option can be repeated on the command line. Each successive
use displays its requested class of options, skipping those that have already been
displayed. If ‘~-help’ is also specified anywhere on the command line then this
takes precedence over any ‘--help=" option.

If the ‘-Q’ option appears on the command line before the ‘~-help="option, then
the descriptive text displayed by ‘--help=’is changed. Instead of describing
the displayed options, an indication is given as to whether the option is enabled,

42

—--version

Using the GNU Compiler Collection (GCC)

disabled or set to a specific value (assuming that the compiler knows this at the
point where the ‘--help=’ option is used).
Here is a truncated example from the ARM port of gcc:

% gcc -Q -mabi=2 --help=target -c
The following options are target specific:

-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]

The output is sensitive to the effects of previous command-line options, so for
example it is possible to find out which optimizations are enabled at ‘-02’ by
using:

-Q -02 --help=optimizers
Alternatively you can discover which binary optimizations are enabled by ‘-03’
by using;:

gcc -c -Q -03 --help=optimizers > /tmp/03-opts

gcc -¢ -Q -02 --help=optimizers > /tmp/02-opts

diff /tmp/02-opts /tmp/03-opts | grep enabled

Display the version number and copyrights of the invoked GCC.

-pass-exit-codes

-pipe

Normally the gce program exits with the code of 1 if any phase of the compiler
returns a non-success return code. If you specify ‘-pass-exit-codes’, the gcc
program instead returns with the numerically highest error produced by any
phase returning an error indication. The C, C++, and Fortran front ends return
4 if an internal compiler error is encountered.

Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

-specs=file

-wrapper

Process file after the compiler reads in the standard ‘specs’ file, in order to
override the defaults which the gcc driver program uses when determining what
switches to pass to ccl, cclplus, as, 1d, etc. More than one ‘-specs=file’
can be specified on the command line, and they are processed in order, from
left to right. See Section 3.20 [Spec Files|, page 493, for information about the
format of the file.

Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.

gcc -c t.c -wrapper gdb,--args
This invokes all subprograms of gcc under ‘gdb --args’, thus the invocation of
cclis ‘gdb —-—args ccl ...".

-ffile-prefix-map=old=new

When compiling files residing in directory ‘old’, record any references to
them in the result of the compilation as if the files resided in directory
‘new’ instead. Specifying this option is equivalent to specifying all the
individual ‘-f*-prefix-map’ options. This can be used to make reproducible

Chapter 3: GCC Command Options 43

builds that are location independent. See also ‘-fmacro-prefix-map’,
‘~fdebug-prefix-map’ and ‘-fprofile-prefix-map’.

-fplugin=name.so
Load the plugin code in file name.so, assumed to be a shared object to
be dlopen’d by the compiler. The base name of the shared object file
is used to identify the plugin for the purposes of argument parsing (See
‘~fplugin-arg-name-key=value’ below). FEach plugin should define the
callback functions specified in the Plugins API.

-fplugin-arg-name-key=value
Define an argument called key with a value of value for the plugin called name.

-fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See
Section “Generating Ada Bindings for C and C++ headers” in GNAT User’s
Guide, which provides detailed documentation on this feature.

-fada-spec-parent=unit
In conjunction with ‘~fdump-ada-spec[-slim|’ above, generate Ada specs as
child units of parent unit.

-fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file.
This generates Go const, type, var, and func declarations which may be
a useful way to start writing a Go interface to code written in some other
language.

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

3.3 Compiling C++ Programs

4 Y

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’, ‘.hpp’, ‘.H’, or (for shared template code)
‘.tcc’; and preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these
names and compiles them as C++ programs even if you call the compiler the same way as
for compiling C programs (usually with the name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and automatically specifies linking against the C++ library. It treats ‘.c’, *.h’ and ‘.1’ files
as C++ source files instead of C source files unless ‘~x’ is used. This program is also useful
when precompiling a C header file with a ‘.h’ extension for use in C++ compilations. On
many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options

44

Using the GNU Compiler Collection (GCC)

meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 44, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 51, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

—ansi

-std=

In C mode, this is equivalent to ‘-std=c90’. In C++ mode, it is equivalent to
‘~std=c++98’.

This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ‘//’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension _inline__ and __typeof_
_ continue to work despite ‘-ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘-ansi’.

—_ =

The ‘-ansi’ option does not cause non-ISO programs to be rejected
gratuitously. For that, ‘-Wpedantic’ is required in addition to ‘-ansi’. See
Section 3.8 [Warning Options|, page 89.

The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other
things.

Functions that are normally built in but do not have semantics defined by ISO
C (such as alloca and ffs) are not built-in functions when ‘-ansi’ is used. See
Section 6.59 [Other built-in functions provided by GCC], page 726, for details
of the functions affected.

Determine the language standard. See Chapter 2 [Language Standards Sup-
ported by GCC], page 5, for details of these standard versions. This option is
currently only supported when compiling C or C++.

The compiler can accept several base standards, such as ‘c90’ or ‘c++98’, and
GNU dialects of those standards, such as ‘gnu90’ or ‘gnu++98’. When a base
standard is specified, the compiler accepts all programs following that stan-
dard plus those using GNU extensions that do not contradict it. For example,
‘~=std=c90’ turns off certain features of GCC that are incompatible with ISO
C90, such as the asm and typeof keywords, but not other GNU extensions that
do not have a meaning in ISO C90, such as omitting the middle term of a ?7:
expression. On the other hand, when a GNU dialect of a standard is specified,

Chapter 3:

GCC Command Options 45

all features supported by the compiler are enabled, even when those features
change the meaning of the base standard. As a result, some strict-conforming
programs may be rejected. The particular standard is used by ‘~Wpedantic’ to
identify which features are GNU extensions given that version of the standard.
For example ‘~std=gnu90 -Wpedantic’ warns about C++ style ‘//’ comments,
while ‘-std=gnu99 -Wpedantic’ does not.

A value for this option must be provided; possible values are

‘c90’
‘c89’

‘1809899:1990’

Support all ISO C90 programs (certain GNU extensions that con-
flict with ISO C90 are disabled). Same as ‘-ansi’ for C code.

‘1509899:199409’

‘c99’

‘c9x’

ISO C90 as modified in amendment 1.

‘1509899:1999’
‘1509899:199x’

‘cl1t’

‘clx’

ISO (C99. This standard is substantially completely supported,
modulo bugs and floating-point issues (mainly but not entirely
relating to optional C99 features from Annexes F and G). See
https://gcc.gnu.org/c99status.html for more information.
The names ‘c9x’ and ‘1s09899:199x’ are deprecated.

‘1509899:2011°

‘c17’
‘c18’

ISO C11, the 2011 revision of the ISO C standard. This standard is
substantially completely supported, modulo bugs, floating-point is-
sues (mainly but not entirely relating to optional C11 features from
Annexes F and G) and the optional Annexes K (Bounds-checking
interfaces) and L (Analyzability). The name ‘c1x’ is deprecated.

‘1809899:2017’
‘1509899:2018’

c2x

‘gnu90’
‘gnu89’

ISO C17, the 2017 revision of the ISO C standard (published in
2018). This standard is same as C11 except for corrections of de-
fects (all of which are also applied with ‘-std=c11’) and a new value
of __STDC_VERSION and so is supported to the same extent as
C11.

-

The next version of the ISO C standard, still under development.
The support for this version is experimental and incomplete.

GNU dialect of ISO C90 (including some C99 features).

https://gcc.gnu.org/c99status.html

46

‘gnu99’
‘gnu9x’

‘gnull’
‘gnulx’

‘gnul’?’
‘gnul8’

‘gnu2x’

‘c++98’
‘c++03’

‘gnu++98’
‘gnu++03’

‘c++11’
‘c++0x’

‘gnu++11’
‘gnu++0x’

‘c++14’
¢C++1y7

‘gnu++14’
‘gnu++1y’
‘cH+1T’
‘c++1z’

‘gnut++17’
‘gnu++1z’

‘c++20’
‘c++2a’

‘gnu++20’
‘gnu++2a’

‘c++2b’
‘c++23’

Using the GNU Compiler Collection (GCC)

GNU dialect of ISO C99. The name ‘gnu9x’ is deprecated.
GNU dialect of ISO C11. The name ‘gnulx’ is deprecated.

GNU dialect of ISO C17. This is the default for C code.

The next version of the ISO C standard, still under development,
plus GNU extensions. The support for this version is experimental
and incomplete.

The 1998 ISO C++ standard plus the 2003 technical corrigendum
and some additional defect reports. Same as ‘—ansi’ for C++ code.

GNU dialect of ‘-std=c++98’.

The 2011 ISO C++ standard plus amendments. The name ‘c++0x’
is deprecated.

GNU dialect of ‘-std=c++11’. The name ‘gnu++0x’ is deprecated.

The 2014 ISO C++ standard plus amendments. The name ‘c++1y’
is deprecated.

GNU dialect of ‘-std=c++14’. The name ‘gnu++1y’ is deprecated.

The 2017 ISO C++ standard plus amendments. The name ‘c++12z’
is deprecated.

GNU dialect of ‘-std=c++17’. This is the default for C++ code.
The name ‘gnu++1z’ is deprecated.

The 2020 ISO C++ standard plus amendments. Support is experi-
mental, and could change in incompatible ways in future releases.
The name ‘c++2a’ is deprecated.

GNU dialect of ‘-std=c++20’. Support is experimental, and could
change in incompatible ways in future releases. The name ‘gnu++2a’
is deprecated.

The next revision of the ISO C++ standard, planned for 2023. Sup-
port is highly experimental, and will almost certainly change in
incompatible ways in future releases.

Chapter 3:

GCC Command Options 47

‘gnu++2b’
‘gnu++23’ GNU dialect of ‘-std=c++2b’. Support is highly experimental, and
will almost certainly change in incompatible ways in future releases.

—aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

-fallow-parameterless-variadic-functions

-fno-asm

Accept variadic functions without named parameters.

Although it is possible to define such a function, this is not very useful as it
is not possible to read the arguments. This is only supported for C as this
construct is allowed by C++.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
typeof__ instead. In C, ‘-~ansi’ implies ‘~fno-asm’.

In C++, inline is a standard keyword and is not affected by this switch. You
may want to use the ‘-fno-gnu-keywords’ flag instead, which disables typeof
but not asm and inline. In C99 mode (‘-std=c99’ or ‘-std=gnu99’), this
switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

—-fno-builtin
—-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 6.59 [Other built-in functions provided by GCC], page 726, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions which
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘~-Wformat’

48

Using the GNU Compiler Collection (GCC)

for bad calls to printf when printf is built in and strlen is known not to
modify global memory.

With the ‘~fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
that is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘-fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘~fno-builtin’ or ‘~-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))

—-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-ffreestanding

-fgimple

-fgnu-tm

Assert that compilation targets a freestanding environment. This implies
‘-fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at
main. The most obvious example is an OS kernel. This is equivalent to
‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Enable parsing of function definitions marked with __GIMPLE. This is an ex-
perimental feature that allows unit testing of GIMPLE passes.

When the option ‘-fgnu-tm’ is specified, the compiler generates code for the
Linux variant of Intel’s current Transactional Memory ABI specification doc-
ument (Revision 1.1, May 6 2009). This is an experimental feature whose
interface may change in future versions of GCC, as the official specification
changes. Please note that not all architectures are supported for this feature.

For more information on GCC’s support for transactional memory, See Section
“The GNU Transactional Memory Library” in GNU Transactional Memory
Library.

Note that the transactional memory feature is not supported with non-call
exceptions (‘-fnon-call-exceptions’).

-fgnu89-inline

The option ‘-fgnu89-inline’ tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 6.45 [An Inline Func-
tion is As Fast As a Macro|, page 649. Using this option is roughly equiva-
lent to adding the gnu_inline function attribute to all inline functions (see
Section 6.33 [Function Attributes], page 552).

The option ‘~fno-gnu89-inline’ explicitly tells GCC to use the C99 semantics
for inline when in C99 or gnu99 mode (i.e., it specifies the default behavior).
This option is not supported in ‘-std=c90’ or ‘-std=gnu90’ mode.

Chapter 3: GCC Command Options 49

—-fhosted

The preprocessor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
Section “Common Predefined Macros” in The C Preprocessor.

Assert that compilation targets a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-flax-vector-conversions

Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

-fms-extensions

Accept some non-standard constructs used in Microsoft header files.

In C++ code, this allows member names in structures to be similar to previous
types declarations.

typedef int UOW;
struct ABC {
UOW UOW;

};
Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 6.63 [Unnamed struct/union fields within
structs/unions], page 880, for details.

Note that this option is off for all targets except for x86 targets using ms-abi.

—-foffload=disable
—-foffload=default
-foffload=target-list

Specify for which OpenMP and OpenACC offload targets code should be gener-
ated. The default behavior, equivalent to ‘~foffload=default’, is to generate
code for all supported offload targets. The ‘~foffload=disable’ form gener-
ates code only for the host fallback, while ‘~foffload=target-1list’ generates
code only for the specified comma-separated list of offload targets.

Offload targets are specified in GCC’s internal target-triplet format. You can
run the compiler with ‘-=v’ to show the list of configured offload targets under
OFFLOAD_TARGET_NAMES.

-foffload-options=options
-foffload-options=target-triplet-list=options

With ‘~foffload-options=options’, GCC passes the specified options to the
compilers for all enabled offloading targets. You can specify options that apply
only to a specific target or targets by using the ‘-foffload-options=target-
list=options’ form. The target-list is a comma-separated list in the same
format as for the ‘~foffload=’ option.

Typical command lines are

50 Using the GNU Compiler Collection (GCC)

-foffload-options=-lgfortran -foffload-options=-1m
-foffload-options="-lgfortran -1m" -foffload-options=nvptx-none=-latomic
-foffload-options=amdgcn-amdhsa=-march=gfx906 -foffload-options=-1m

-fopenacc
Enable handling of OpenACC directives #pragma acc in C/C++ and !$acc
in Fortran. When ‘-fopenacc’ is specified, the compiler generates acceler-
ated code according to the OpenACC Application Programming Interface v2.6
https://www.openacc.org. This option implies ‘-pthread’, and thus is only
supported on targets that have support for ‘-pthread’.

-fopenacc-dim=geom
Specify default compute dimensions for parallel offload regions that do not
explicitly specify. The geom value is a triple of ’:’-separated sizes, in order
‘gang’, 'worker’ and, ’vector’. A size can be omitted, to use a target-specific
default value.

-fopenmp Enable handling of OpenMP directives #pragma omp in C/C++ and !$omp
in Fortran. When ‘-fopenmp’ is specified, the compiler generates parallel
code according to the OpenMP Application Program Interface v4.5
https://www.openmp.org. This option implies ‘-pthread’, and thus is only
supported on targets that have support for ‘-pthread’. ‘-fopenmp’ implies
‘~fopenmp-simd’.

-fopenmp-simd
Enable handling of OpenMP’s SIMD directives with #pragma omp in C/C++
and !$omp in Fortran. Other OpenMP directives are ignored.

-fpermitted-flt-eval-methods=style

ISO/TEC TS 18661-3 defines new permissible values for FLT_EVAL_METHOD that
indicate that operations and constants with a semantic type that is an inter-
change or extended format should be evaluated to the precision and range of
that type. These new values are a superset of those permitted under C99/C11,
which does not specify the meaning of other positive values of FLT_EVAL_
METHOD. As such, code conforming to C11 may not have been written expecting
the possibility of the new values.

‘~fpermitted-flt-eval-methods’ specifies whether the compiler should allow
only the values of FLT_EVAL_METHOD specified in C99/C11, or the extended set
of values specified in ISO/IEC TS 18661-3.

style is either c11 or ts-18661-3 as appropriate.

The default when in a standards compliant mode (‘-std=c11’ or similar) is
‘~fpermitted-flt-eval-methods=c11’. The default when in a GNU dialect
(‘-std=gnull’ or similar) is ‘~fpermitted-flt-eval-methods=ts-18661-3".

-fplan9-extensions
Accept some non-standard constructs used in Plan 9 code.

This enables ‘~fms-extensions’, permits passing pointers to structures with
anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.

https://www.openacc.org
https://www.openmp.org

Chapter 3: GCC Command Options 51

See Section 6.63 [Unnamed struct/union fields within structs/unions], page 880,
for details. This is only supported for C, not C++.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed
types.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equiv-
alent to ‘~funsigned-char’.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsso-struct=endianness
Set the default scalar storage order of structures and unions to the specified en-
dianness. The accepted values are ‘big-endian’, ‘little-endian’ and ‘native’
for the native endianness of the target (the default). This option is not sup-
ported for C++.

Warning: the ‘-fsso-struct’ switch causes GCC to generate code that is not
binary compatible with code generated without it if the specified endianness is
not the native endianness of the target.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs.
You can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file ‘firstClass.C’ like this:

gt++ -g —fstrict-enums -0 -c firstClass.C

In this example, only ‘-fstrict-enums’ is an option meant only for C++ programs; you can
use the other options with any language supported by GCC.

3

Some options for compiling C programs, such as ‘-std’, are also relevant for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect|, page 44.

52 Using the GNU Compiler Collection (GCC)

Here is a list of options that are only for compiling C++ programs:

—-fabi-version=n
Use version n of the C++ ABI. The default is version 0.

Version 0 refers to the version conforming most closely to the C++ ABI spec-
ification. Therefore, the ABI obtained using version 0 will change in different
versions of G++ as ABI bugs are fixed.

Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.

Version 2 is the version of the C++ ABI that first appeared in G++ 3.4, and was
the default through G++ 4.9.

Version 3 corrects an error in mangling a constant address as a template argu-
ment.

Version 4, which first appeared in G++ 4.5, implements a standard mangling
for vector types.

Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute
const/volatile on function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.

Version 6, which first appeared in G++ 4.7, corrects the promotion behav-
ior of C++11 scoped enums and the mangling of template argument packs,
const/static_cast, prefix ++ and —, and a class scope function used as a tem-
plate argument.

Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a builtin
type and corrects the mangling of lambdas in default argument scope.

Version 8, which first appeared in G++ 4.9, corrects the substitution behavior
of function types with function-cv-qualifiers.

Version 9, which first appeared in G++ 5.2, corrects the alignment of nullptr_t.

Version 10, which first appeared in G++ 6.1, adds mangling of attributes that
affect type identity, such as ia32 calling convention attributes (e.g. ‘stdcall’).

Version 11, which first appeared in G++ 7, corrects the mangling of sizeof... ex-
pressions and operator names. For multiple entities with the same name within
a function, that are declared in different scopes, the mangling now changes start-
ing with the twelfth occurrence. It also implies ‘-fnew-inheriting-ctors’.

Version 12, which first appeared in G++ 8, corrects the calling conventions for
empty classes on the x86_64 target and for classes with only deleted copy/move
constructors. It accidentally changes the calling convention for classes with a
deleted copy constructor and a trivial move constructor.

Version 13, which first appeared in G++ 8.2, fixes the accidental change in
version 12.

Version 14, which first appeared in G++ 10, corrects the mangling of the nullptr
expression.

Version 15, which first appeared in G++ 11, changes the mangling of __alignof _
_ to be distinct from that of alignof, and dependent operator names.

See also ‘-Wabi’.

Chapter 3: GCC Command Options 53

-fabi-compat-version=n

On targets that support strong aliases, G++ works around mangling changes by
creating an alias with the correct mangled name when defining a symbol with
an incorrect mangled name. This switch specifies which ABI version to use for
the alias.

With ‘~-fabi-version=0’ (the default), this defaults to 11 (GCC 7 compatibil-
ity). If another ABI version is explicitly selected, this defaults to 0. For com-
patibility with GCC versions 3.2 through 4.9, use ‘-fabi-compat-version=2’.

If this option is not provided but ‘-Wabi=n’ is, that version is used for com-
patibility aliases. If this option is provided along with ‘~Wabi’ (without the
version), the version from this option is used for the warning.

-fno-access-control

Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-faligned-new

—-fchar8_t

Enable support for C++17 new of types that require more alignment than
void* ::operator new(std::size_t) provides. A numeric argument such as
-faligned-new=32 can be used to specify how much alignment (in bytes) is
provided by that function, but few users will need to override the default of
alignof (std::max_align_t).

This flag is enabled by default for ‘-std=c++17’.

-fno-char8_t

Enable support for char8_t as adopted for C++20. This includes the addition
of a new char8_t fundamental type, changes to the types of UTF-8 string and
character literals, new signatures for user-defined literals, associated standard
library updates, and new __cpp_char8_t and __cpp_lib_char8_t feature test
macros.

This option enables functions to be overloaded for ordinary and UTF-8 strings:

int f(const char *); // #1
int f(const char8_t *); // #2
int vl = £("text"); // Calls #1
int v2 = f(u8"text"); // Calls #2

and introduces new signatures for user-defined literals:

int operator""_udll(char8_t);

int v3 = u8’x’_udlil;

int operator""_udl2(const char8_t*, std::size_t);
int v4 = u8"text"_udl2;

template<typename T, T...> int operator""_udl3();
int vb = u8"text"_udl3;

The change to the types of UTF-8 string and character literals introduces in-
compatibilities with ISO C++11 and later standards. For example, the following
code is well-formed under ISO C++11, but is ill-formed when ‘-fchar8_t’ is
specified.

char cal[] = u8"xx"; // error: char-array initialized from wide
// string

54 Using the GNU Compiler Collection (GCC)

const char *cp = u8"xx";// error: invalid conversion from

// ‘const char8_t*’ to ‘const charx’
int f(const charx);
auto v = f(u8"xx"); // error: invalid conversion from

// ‘const char8_t*’ to ‘const charx’
std::string s{u8"xx"}; // error: no matching function for call to

// ‘std::basic_string<char>::basic_string()’
using namespace std::literals;
s = u8"xx"s; // error: conversion from

// ‘basic_string<char8_t>’ to non-scalar

// type ‘basic_string<char>’ requested

-fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new only returns 0 if it is declared
throw (), in which case the compiler always checks the return value even without
this option. In all other cases, when operator new has a non-empty exception
specification, memory exhaustion is signalled by throwing std::bad_alloc.
See also ‘new (nothrow)’.

-fconcepts

-fconcepts-ts
Below ‘-std=c++20’, ‘~fconcepts’ enables support for the C++ Extensions for
Concepts Technical Specification, ISO 19217 (2015).

With ‘-std=c++20’ and above, Concepts are part of the language standard, so
‘~fconcepts’ defaults to on. But the standard specification of Concepts differs
significantly from the TS, so some constructs that were allowed in the TS but
didn’t make it into the standard can still be enabled by ‘~fconcepts-ts’.

-fconstexpr-depth=n
Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant expression
evaluation. The minimum specified by the standard is 512.

-fconstexpr-cache-depth=n

Set the maximum level of nested evaluation depth for C++11 constexpr func-
tions that will be cached to n. This is a heuristic that trades off compilation
speed (when the cache avoids repeated calculations) against memory consump-
tion (when the cache grows very large from highly recursive evaluations). The
default is 8. Very few users are likely to want to adjust it, but if your code does
heavy constexpr calculations you might want to experiment to find which value
works best for you.

-fconstexpr-fp-except
Annex F of the C standard specifies that IEC559 floating point exceptions
encountered at compile time should not stop compilation. C++ compilers have
historically not followed this guidance, instead treating floating point division
by zero as non-constant even though it has a well defined value. This flag tells
the compiler to give Annex F priority over other rules saying that a particular
operation is undefined.
constexpr float inf = 1./0.; // OK with -fconstexpr-fp-except

Chapter 3: GCC Command Options 55

-fconstexpr-loop-limit=n
Set the maximum number of iterations for a loop in C++14 constexpr functions
to n. A limit is needed to detect infinite loops during constant expression
evaluation. The default is 262144 (1<<18).

-fconstexpr-ops-limit=n
Set the maximum number of operations during a single constexpr evaluation.
Even when number of iterations of a single loop is limited with the above limit,
if there are several nested loops and each of them has many iterations but
still smaller than the above limit, or if in a body of some loop or even outside
of a loop too many expressions need to be evaluated, the resulting constexpr
evaluation might take too long. The default is 33554432 (1<<25).

—-fcoroutines
Enable support for the C++ coroutines extension (experimental).

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary that
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all
cases. This option also causes G++ to call trivial member functions which
otherwise would be expanded inline.

In C++17, the compiler is required to omit these temporaries, but this option
still affects trivial member functions.

-fno-enforce-eh-specs
Don’t generate code to check for violation of exception specifications at run
time. This option violates the C++ standard, but may be useful for reducing
code size in production builds, much like defining NDEBUG. This does not give
user code permission to throw exceptions in violation of the exception specifi-
cations; the compiler still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.

-fextern-tls-init

-fno-extern-tls-init
The C++11 and OpenMP standards allow thread_local and threadprivate
variables to have dynamic (runtime) initialization. To support this, any use of
such a variable goes through a wrapper function that performs any necessary
initialization. When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the use is in a
different translation unit there is significant overhead even if the variable doesn’t
actually need dynamic initialization. If the programmer can be sure that no
use of the variable in a non-defining TU needs to trigger dynamic initialization
(either because the variable is statically initialized, or a use of the variable in
the defining TU will be executed before any uses in another TU), they can avoid
this overhead with the ‘~fno-extern-tls-init’ option.

On targets that support symbol aliases, the default is ‘-fextern-tls-init’.
On targets that do mnot support symbol aliases, the default is
‘~fno-extern-tls-init’.

56 Using the GNU Compiler Collection (GCC)

-ffold-simple-inlines

-fno-fold-simple-inlines
Permit the C++ frontend to fold calls to std::move, std::forward,
std::addressof and std::as_const. In contrast to inlining, this means no
debug information will be generated for such calls. Since these functions are
rarely interesting to debug, this flag is enabled by default unless ‘-fno-inline’
is active.

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as an
identifier. You can use the keyword __typeof__ instead. This option is implied
by the strict ISO C++ dialects: ‘-ansi’, ‘-std=c++98’, ‘-std=c++11’, etc.

-fimplicit-constexpr
Make inline functions implicitly constexpr, if they satisfy the requirements for a
constexpr function. This option can be used in C++14 mode or later. This can
result in initialization changing from dynamic to static and other optimizations.

-fno-implicit-templates
Never emit code for non-inline templates that are instantiated implicitly (i.e.
by use); only emit code for explicit instantiations. If you use this option, you
must take care to structure your code to include all the necessary explicit in-
stantiations to avoid getting undefined symbols at link time. See Section 7.5
[Template Instantiation|, page 888, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The
default is to handle inlines differently so that compiles with and without opti-
mization need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
#pragma implementation. This causes linker errors if these functions are not
inlined everywhere they are called.

-fmodules-ts

-fno-modules-ts
Enable support for C++20 modules (see Section 3.23 [C++ Modules], page 507).
The ‘-fno-modules-ts’ is usually not needed, as that is the default. Even
though this is a C++20 feature, it is not currently implicitly enabled by selecting
that standard version.

-fmodule-header
-fmodule-header=user
-fmodule-header=system
Compile a header file to create an importable header unit.

-fmodule-implicit-inline
Member functions defined in their class definitions are not implicitly inline for
modular code. This is different to traditional C++ behavior, for good reasons.
However, it may result in a difficulty during code porting. This option makes

Chapter 3: GCC Command Options 57

such function definitions implicitly inline. It does however generate an ABI
incompatibility, so you must use it everywhere or nowhere. (Such definitions
outside of a named module remain implicitly inline, regardless.)

-fno-module-lazy
Disable lazy module importing and module mapper creation.

-fmodule-mapper=[hostname|: port[?ident]

-fmodule-mapper=|program|?ident]| args. ..

-fmodule-mapper==socket|?ident|

-fmodule-mapper=<>[inout|[?ident]

-fmodule-mapper=<in>out|[?ident|

-fmodule-mapper=rfile[?ident]
An oracle to query for module name to filename mappings. If unspecified the
CXX_MODULE_MAPPER environment variable is used, and if that is unset, an in-
process default is provided.

—-fmodule-only
Only emit the Compiled Module Interface, inhibiting any object file.

-fms-extensions
Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.

-fnew-inheriting-ctors
Enable the P0136 adjustment to the semantics of C++11 constructor inheri-
tance. This is part of C++17 but also considered to be a Defect Report against
C++11 and C++14. This flag is enabled by default unless ‘~fabi-version=10’
or lower is specified.

-fnew-ttp-matching
Enable the P0522 resolution to Core issue 150, template template parameters
and default arguments: this allows a template with default template arguments
as an argument for a template template parameter with fewer template param-
eters. This flag is enabled by default for ‘-std=c++17".

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO
C. These include ffs, alloca, _exit, index, bzero, conjf, and other related
functions.

-fnothrow-opt

Treat a throw() exception specification as if it were a noexcept specification to
reduce or eliminate the text size overhead relative to a function with no excep-
tion specification. If the function has local variables of types with non-trivial
destructors, the exception specification actually makes the function smaller be-
cause the EH cleanups for those variables can be optimized away. The semantic
effect is that an exception thrown out of a function with such an exception spec-
ification results in a call to terminate rather than unexpected.

—-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or
and xor as synonyms as keywords.

58

Using the GNU Compiler Collection (GCC)

-fno-optional-diags

Disable diagnostics that the standard says a compiler does not need to issue.
Currently, the only such diagnostic issued by G++ is the one for a name having
multiple meanings within a class.

—fpermissive

Downgrade some diagnostics about nonconformant code from errors to warn-
ings. Thus, using ‘-fpermissive’ allows some nonconforming code to compile.

—-fno-pretty-templates

—-fno-rtti

When an error message refers to a specialization of a function template, the com-
piler normally prints the signature of the template followed by the template ar-
guments and any typedefs or typenames in the signature (e.g. void £(T) [with
T = int] rather than void f (int)) so that it’s clear which template is involved.
When an error message refers to a specialization of a class template, the com-
piler omits any template arguments that match the default template arguments
for that template. If either of these behaviors make it harder to understand
the error message rather than easier, you can use ‘-fno-pretty-templates’ to
disable them.

Disable generation of information about every class with virtual functions
for use by the C++ run-time type identification features (dynamic_cast and
typeid). If you don’t use those parts of the language, you can save some space
by using this flag. Note that exception handling uses the same information,
but G++ generates it as needed. The dynamic_cast operator can still be used
for casts that do not require run-time type information, i.e. casts to void * or
to unambiguous base classes.

Mixing code compiled with ‘-frtti’ with that compiled with ‘-fno-rtti’ may
not work. For example, programs may fail to link if a class compiled with
‘~fno-rtti’ is used as a base for a class compiled with ‘~frtti’.

-fsized-deallocation

Enable the built-in global declarations

void operator delete (void *, std::size_t) noexcept;

void operator delete[] (void *, std::size_t) noexcept;
as introduced in C++14. This is useful for user-defined replacement dealloca-
tion functions that, for example, use the size of the object to make deallo-
cation faster. Enabled by default under ‘-std=c++14’ and above. The flag
‘-Wsized-deallocation’ warns about places that might want to add a defini-
tion.

-fstrict-enums

Allow the compiler to optimize using the assumption that a value of enumerated
type can only be one of the values of the enumeration (as defined in the C++
standard; basically, a value that can be represented in the minimum number
of bits needed to represent all the enumerators). This assumption may not be
valid if the program uses a cast to convert an arbitrary integer value to the
enumerated type.

Chapter 3: GCC Command Options 59

-fstrong-eval-order
Evaluate member access, array subscripting, and shift expressions in left-to-
right order, and evaluate assignment in right-to-left order, as adopted for C++17.
Enabled by default with ‘-std=c++17’. ‘~-fstrong-eval-order=some’ enables
just the ordering of member access and shift expressions, and is the default
without ‘-std=c++17’.

-ftemplate-backtrace-limit=n
Set the maximum number of template instantiation notes for a single warning
or error to n. The default value is 10.

-ftemplate-depth=n
Set the maximum instantiation depth for template classes to n. A limit on
the template instantiation depth is needed to detect endless recursions during
template class instantiation. ANSI/ISO C++ conforming programs must not
rely on a maximum depth greater than 17 (changed to 1024 in C++11). The
default value is 900, as the compiler can run out of stack space before hitting
1024 in some situations.

-fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++ ABI for
thread-safe initialization of local statics. You can use this option to reduce code
size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_
atexit function rather than the atexit function. This option is required for
fully standards-compliant handling of static destructors, but only works if your
C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr
Don’t use the __cxa_get_exception_ptr runtime routine. This causes

std: :uncaught_exception to be incorrect, but is necessary if the runtime
routine is not available.

—fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare pointers to
inline functions or methods where the addresses of the two functions are taken
in different shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __
attribute__ ((visibility ("hidden"))) so that they do not appear in the
export table of a DSO and do not require a PLT indirection when used within
the DSO. Enabling this option can have a dramatic effect on load and link
times of a DSO as it massively reduces the size of the dynamic export table
when the library makes heavy use of templates.

The behavior of this switch is not quite the same as marking the methods as
hidden directly, because it does not affect static variables local to the function
or cause the compiler to deduce that the function is defined in only one shared
object.

60

Using the GNU Compiler Collection (GCC)

You may mark a method as having a visibility explicitly to negate the effect of
the switch for that method. For example, if you do want to compare pointers
to a particular inline method, you might mark it as having default visibility.
Marking the enclosing class with explicit visibility has no effect.

Explicitly instantiated inline methods are unaffected by this option as their link-
age might otherwise cross a shared library boundary. See Section 7.5 [Template
Instantiation], page 888.

-fvisibility-ms-compat

-fno-weak

This flag attempts to use visibility settings to make GCC’s C++ linkage model
compatible with that of Microsoft Visual Studio.

The flag makes these changes to GCC’s linkage model:
1. It sets the default visibility to hidden, like ‘~fvisibility=hidden’.
2. Types, but not their members, are not hidden by default.

3. The One Definition Rule is relaxed for types without explicit visibility
specifications that are defined in more than one shared object: those dec-
larations are permitted if they are permitted when this option is not used.

In new code it is better to use ‘~fvisibility=hidden’ and export those classes
that are intended to be externally visible. Unfortunately it is possible for code
to rely, perhaps accidentally, on the Visual Studio behavior.

Among the consequences of these changes are that static data members of
the same type with the same name but defined in different shared objects are
different, so changing one does not change the other; and that pointers to
function members defined in different shared objects may not compare equal.
When this flag is given, it is a violation of the ODR to define types with the
same name differently.

Do not use weak symbol support, even if it is provided by the linker. By
default, G++ uses weak symbols if they are available. This option exists only
for testing, and should not be used by end-users; it results in inferior code and
has no benefits. This option may be removed in a future release of G++.

-fext-numeric-literals (C++ and Objective-C++ only)

Accept imaginary, fixed-point, or machine-defined literal number suffixes as
GNU extensions. When this option is turned off these suffixes are treated
as C++11 user-defined literal numeric suffixes. This is on by default for all
pre-C++11 dialects and all GNU dialects: ‘-std=c++98’, ‘-std=gnu++98’,
‘-std=gnu++11’, ‘-std=gnu++14’. This option is off by default for ISO C++11
onwards (‘-std=c++11’, ...).

-nostdinc++

Do not search for header files in the standard directories specific to C++, but do
still search the other standard directories. (This option is used when building
the C++ library.)

Chapter 3: GCC Command Options 61

-flang-info-include-translate

-flang-info-include-translate-not

-flang-info-include-translate=header
Inform of include translation events. The first will note accepted include trans-
lations, the second will note declined include translations. The header form
will inform of include translations relating to that specific header. If header is
of the form "user" or <system> it will be resolved to a specific user or system
header using the include path.

-flang-info-module-cmi

-flang-info-module-cmi=module
Inform of Compiled Module Interface pathnames. The first will note all read
CMI pathnames. The module form will not reading a specific module’s CMI.
module may be a named module or a header-unit (the latter indicated by either
being a pathname containing directory separators or enclosed in <> or "").

-stdlib=1ibstdc++,1libc++
When G++ is configured to support this option, it allows specification of alter-
nate C++ runtime libraries. Two options are available: libstdc++ (the default,
native C++ runtime for G++) and libc++ which is the C++ runtime installed on
some operating systems (e.g. Darwin versions from Darwinll onwards). The
option switches G++ to use the headers from the specified library and to emit
-1stdc++ or —1lc++ respectively, when a C++ runtime is required for linking.

In addition, these warning options have meanings only for C++ programs:

-Wabi-tag (C++ and Objective-C++ only)
Warn when a type with an ABI tag is used in a context that does not have
that ABI tag. See Section 7.7 [C++ Attributes], page 891 for more information
about ABI tags.

-Wcomma-subscript (C++ and Objective-C++ only)
Warn about uses of a comma expression within a subscripting expression. This
usage was deprecated in C++20 and is going to be removed in C++23. However,
a comma expression wrapped in () is not deprecated. Example:
void f(int *a, int b, int c) {
alb,c]; // deprecated in C++20, invalid in C++23
al(b,c)]; // OK
}
In C++23 it is valid to have comma separated expressions in a subscript when
an overloaded subscript operator is found and supports the right number and
types of arguments. G++ will accept the formerly valid syntax for code that
is not valid in C++23 but used to be valid but deprecated in C++20 with a
pedantic warning that can be disabled with ‘-Wno-comma-subscript’.

Enabled by default with ‘-std=c++20’ unless ‘-Wno-deprecated’, and with
‘-std=c++23’ regardless of ‘~-Wno-deprecated’.

-Wctad-maybe-unsupported (C++ and Objective-C++ only)
Warn when performing class template argument deduction (CTAD) on a type
with no explicitly written deduction guides. This warning will point out cases

62 Using the GNU Compiler Collection (GCC)

where CTAD succeeded only because the compiler synthesized the implicit de-
duction guides, which might not be what the programmer intended. Certain
style guides allow CTAD only on types that specifically "opt-in"; i.e., on types
that are designed to support CTAD. This warning can be suppressed with the
following pattern:

struct allow_ctad_t; // any name works

template <typename T> struct S {
S(m {1}
};

S(allow_ctad_t) -> S<void>; // guide with incomplete parameter type will never be considered]

-Wctor-dtor-privacy (C++ and Objective-C++ only)
Warn when a class seems unusable because all the constructors or destructors
in that class are private, and it has neither friends nor public static member
functions. Also warn if there are no non-private methods, and there’s at least
one private member function that isn’t a constructor or destructor.

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)
Warn when delete is used to destroy an instance of a class that has virtual
functions and non-virtual destructor. It is unsafe to delete an instance of a
derived class through a pointer to a base class if the base class does not have a
virtual destructor. This warning is enabled by ‘-Wall’.

-Wdeprecated-copy (C++ and Objective-C++ only)
Warn that the implicit declaration of a copy constructor or copy assignment
operator is deprecated if the class has a user-provided copy constructor or
copy assignment operator, in C++11 and up. This warning is enabled by
‘~Wextra’. With ‘-Wdeprecated-copy-dtor’, also deprecate if the class has
a user-provided destructor.

-Wno-deprecated-enum-enum-conversion (C++ and Objective-C++ only)

Disable the warning about the case when the usual arithmetic conversions are
applied on operands where one is of enumeration type and the other is of a
different enumeration type. This conversion was deprecated in C++20. For
example:

enum E1 { e };

enum E2 { f };

int k = £ - e;
‘~-Wdeprecated-enum-enum-conversion’ is enabled by default with
‘-std=c++20’. In pre-C++20 dialects, this warning can be enabled by
‘~Wenum-conversion’.

-Wno-deprecated-enum-float-conversion (C++ and Objective-C++ only)
Disable the warning about the case when the usual arithmetic conversions are
applied on operands where one is of enumeration type and the other is of a
floating-point type. This conversion was deprecated in C++20. For example:
enum E1 { e };

enum E2 { f };
bool b = e <= 3.7;

Chapter 3: GCC Command Options 63

‘~Wdeprecated-enum-float-conversion’ is enabled by default with
‘-std=c++20’. In pre-C++20 dialects, this warning can be enabled by
‘~Wenum-conversion’.

-Wno-init-list-lifetime (C++ and Objective-C++ only)
Do not warn about uses of std::initializer_list that are likely to result
in dangling pointers. Since the underlying array for an initializer_list is
handled like a normal C++ temporary object, it is easy to inadvertently keep a
pointer to the array past the end of the array’s lifetime. For example:

e If a function returns a temporary initializer_list, or a local
initializer_list variable, the array’s lifetime ends at the end of the
return statement, so the value returned has a dangling pointer.

e If a new-expression creates an initializer_list, the array only lives until
the end of the enclosing full-expression, so the initializer_list in the
heap has a dangling pointer.

e When an initializer_list variable is assigned from a brace-enclosed ini-
tializer list, the temporary array created for the right side of the assignment
only lives until the end of the full-expression, so at the next statement the
initializer_list variable has a dangling pointer.

// 1i’s initial underlying array lives as long as 1li

std::initializer_list<int> 1i = { 1,2,3 };

// assignment changes 1li to point to a temporary array

1li ={4, 51};

// now the temporary is gone and li has a dangling pointer

int 1 = 1i.begin() [0] // undefined behavior

e When a list constructor stores the begin pointer from the initializer_

list argument, this doesn’t extend the lifetime of the array, so if a class
variable is constructed from a temporary initializer_list, the pointer
is left dangling by the end of the variable declaration statement.

-Winvalid-imported-macros
Verify all imported macro definitions are valid at the end of compilation. This
is not enabled by default, as it requires additional processing to determine. It
may be useful when preparing sets of header-units to ensure consistent macros.

-Wno-literal-suffix (C++ and Objective-C++ only)
Do not warn when a string or character literal is followed by a ud-suffix which
does not begin with an underscore. As a conforming extension, GCC treats
such suffixes as separate preprocessing tokens in order to maintain backwards
compatibility with code that uses formatting macros from <inttypes.h>. For
example:
#define __STDC_FORMAT_MACROS

#include <inttypes.h>
#include <stdio.h>

int main() {

int64_t i64 = 123;

printf("My int64: %" PRId64"\n", i64);
}

In this case, PRId64 is treated as a separate preprocessing token.

64

Using the GNU Compiler Collection (GCC)

This option also controls warnings when a user-defined literal operator is de-
clared with a literal suffix identifier that doesn’t begin with an underscore.
Literal suffix identifiers that don’t begin with an underscore are reserved for
future standardization.

These warnings are enabled by default.

-Wno-narrowing (C++ and Objective-C++ only)

For C++11 and later standards, narrowing conversions are diagnosed by default,
as required by the standard. A narrowing conversion from a constant produces
an error, and a narrowing conversion from a non-constant produces a warning,
but ‘~Wno-narrowing’ suppresses the diagnostic. Note that this does not affect

the meaning of well-formed code; narrowing conversions are still considered
ill-formed in SFINAE contexts.

With ‘~Wnarrowing’ in C++98, warn when a narrowing conversion prohibited
by C++11 occurs within ‘{ }’, e.g.

int i = { 2.2 }; // error: narrowing from double to int

This flag is included in ‘-Wall’ and ‘-Wc++11-compat’.

-Wnoexcept (C++ and Objective-C++ only)

Warn when a noexcept-expression evaluates to false because of a call to a func-
tion that does not have a non-throwing exception specification (i.e. throw() or
noexcept) but is known by the compiler to never throw an exception.

-Wnoexcept-type (C++ and Objective-C++ only)

Warn if the C++17 feature making noexcept part of a function type changes
the mangled name of a symbol relative to C++14. Enabled by ‘-Wabi’ and
‘~Wc++17-compat’.

As an example:

template <class T> void f(T t) { t(0); };
void g() noexcept;
void hO { £(g);

In C++14, £ calls £<void (*) (0>, but in C++17 it calls £<void (*) (Dnoexcept>.

-Wclass-memaccess (C++ and Objective-C++ only)

Warn when the destination of a call to a raw memory function such as memset
or memcpy is an object of class type, and when writing into such an object might
bypass the class non-trivial or deleted constructor or copy assignment, violate
const-correctness or encapsulation, or corrupt virtual table pointers. Modifying
the representation of such objects may violate invariants maintained by member
functions of the class. For example, the call to memset below is undefined
because it modifies a non-trivial class object and is, therefore, diagnosed. The
safe way to either initialize or clear the storage of objects of such types is by
using the appropriate constructor or assignment operator, if one is available.

std::string str = "abc";

memset (&str, 0, sizeof str);
The ‘-Wclass-memaccess’ option is enabled by ‘-Wall’. Explicitly casting the
pointer to the class object to void * or to a type that can be safely accessed
by the raw memory function suppresses the warning.

Chapter 3: GCC Command Options 65

-Wnon-virtual-dtor (C++ and Objective-C++ only)
Warn when a class has virtual functions and an accessible non-virtual destructor
itself or in an accessible polymorphic base class, in which case it is possible but
unsafe to delete an instance of a derived class through a pointer to the class itself
or base class. This warning is automatically enabled if ‘~-Weffc++’ is specified.

-Wregister (C++ and Objective-C++ only)
Warn on uses of the register storage class specifier, except when it is part of
the GNU Section 6.47.5 [Explicit Register Variables], page 705 extension. The
use of the register keyword as storage class specifier has been deprecated in
C++11 and removed in C++17. Enabled by default with ‘-std=c++17’.

-Wreorder (C++ and Objective-C++ only)
Warn when the order of member initializers given in the code does not match
the order in which they must be executed. For instance:

struct A {

int i;

int j;

AQ: § (0, i (1) {3}
};
The compiler rearranges the member initializers for i and j to match the dec-
laration order of the members, emitting a warning to that effect. This warning

is enabled by ‘-Wall’.

-Wno-pessimizing-move (C++ and Objective-C++ only)

This warning warns when a call to std: :move prevents copy elision. A typical
scenario when copy elision can occur is when returning in a function with a class
return type, when the expression being returned is the name of a non-volatile
automatic object, and is not a function parameter, and has the same type as
the function return type.

struct T {

}

T fn()

{
T t;

return std::move (t);

}
But in this example, the std: :move call prevents copy elision.

This warning is enabled by ‘-Wall’.

-Wno-redundant-move (C++ and Objective-C++ only)
This warning warns about redundant calls to std: :move; that is, when a move
operation would have been performed even without the std: :move call. This
happens because the compiler is forced to treat the object as if it were an rvalue
in certain situations such as returning a local variable, where copy elision isn’t
applicable. Consider:
struct T {

};

66

Using the GNU Compiler Collection (GCC)

T fn(T t)
{

;ééurn std::move (t);

}
Here, the std: :move call is redundant. Because G++ implements Core Issue
1579, another example is:

struct T { // convertible to U

1

struct U {

};

U fn()

{
T t;

return std::move (t);
}

In this example, copy elision isn’t applicable because the type of the expression
being returned and the function return type differ, yet G++ treats the return
value as if it were designated by an rvalue.

This warning is enabled by ‘-Wextra’.

-Wrange-loop-construct (C++ and Objective-C++ only)

This warning warns when a C++ range-based for-loop is creating an unnecessary
copy. This can happen when the range declaration is not a reference, but
probably should be. For example:

struct S { char arr[128]; };
void fn () {
S arr[5];
for (const auto x : arr) { ... }
}
It does not warn when the type being copied is a trivially-copyable type whose

size is less than 64 bytes.

This warning also warns when a loop variable in a range-based for-loop is ini-
tialized with a value of a different type resulting in a copy. For example:
void fn() {
int arr([10];
for (const double &x : arr) { ... }
}
In the example above, in every iteration of the loop a temporary value of type
double is created and destroyed, to which the reference const double & is
bound.

This warning is enabled by ‘-Wall’.

-Wredundant-tags (C++ and Objective-C++ only)

Warn about redundant class-key and enum-key in references to class types and
enumerated types in contexts where the key can be eliminated without causing
an ambiguity. For example:

struct foo;

Chapter 3: GCC Command Options 67

struct foo *p; // warn that keyword struct can be eliminated

On the other hand, in this example there is no warning:

struct foo;
void foo (); // "hides" struct foo
void bar (struct foo&); // no warning, keyword struct is necessary

-Wno-subobject-linkage (C++ and Objective-C++ only)

Do not warn if a class type has a base or a field whose type uses the anonymous
namespace or depends on a type with no linkage. If a type A depends on a type
B with no or internal linkage, defining it in multiple translation units would
be an ODR violation because the meaning of B is different in each translation
unit. If A only appears in a single translation unit, the best way to silence the
warning is to give it internal linkage by putting it in an anonymous namespace
as well. The compiler doesn’t give this warning for types defined in the main .C
file, as those are unlikely to have multiple definitions. ‘~Wsubobject-linkage’
is enabled by default.

-Weffc++ (C++ and Objective-C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Ef-
fective C++ series of books:

e Define a copy constructor and an assignment operator for classes with
dynamically-allocated memory.

e Prefer initialization to assignment in constructors.
e Have operator= return a reference to *this.
e Don’t try to return a reference when you must return an object.

e Distinguish between prefix and postfix forms of increment and decrement
operators.

e Never overload &&, ||, or ,.

This option also enables ‘-Wnon-virtual-dtor’, which is also one of the effec-
tive C++ recommendations. However, the check is extended to warn about the
lack of virtual destructor in accessible non-polymorphic bases classes too.

When selecting this option, be aware that the standard library headers do not
obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-exceptions (C++ and Objective-C++ only)
Disable the warning about the case when an exception handler is shadowed by
another handler, which can point out a wrong ordering of exception handlers.

-Wstrict-null-sentinel (C++ and Objective-C++ only)
Warn about the use of an uncasted NULL as sentinel. When compiling only with
GCC this is a valid sentinel, as NULL is defined to __null. Although it is a null
pointer constant rather than a null pointer, it is guaranteed to be of the same
size as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ and Objective-C++ only)
Disable warnings when non-template friend functions are declared within a
template. In very old versions of GCC that predate implementation of the ISO
standard, declarations such as ‘friend int foo(int)’, where the name of the

68 Using the GNU Compiler Collection (GCC)

friend is an unqualified-id, could be interpreted as a particular specialization
of a template function; the warning exists to diagnose compatibility problems,
and is enabled by default.

-Wold-style-cast (C++ and Objective-C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within a C++
program. The new-style casts (dynamic_cast, static_cast, reinterpret_
cast, and const_cast) are less vulnerable to unintended effects and much
easier to search for.

-Woverloaded-virtual (C++ and Objective-C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {
virtual void f£(Q);

};

struct B: public A {
void f(int);
};
the A class version of f is hidden in B, and code like:
B*x b;
b->£();

fails to compile.

-Wno-pmf-conversions (C++ and Objective-C++ only)
Disable the diagnostic for converting a bound pointer to member function to a
plain pointer.

-Wsign-promo (C++ and Objective-C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumer-
ated type to a signed type, over a conversion to an unsigned type of the same
size. Previous versions of G++ tried to preserve unsignedness, but the standard
mandates the current behavior.

-Wtemplates (C++ and Objective-C++ only)
Warn when a primary template declaration is encountered. Some coding rules
disallow templates, and this may be used to enforce that rule. The warning is
inactive inside a system header file, such as the STL, so one can still use the
STL. One may also instantiate or specialize templates.

-Wmismatched-new-delete (C++ and Objective-C++ only)

Warn for mismatches between calls to operator new or operator delete and
the corresponding call to the allocation or deallocation function. This includes
invocations of C++ operator delete with pointers returned from either mis-
matched forms of operator new, or from other functions that allocate objects
for which the operator delete isn’t a suitable deallocator, as well as calls
to other deallocation functions with pointers returned from operator new for
which the deallocation function isn’t suitable.

For example, the delete expression in the function below is diagnosed because
it doesn’t match the array form of the new expression the pointer argument was
returned from. Similarly, the call to free is also diagnosed.

Chapter 3: GCC Command Options 69

void £ O
{
int *a = new int[n];
delete a; // warning: mismatch in array forms of expressions

char *p = new char[n];
free (p); // warning: mismatch between new and free
}
The related option ‘-Wmismatched-dealloc’ diagnoses mismatches involving
allocation and deallocation functions other than operator new and operator
delete.

‘~Wmismatched-new-delete’ is included in ‘-Wall’.

-Wmismatched-tags (C++ and Objective-C++ only)
Warn for declarations of structs, classes, and class templates and their special-
izations with a class-key that does not match either the definition or the first
declaration if no definition is provided.

For example, the declaration of struct Object in the argument list of draw
triggers the warning. To avoid it, either remove the redundant class-key struct
or replace it with class to match its definition.

class Object {
public:
virtual ~“Object () = 0;

i;id draw (struct Objectx);
It is not wrong to declare a class with the class-key struct as the example above
shows. The ‘-Wmismatched-tags’ option is intended to help achieve a consistent
style of class declarations. In code that is intended to be portable to Windows-
based compilers the warning helps prevent unresolved references due to the
difference in the mangling of symbols declared with different class-keys. The
option can be used either on its own or in conjunction with ‘-Wredundant-tags’.

-Wmultiple-inheritance (C++ and Objective-C++ only)
Warn when a class is defined with multiple direct base classes. Some coding
rules disallow multiple inheritance, and this may be used to enforce that rule.
The warning is inactive inside a system header file, such as the STL, so one
can still use the STL. One may also define classes that indirectly use multiple
inheritance.

-Wvirtual-inheritance
Warn when a class is defined with a virtual direct base class. Some coding rules
disallow multiple inheritance, and this may be used to enforce that rule. The
warning is inactive inside a system header file, such as the STL, so one can still
use the STL. One may also define classes that indirectly use virtual inheritance.

-Wno-virtual-move-assign
Suppress warnings about inheriting from a virtual base with a non-trivial C++11
move assignment operator. This is dangerous because if the virtual base is
reachable along more than one path, it is moved multiple times, which can
mean both objects end up in the moved-from state. If the move assignment

70 Using the GNU Compiler Collection (GCC)

operator is written to avoid moving from a moved-from object, this warning
can be disabled.

-Wnamespaces
Warn when a namespace definition is opened. Some coding rules disallow
namespaces, and this may be used to enforce that rule. The warning is in-
active inside a system header file, such as the STL, so one can still use the STL.
One may also use using directives and qualified names.

-Wno-terminate (C++ and Objective-C++ only)
Disable the warning about a throw-expression that will immediately result in a
call to terminate.

-Wno-vexing-parse (C++ and Objective-C++ only)
Warn about the most vexing parse syntactic ambiguity. This warns about the
cases when a declaration looks like a variable definition, but the C++ language
requires it to be interpreted as a function declaration. For instance:

void f(double a) {
int 1Q); // extern int i (void);
int n(int(a)); // extern int n (int);

}

Another example:

struct S { S(int); };
void f(double a) {

S x(int(a)); // extern struct S x (int);
S y(int()); // extern struct S y (int (*) (void));
S z(); // extern struct S z (void);

}

The warning will suggest options how to deal with such an ambiguity; e.g., it
can suggest removing the parentheses or using braces instead.

This warning is enabled by default.

-Wno-class-conversion (C++ and Objective-C++ only)
Do not warn when a conversion function converts an object to the same type,
to a base class of that type, or to void; such a conversion function will never be
called.

-Wvolatile (C++ and Objective-C++ only)

Warn about deprecated uses of the volatile qualifier. This includes postfix
and prefix ++ and -- expressions of volatile-qualified types, using simple as-
signments where the left operand is a volatile-qualified non-class type for their
value, compound assignments where the left operand is a volatile-qualified
non-class type, volatile-qualified function return type, volatile-qualified pa-
rameter type, and structured bindings of a volatile-qualified type. This usage
was deprecated in C++20.

Enabled by default with ‘-std=c++20’.
-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)

Warn when a literal ‘0’ is used as null pointer constant. This can be useful to
facilitate the conversion to nullptr in C++11.

Chapter 3: GCC Command Options 71

-Waligned-new
Warn about a new-expression of a type that requires greater alignment than
the alignof (std: :max_align_t) but uses an allocation function without an
explicit alignment parameter. This option is enabled by ‘-Wall’.

Normally this only warns about global allocation functions, but
‘~-Waligned-new=all’ also warns about class member allocation functions.

-Wno-placement-new
-Wplacement-new=n
Warn about placement new expressions with undefined behavior, such as con-
structing an object in a buffer that is smaller than the type of the object. For
example, the placement new expression below is diagnosed because it attempts
to construct an array of 64 integers in a buffer only 64 bytes large.
char buf [64];
new (buf) int[64];

This warning is enabled by default.

-Wplacement-new=1
This is the default warning level of ‘~-Wplacement-new’. At this
level the warning is not issued for some strictly undefined constructs
that GCC allows as extensions for compatibility with legacy code.
For example, the following new expression is not diagnosed at this
level even though it has undefined behavior according to the C++
standard because it writes past the end of the one-element array.

struct S { int n, al1l; };
S *s = (S *)malloc (sizeof *s + 31 * sizeof s->al0]);
new (s->a)int [32]();

-Wplacement-new=2

At this level, in addition to diagnosing all the same constructs as
at level 1, a diagnostic is also issued for placement new expressions
that construct an object in the last member of structure whose type
is an array of a single element and whose size is less than the size of
the object being constructed. While the previous example would be
diagnosed, the following construct makes use of the flexible member
array extension to avoid the warning at level 2.

struct S { int n, all; };
S *s = (S *)malloc (sizeof *s + 32 * sizeof s->al[0]);
new (s->a)int [32]();

-Wcatch-value

-Wcatch-value=n (C++ and Objective-C++ only)
Warn about catch handlers that do not catch via reference. With
‘~Wcatch-value=1’ (or ‘-Wcatch-value’ for short) warn about polymorphic
class types that are caught by value. With ‘-Wcatch-value=2" warn about all
class types that are caught by value. With ‘-Wcatch-value=3" warn about all
types that are not caught by reference. ‘-Wcatch-value’ is enabled by ‘-Wall’.

-Wconditionally-supported (C++ and Objective-C++ only)
Warn for conditionally-supported (C++11 [intro.defs]) constructs.

72 Using the GNU Compiler Collection (GCC)

-Wno-delete-incomplete (C++ and Objective-C++ only)
Do not warn when deleting a pointer to incomplete type, which may cause
undefined behavior at runtime. This warning is enabled by default.

-Wextra-semi (C++, Objective-C++ only)
Warn about redundant semicolons after in-class function definitions.

-Wno-inaccessible-base (C++, Objective-C++ only)
This option controls warnings when a base class is inaccessible in a class derived
from it due to ambiguity. The warning is enabled by default. Note that the
warning for ambiguous virtual bases is enabled by the ‘~Wextra’ option.
struct A { int a; };

struct B : A { };

struct C : B, A { };

-Wno-inherited-variadic-ctor
Suppress warnings about use of C++11 inheriting constructors when the base
class inherited from has a C variadic constructor; the warning is on by default
because the ellipsis is not inherited.

-Wno-invalid-offsetof (C++ and Objective-C++ only)
Suppress warnings from applying the offsetof macro to a non-POD type.
According to the 2014 ISO C++ standard, applying offsetof to a non-standard-
layout type is undefined. In existing C++ implementations, however, offsetof
typically gives meaningful results. This flag is for users who are aware that
they are writing nonportable code and who have deliberately chosen to ignore
the warning about it.

The restrictions on offsetof may be relaxed in a future version of the C++
standard.

-Wsized-deallocation (C++ and Objective-C++ only)
Warn about a definition of an unsized deallocation function
void operator delete (void *) noexcept;
void operator delete[] (void *) noexcept;
without a definition of the corresponding sized deallocation function
void operator delete (void *, std::size_t) noexcept;

void operator delete[] (void *, std::size_t) noexcept;

or vice versa. Enabled by ‘-Wextra’ along with ‘-fsized-deallocation’.

-Wsuggest-final-types
Warn about types with virtual methods where code quality would be improved
if the type were declared with the C++11 final specifier, or, if possible, de-
clared in an anonymous namespace. This allows GCC to more aggressively
devirtualize the polymorphic calls. This warning is more effective with link-
time optimization, where the information about the class hierarchy graph is
more complete.

-Wsuggest-final-methods
Warn about virtual methods where code quality would be improved if the
method were declared with the C++11 final specifier, or, if possible, its type

Chapter 3: GCC Command Options 73

were declared in an anonymous namespace or with the final specifier. This
warning is more effective with link-time optimization, where the information
about the class hierarchy graph is more complete. It is recommended to first
consider suggestions of ‘-Wsuggest-final-types’ and then rebuild with new
annotations.

-Wsuggest-override
Warn about overriding virtual functions that are not marked with the override
keyword.

-Wuse-after—-free

-Wuse-after-free=n
Warn about uses of pointers to dynamically allocated objects that have been
rendered indeterminate by a call to a deallocation function. The warning is en-
abled at all optimization levels but may yield different results with optimization
than without.

-Wuse-after-free=1

At level 1 the warning attempts to diagnose only unconditional uses
of pointers made indeterminate by a deallocation call or a successful
call to realloc, regardless of whether or not the call resulted in
an actual reallocatio of memory. This includes double-free calls
as well as uses in arithmetic and relational expressions. Although
undefined, uses of indeterminate pointers in equality (or inequality)
expressions are not diagnosed at this level.

-Wuse-after-free=2
At level 2, in addition to unconditional uses, the warning also diag-
noses conditional uses of pointers made indeterminate by a deallo-
cation call. As at level 2, uses in equality (or inequality) expressions
are not diagnosed. For example, the second call to free in the fol-
lowing function is diagnosed at this level:

struct A { int refcount; void *data; };

void release (struct A *p)

{
int refcount = --p->refcount;
free (p);
if (refcount == 0)
free (p->data); // warning: p may be used after free
}

-Wuse-after-free=3

At level 3, the warning also diagnoses uses of indeterminate pointers
in equality expressions. All uses of indeterminate pointers are un-
defined but equality tests sometimes appear after calls to realloc
as an attempt to determine whether the call resulted in relocating
the object to a different address. They are diagnosed at a separate
level to aid legacy code gradually transition to safe alternatives.
For example, the equality test in the function below is diagnosed
at this level:

74 Using the GNU Compiler Collection (GCC)

void adjust_pointers (int#**, int);

void grow (int **p, int n)
{
int **q = (int**)realloc (p, n *= 2);
if (q == p)
return;
adjust_pointers ((int**)q, n);
}
To avoid the warning at this level, store offsets into allocated mem-
ory instead of pointers. This approach obviates needing to adjust

the stored pointers after reallocation.
‘~Wuse-after-free=2’ is included in ‘-Wall’.

-Wuseless-cast (C++ and Objective-C++ only)
Warn when an expression is casted to its own type.

-Wno-conversion-null (C++ and Objective-C++ only)
Do not warn for conversions between NULL and non-pointer types.
‘~Wconversion-null’ is enabled by default.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-
C and Objective-C++ programs. You can also use most of the language-independent GNU
compiler options. For example, you might compile a file ‘some_class.m’ like this:

gcc -g —-fgnu-runtime -0 -c some_class.m

In this example, ‘~fgnu-runtime’ is an option meant only for Objective-C and Objective-
C++ programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compila-
tions may also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly,
Objective-C++ compilations may use C++-specific options (e.g., ‘~Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++
programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string
specified with the syntax @"...". The default class name is NXConstantString
if the GNU runtime is being used, and NSConstantString if the NeX'T runtime
is being used (see below). The ‘~fconstant-cfstrings’ option, if also present,
overrides the ‘-fconstant-string-class’ setting and cause @"..." literals to
be laid out as constant CoreFoundation strings.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime.
This is the default for most types of systems.

Chapter 3: GCC Command Options 75

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for
NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_
RUNTIME__ is predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches ([receiver message:arg]) in
this translation unit ensure that the receiver is not nil. This allows for more
efficient entry points in the runtime to be used. This option is only available in
conjunction with the NeXT runtime and ABI version 0 or 1.

-fobjc-abi-version=n
Use version n of the Objective-C ABI for the selected runtime. This option is
currently supported only for the NeXT runtime. In that case, Version 0 is the
traditional (32-bit) ABI without support for properties and other Objective-
C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for
properties and other Objective-C 2.0 additions. Version 2 is the modern (64-bit)
ABI. If nothing is specified, the default is Version 0 on 32-bit target machines,
and Version 2 on 64-bit target machines.

-fobjc-call-cxx-cdtors

For each Objective-C class, check if any of its instance variables is a C++ ob-
ject with a non-trivial default constructor. If so, synthesize a special - (id)
.cxx_construct instance method which runs non-trivial default constructors
on any such instance variables, in order, and then return self. Similarly, check
if any instance variable is a C++ object with a non-trivial destructor, and if
so, synthesize a special - (void) .cxx_destruct method which runs all such
default destructors, in reverse order.

The - (id) .cxx_construct and - (void) .cxx_destruct methods thusly
generated only operate on instance variables declared in the current
Objective-C class, and not those inherited from superclasses. It is the
responsibility of the Objective-C runtime to invoke all such methods in an
object’s inheritance hierarchy. The - (id) .cxx_construct methods are
invoked by the runtime immediately after a new object instance is allocated;
the - (void) .cxx_destruct methods are invoked immediately before the
runtime deallocates an object instance.

As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has sup-
port for invoking the - (id) .cxx_construct and - (void) .cxx_destruct
methods.

-fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is accomplished
via the comm page.

-fobjc-exceptions
Enable syntactic support for structured exception handling in Objective-C, sim-
ilar to what is offered by C++. This option is required to use the Objective-C
keywords @try, @throw, @catch, @finally and @synchronized. This option is
available with both the GNU runtime and the NeXT runtime (but not available
in conjunction with the NeXT runtime on Mac OS X 10.2 and earlier).

76

-fobjc-gc

Using the GNU Compiler Collection (GCC)

Enable garbage collection (GC) in Objective-C and Objective-C++ programs.
This option is only available with the NeXT runtime; the GNU runtime has a
different garbage collection implementation that does not require special com-
piler flags.

-fobjc-nilcheck

For the NeXT runtime with version 2 of the ABI, check for a nil receiver in
method invocations before doing the actual method call. This is the default
and can be disabled using ‘-fno-objc-nilcheck’. Class methods and super
calls are never checked for nil in this way no matter what this flag is set to.
Currently this flag does nothing when the GNU runtime, or an older version of
the NeXT runtime ABI, is used.

-fobjc-std=objcl

-freplace-

Conform to the language syntax of Objective-C 1.0, the language recognized by
GCC 4.0. This only affects the Objective-C additions to the C/C++ language;
it does not affect conformance to C/C++ standards, which is controlled by
the separate C/C++ dialect option flags. When this option is used with the
Objective-C or Objective-C++ compiler, any Objective-C syntax that is not
recognized by GCC 4.0 is rejected. This is useful if you need to make sure that
your Objective-C code can be compiled with older versions of GCC.

objc-classes

Emit a special marker instructing 1d(1) not to statically link in the resulting
object file, and allow dyld(1) to load it in at run time instead. This is used
in conjunction with the Fix-and-Continue debugging mode, where the object
file in question may be recompiled and dynamically reloaded in the course of
program execution, without the need to restart the program itself. Currently,
Fix-and-Continue functionality is only available in conjunction with the NeXT
runtime on Mac OS X 10.3 and later.

-fzero-link

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘~fzero-1link’ flag suppresses this behavior
and causes calls to objc_getClass("...") to be retained. This is useful in
Zero-Link debugging mode, since it allows for individual class implementations
to be modified during program execution. The GNU runtime currently always
retains calls to objc_get_class("...") regardless of command-line options.

-fno-local-ivars

By default instance variables in Objective-C can be accessed as if they were
local variables from within the methods of the class they’re declared in. This
can lead to shadowing between instance variables and other variables declared
either locally inside a class method or globally with the same name. Specify-
ing the ‘~fno-local-ivars’ flag disables this behavior thus avoiding variable
shadowing issues.

Chapter 3: GCC Command Options 77

-fivar-visibility=[public|protected|private|package]
Set the default instance variable visibility to the specified option so that instance
variables declared outside the scope of any access modifier directives default to
the specified visibility.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wassign-intercept (Objective-C and Objective-C++ only)
Warn whenever an Objective-C assignment is being intercepted by the garbage
collector.

-Wno-property-assign-default (Objective-C and Objective-C++ only)
Do not warn if a property for an Objective-C object has no assign semantics
specified.

-Wno-protocol (Objective-C and Objective-C++ only)
If a class is declared to implement a protocol, a warning is issued for every
method in the protocol that is not implemented by the class. The default
behavior is to issue a warning for every method not explicitly implemented in the
class, even if a method implementation is inherited from the superclass. If you
use the ‘~Wno-protocol’ option, then methods inherited from the superclass
are considered to be implemented, and no warning is issued for them.

-Wobjc-root-class (Objective-C and Objective-C++ only)
Warn if a class interface lacks a superclass. Most classes will inherit from
NSObject (or Object) for example. When declaring classes intended to be
root classes, the warning can be suppressed by marking their interfaces with
__attribute__((objc_root_class)).

-Wselector (Objective-C and Objective-C++ only)

Warn if multiple methods of different types for the same selector are found
during compilation. The check is performed on the list of methods in the
final stage of compilation. Additionally, a check is performed for each selector
appearing in a @selector(...) expression, and a corresponding method for
that selector has been found during compilation. Because these checks scan the
method table only at the end of compilation, these warnings are not produced
if the final stage of compilation is not reached, for example because an error
is found during compilation, or because the ‘~fsyntax-only’ option is being
used.

-Wstrict-selector-match (Objective-C and Objective-C++ only)
Warn if multiple methods with differing argument and /or return types are found
for a given selector when attempting to send a message using this selector to
a receiver of type id or Class. When this flag is off (which is the default
behavior), the compiler omits such warnings if any differences found are confined
to types that share the same size and alignment.

-Wundeclared-selector (Objective-C and Objective-C++ only)
Warn if a @selector(...) expression referring to an undeclared selector is
found. A selector is considered undeclared if no method with that name has

78 Using the GNU Compiler Collection (GCC)

been declared before the @selector(...) expression, either explicitly in an
@interface or @protocol declaration, or implicitly in an @implementation
section. This option always performs its checks as soon as a @selector(...)
expression is found, while ‘-Wselector’ only performs its checks in the final
stage of compilation. This also enforces the coding style convention that meth-
ods and selectors must be declared before being used.

—-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if
any.

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s
aspect (e.g. its width, ...). You can use the options described below to control the for-
matting algorithm for diagnostic messages, e.g. how many characters per line, how often
source location information should be reported. Note that some language front ends may
not honor these options.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. If
n is zero, then no line-wrapping is done; each error message appears on a single
line. This is the default for all front ends.

Note - this option also affects the display of the ‘#error’ and ‘#warning’ pre-
processor directives, and the ‘deprecated’ function/type/variable attribute.
It does not however affect the ‘pragma GCC warning’ and ‘pragma GCC error’
pragmas.

-fdiagnostics-plain-output

This option requests that diagnostic output look as plain as possible,
which may be useful when running dejagnu or other utilities that need to
parse diagnostics output and prefer that it remain more stable over time.
‘~-fdiagnostics-plain-output’ is currently equivalent to the following
options:

-fno-diagnostics-show-caret

-fno-diagnostics-show-line-numbers

-fdiagnostics—-color=never

-fdiagnostics-urls=never
-fdiagnostics-path-format=separate-events

In the future, if GCC changes the default appearance of its diagnostics, the
corresponding option to disable the new behavior will be added to this list.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages re-
porter to emit source location information once; that is, in case the message
is too long to fit on a single physical line and has to be wrapped, the source
location won’t be emitted (as prefix) again, over and over, in subsequent con-
tinuation lines. This is the default behavior.

Chapter 3: GCC Command Options 79

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit the same source location information (as prefix) for physical
lines that result from the process of breaking a message which is too long to fit
on a single line.

-fdiagnostics-color [=WHEN]
-fno-diagnostics-color

Use color in diagnostics. WHEN is ‘never’, ‘always’, or ‘auto’. The default
depends on how the compiler has been configured, it can be any of the above
WHEN options or also ‘never’ if GCC_COLORS environment variable isn’t present
in the environment, and ‘auto’ otherwise. ‘auto’ makes GCC use color only
when the standard error is a terminal, and when not executing in an emacs shell.
The forms ‘-fdiagnostics-color’ and ‘-fno-diagnostics-color’ are aliases
for ‘-fdiagnostics-color=always’ and ‘-fdiagnostics-color=never’, re-
spectively.

The colors are defined by the environment variable GCC_COLORS. Its value is
a colon-separated list of capabilities and Select Graphic Rendition (SGR) sub-
strings. SGR commands are interpreted by the terminal or terminal emulator.
(See the section in the documentation of your text terminal for permitted values
and their meanings as character attributes.) These substring values are integers
in decimal representation and can be concatenated with semicolons. Common
values to concatenate include ‘1’ for bold, ‘4’ for underline, ‘5’ for blink, ‘7’ for
inverse, ‘39’ for default foreground color, ‘30’ to ‘37’ for foreground colors, ‘90’
to ‘97’ for 16-color mode foreground colors, ‘38;5;0’ to ‘38;5;255’ for 88-color
and 256-color modes foreground colors, ‘49’ for default background color, ‘40’
to ‘47’ for background colors, ‘100’ to ‘107’ for 16-color mode background col-
ors, and ‘48;5;0’ to ‘48;5;255" for 88-color and 256-color modes background
colors.

The default GCC_COLORS is

error=01;31:warning=01;35:note=01;36:range1=32:range2=34:1locus=01:\
quote=01:path=01;36:fixit-insert=32:fixit-delete=31:\
diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
type-diff=01;32

where ‘01;31’ is bold red, ‘01;35’ is bold magenta, ‘01;36’ is bold cyan, ‘32’
is green, ‘34’ is blue, ‘01’ is bold, and ‘31’ is red. Setting GCC_COLORS to the
empty string disables colors. Supported capabilities are as follows.

error= SGR substring for error: markers.
warning= SGR substring for warning: markers.
note= SGR substring for note: markers.

path= SGR substring for colorizing paths of control-flow events as printed
via ‘-fdiagnostics-path-format=’, such as the identifiers of indi-
vidual events and lines indicating interprocedural calls and returns.

rangel= SGR substring for first additional range.

range?2= SGR substring for second additional range.

80

Using the GNU Compiler Collection (GCC)

locus= SGR substring for location information, ‘file:line’ or
‘file:line:column’ etc.

quote= SGR substring for information printed within quotes.

fixit-insert=
SGR substring for fix-it hints suggesting text to be inserted or
replaced.

fixit-delete=
SGR substring for fix-it hints suggesting text to be deleted.

diff-filename=
SGR substring for filename headers within generated patches.

diff-hunk=
SGR substring for the starts of hunks within generated patches.

diff-delete=
SGR substring for deleted lines within generated patches.

diff-insert=
SGR substring for inserted lines within generated patches.

type-diff=
SGR substring for highlighting mismatching types within template
arguments in the C++ frontend.

-fdiagnostics-urls [=WHEN]

Use escape sequences to embed URLs in diagnostics. For example, when
‘-fdiagnostics-show-option’ emits text showing the command-line option
controlling a diagnostic, embed a URL for documentation of that option.

WHEN is ‘never’, ‘always’, or ‘auto’. ‘auto’ makes GCC use URL escape
sequences only when the standard error is a terminal, and when not executing
in an emacs shell or any graphical terminal which is known to be incompatible
with this feature, see below.

The default depends on how the compiler has been configured. It can be any
of the above WHEN options.

GCC can also be configured (via the ‘--with-diagnostics-urls=auto-if-env’}}
configure-time option) so that the default is affected by environment variables.
Under such a configuration, GCC defaults to using ‘auto’ if either GCC_URLS
or TERM_URLS environment variables are present and non-empty in the
environment of the compiler, or ‘never’ if neither are.

However, even with ‘~-fdiagnostics-urls=always’ the behavior is dependent
on those environment variables: If GCC_URLS is set to empty or ‘no’, do not
embed URLs in diagnostics. If set to ‘st’, URLs use ST escape sequences. If
set to ‘bel’, the default, URLs use BEL escape sequences. Any other non-empty
value enables the feature. If GCC_URLS is not set, use TERM_URLS as a fallback.
Note: ST is an ANSI escape sequence, string terminator ‘ESC \’, BEL is an
ASCII character, CTRL-G that usually sounds like a beep.

Chapter 3: GCC Command Options 81

At this time GCC tries to detect also a few terminals that are known to not
implement the URL feature, and have bugs or at least had bugs in some versions
that are still in use, where the URL escapes are likely to misbehave, i.e. print
garbage on the screen. That list is currently xfce4-terminal, certain known to
be buggy gnome-terminal versions, the linux console, and mingw. This check
can be skipped with the ‘-fdiagnostics-urls=always’.

-fno-diagnostics-show-option
By default, each diagnostic emitted includes text indicating the command-line
option that directly controls the diagnostic (if such an option is known to the
diagnostic machinery). Specifying the ‘~fno-diagnostics-show-option’ flag
suppresses that behavior.

-fno-diagnostics—-show-caret
By default, each diagnostic emitted includes the original source line and a caret
‘7 indicating the column. This option suppresses this information. The source
line is truncated to n characters, if the ‘~-fmessage-length=n’ option is given.
When the output is done to the terminal, the width is limited to the width
given by the COLUMNS environment variable or, if not set, to the terminal width.

—-fno-diagnostics—show-labels
By default, when printing source code (via ‘-fdiagnostics-show-caret’), di-
agnostics can label ranges of source code with pertinent information, such as
the types of expressions:
printf ("foo %s bar", long_i + long_j);

| |

char * long int
This option suppresses the printing of these labels (in the example above, the
vertical bars and the “char *” and “long int” text).

-fno-diagnostics-show-cwe
Diagnostic messages can optionally have an associated CWE identifier. GCC
itself only provides such metadata for some of the ‘~fanalyzer’ diagnostics.
GCC plugins may also provide diagnostics with such metadata. By default, if
this information is present, it will be printed with the diagnostic. This option
suppresses the printing of this metadata.

-fno-diagnostics—-show-line-numbers
By default, when printing source code (via ‘~fdiagnostics-show-caret’), a
left margin is printed, showing line numbers. This option suppresses this left
margin.

-fdiagnostics-minimum-margin-width=width
This option controls the minimum width of the left margin printed by
‘-fdiagnostics-show-line-numbers’. It defaults to 6.

-fdiagnostics-parseable-fixits
Emit fix-it hints in a machine-parseable format, suitable for consumption by
IDEs. For each fix-it, a line will be printed after the relevant diagnostic, starting
with the string “fix-it:”. For example:

https://cwe.mitre.org/index.html

82 Using the GNU Compiler Collection (GCC)

fix-it:"test.c":{45:3-45:21}:"gtk_widget_show_all"

The location is expressed as a half-open range, expressed as a count of bytes,
starting at byte 1 for the initial column. In the above example, bytes 3 through
20 of line 45 of “test.c” are to be replaced with the given string:

00000000011111111112222222222
12345678901234567890123456789
gtk_widget_showall (dlg);

gtk_widget_show_all

The filename and replacement string escape backslash as “\\", tab as “\t”,
newline as “\n”, double quotes as “\"”, non-printable characters as octal (e.g.
vertical tab as “\013").

An empty replacement string indicates that the given range is to be removed.
An empty range (e.g. “45:3-45:3”) indicates that the string is to be inserted at
the given position.

-fdiagnostics-generate-patch
Print fix-it hints to stderr in unified diff format, after any diagnostics are
printed. For example:

--- test.c
+++ test.c
@ -42,5 +42,5 @

void show_cb(GtkDialog *dlg)
{
- gtk_widget_showall(dlg);
+ gtk_widget_show_all(dlg);
}

The diff may or may not be colorized, following the same rules as for diagnostics
(see ‘-fdiagnostics-color’).

-fdiagnostics-show-template-tree
In the C++ frontend, when printing diagnostics showing mismatching template
types, such as:
could not convert ’std::map<int, std::vector<double> >()’
from ’map<[...],vector<double>>’ to ’map<[...],vector<float>>
the ‘-fdiagnostics-show-template-tree’ flag enables printing a tree-like
structure showing the common and differing parts of the types, such as:
map<
[...]1,
vector<
[double != float]>>
The parts that differ are highlighted with color (“double” and “float” in this
case).

-fno-elide-type
By default when the C++ frontend prints diagnostics showing mismatching tem-
plate types, common parts of the types are printed as “[...]” to simplify the
error message. For example:

Chapter 3: GCC Command Options 83

could not convert ’std::map<int, std::vector<double> >()’
from ’map<[...],vector<double>>’ to ’map<[...],vector<float>>
Specifying the ‘~fno-elide-type’ flag suppresses that behavior. This flag also
affects the output of the ‘-fdiagnostics-show-template-tree’ flag.

-fdiagnostics-path-format=KIND
Specify how to print paths of control-flow events for diagnostics that have such
a path associated with them.

KIND is ‘none’, ‘separate-events’, or ‘inline-events’, the default.
‘none’ means to not print diagnostic paths.

‘separate-events’ means to print a separate “note” diagnostic for each event
within the diagnostic. For example:

test.c:29:5: error: passing NULL as argument 1 to ’PyList_Append’ which re-

quires a non-NULL parameter

test.c:25:10: note: (1) when ’PyList_New’ fails, returning NULL

test.c:27:3: note: (2) when ’i < count’

test.c:29:5: note: (3) when calling ’PyList_Append’, passing NULL from (1) as ar-Ji
gument 1

‘inline-events’ means to print the events “inline” within the source code.

This view attempts to consolidate the events into runs of sufficiently-close
events, printing them as labelled ranges within the source.

For example, the same events as above might be printed as:

’test’: events 1-3

| 25 | 1list = PyList_New(0);

| lF T

| I I

| | (1) when ’PyList_New’ fails, returning NULL

| 26 |

| 27 | for (i = 0; i < count; i++) {

| "

| I |

| | (2) when ’i < count’

| 28 | item = PyLong_FromLong(random()) ;

[29 | PyList_Append(list, item);

| | T s

| I |

| | (3) when calling ’PyList_Append’, passing NULL from (1) as ar-Jj
gument 1

|

Interprocedural control flow is shown by grouping the events by stack frame, and
using indentation to show how stack frames are nested, pushed, and popped.
For example:

’test’: events 1-2

1) entering ’test’
boxed_int *obj = make_boxed_int (i);

~ —

84 Using the GNU Compiler Collection (GCC)

| | (2) calling ’make_boxed_int’
l—-> ’make_boxed_int’: events 3-4

| 120 | {
|
(3) entering ’make_boxed_int’

boxed_int *result = (boxed_int *)wrapped_malloc (sizeof (boxed_int));|}

|
|
|
|
121 |
|
|
|

|
|
|
|
|
|
|
I (4) calling ’wrapped_malloc’[l
|

+

—--> ’wrapped_malloc’: events 5-6

|
| 714
| (.
I I
| | (5) entering ’wrapped_malloc’
| 8 | return malloc (size);
| f T
| | |
| | (6) calling ’malloc’
[

- +

|

’test’: event 7
I
138 | free_boxed_int (obj);

-fdiagnostics-show-path-depths
This option provides additional information when printing control-flow paths
associated with a diagnostic.

If this is option is provided then the stack depth will be printed for each run of
events within ‘~-fdiagnostics-path-format=separate-events’.

This is intended for use by GCC developers and plugin developers when debug-
ging diagnostics that report interprocedural control flow.

-fno-show-column
Do not print column numbers in diagnostics. This may be necessary if diag-
nostics are being scanned by a program that does not understand the column
numbers, such as dejagnu.

-fdiagnostics-column-unit=UNIT
Select the units for the column number. This affects traditional diagnostics
(in the absence of ‘-fno-show-column’), as well as JSON format diagnostics if
requested.
The default UNIT, ‘display’, considers the number of display columns occupied
by each character. This may be larger than the number of bytes required to
encode the character, in the case of tab characters, or it may be smaller, in

Chapter 3: GCC Command Options 85

the case of multibyte characters. For example, the character “GREEK SMALL
LETTER PI (U+03C0)” occupies one display column, and its UTF-8 encoding
requires two bytes; the character “SLIGHTLY SMILING FACE (U+1F642)”
occupies two display columns, and its UTF-8 encoding requires four bytes.

Setting UNIT to ‘byte’ changes the column number to the raw byte count in
all cases, as was traditionally output by GCC prior to version 11.1.0.

-fdiagnostics—-column-origin=0RIGIN
Select the origin for column numbers, i.e. the column number assigned to the
first column. The default value of 1 corresponds to traditional GCC behavior
and to the GNU style guide. Some utilities may perform better with an origin
of 0; any non-negative value may be specified.

-fdiagnostics-escape-format=FORMAT
When GCC prints pertinent source lines for a diagnostic it normally attempts
to print the source bytes directly. However, some diagnostics relate to encoding
issues in the source file, such as malformed UTF-8, or issues with Unicode
normalization. These diagnostics are flagged so that GCC will escape bytes
that are not printable ASCII when printing their pertinent source lines.

This option controls how such bytes should be escaped.

The default FORMAT, ‘unicode’ displays Unicode characters that are not
printable ASCII in the form ‘<U+XXXX>’, and bytes that do not correspond
to a Unicode character validly-encoded in UTF-8-encoded will be displayed as
hexadecimal in the form ‘<XX>’.

For example, a source line containing the string ‘before’ followed by the Uni-
code character U+03C0 (“GREEK SMALL LETTER PI”, with UTF-8 encoding
0xCF 0x80) followed by the byte 0xBF (a stray UTF-8 trailing byte), followed
by the string ‘after’ will be printed for such a diagnostic as:
before<U+03CO><BF>after
Setting FORMAT to ‘bytes’ will display all non-printable-ASCII bytes in the
form ‘<XX>’, thus showing the underlying encoding of non-ASCII Unicode char-
acters. For the example above, the following will be printed:
before<CF><80><BF>after

-fdiagnostics-format=FORMAT
Select a different format for printing diagnostics. FORMAT is ‘text’ or ‘json’.
The default is ‘text’.

The ‘json’ format consists of a top-level JSON array containing JSON objects
representing the diagnostics.

The JSON is emitted as one line, without formatting; the examples below have
been formatted for clarity.

Diagnostics can have child diagnostics. For example, this error and note:

misleading-indentation.c:15:3: warning: this ’if’ clause does not

guard... [-Wmisleading-indentation]
15 | if (flag)
| ~n
misleading-indentation.c:17:5: note: ...this statement, but the latter

is misleadingly indented as if it were guarded by the ’if’

86 Using the GNU Compiler Collection (GCC)

17 | y = 2;
| >

might be printed in JSON form (after formatting) like this:

[
{
"kind": "warning",
"locations": [
{

"caret": {
"display-column": 3,
"byte-column": 3,

"column": 3,

"file": "misleading-indentation.c",
"line": 15

}J

"finish": {

"display-column": 4,
"byte-column": 4,
"column": 4,

"file": "misleading-indentation.c",
"line": 15
}
}
]5
"message": "this \u2018if\u2019 clause does not guard...",
"option": "-Wmisleading-indentation",

"option_url": "https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-|j
Wmisleading-indentation",

"children": [

{
"kind": "note",
"locations": [
{
"caret": {

"display-column": 5,
"byte-column": 5,
"column": 5,

"file": "misleading-indentation.c",
"line": 17
}
}
1,
"escape-source": false,
"message": "...this statement, but the latter is ..."

}

]
"escape-source": false,
"column-origin": 1,

X
]

where the note is a child of the warning.

A diagnostic has a kind. If this is warning, then there is an option key
describing the command-line option controlling the warning.

A diagnostic can contain zero or more locations. Each location has an optional
label string and up to three positions within it: a caret position and optional

Chapter 3: GCC Command Options 87

start and finish positions. A position is described by a file name, a line
number, and three numbers indicating a column position:

e display-column counts display columns, accounting for tabs and multi-
byte characters.

e byte-column counts raw bytes.

e column is equal to one of the previous two, as dictated by the
‘~-fdiagnostics-column-unit’ option.

All three columns are relative to the origin specified by ‘-fdiagnostics-column-origin’|j
which is typically equal to 1 but may be set, for instance, to 0 for compatibility

with other utilities that number columns from 0. The column origin is recorded

in the JSON output in the column-origin tag. In the remaining examples

below, the extra column number outputs have been omitted for brevity.

For example, this error:

bad-binary-ops.c:64:23: error: invalid operands to binary + (have ’S’ {aka
’struct s’} and ’T’ {aka ’struct t’})
64 | return callee_4a () + callee_4b ();
| eemmesseeess a ssmesiaens

I

| | T {aka struct t}
| S {aka struct s}

has three locations. Its primary location is at the “+” token at column 23.

It has two secondary locations, describing the left and right-hand sides of the

expression, which have labels. It might be printed in JSON form as:

{
"children": [],
"kind": "error",
"locations": [
{
"caret": {
"column": 23, "file": "bad-binary-ops.c", "line": 64
}
},
{
"caret": {
"column": 10, "file": "bad-binary-ops.c", "line": 64
},
"finish": {
"column": 21, "file": "bad-binary-ops.c", "line": 64
}’
"label": "S {aka struct s}"
}!
{
"caret": {
"column": 25, "file": "bad-binary-ops.c", "line": 64
}’
"finish": {
"column": 36, "file": "bad-binary-ops.c", "line": 64
}’
"label": "T {aka struct t}"
}

],

"escape-source": false,

88 Using the GNU Compiler Collection (GCC)

"message": "invalid operands to binary + ..."

}

If a diagnostic contains fix-it hints, it has a fixits array, consisting of half-
open intervals, similar to the output of ‘~-fdiagnostics-parseable-fixits’.
For example, this diagnostic with a replacement fix-it hint:

demo.c:8:15: error: ’struct s’ has no member named ’colour’; did you

mean ’color’?
8 return ptr->colour;

might be printed in JSON form as:

{
"children": [],
"fixits": [
{
"next": {
"column": 21,
"file": "demo.c",
"line": 8
}’
"start": {
"column": 15,
"file": "demo.c",
"line": 8
}’
"string": "color"
¥
1,
"kind": "error",
"locations": [
{
"caret": {
"column": 15,
"file": "demo.c",
"line": 8
}5
"finish": {
"column": 20,
"file": "demo.c",
"line": 8
}
}
]’
"escape-source": false,
"message": "\u2018struct s\u2019 has no member named ..."
}

where the fix-it hint suggests replacing the text from start up to but not
including next with string’s value. Deletions are expressed via an empty
value for string, insertions by having start equal next.

If the diagnostic has a path of control-flow events associated with it, it has
a path array of objects representing the events. Each event object has a
description string, a location object, along with a function string and a
depth number for representing interprocedural paths. The function represents

Chapter 3: GCC Command Options 89

the current function at that event, and the depth represents the stack depth
relative to some baseline: the higher, the more frames are within the stack.

For example, the intraprocedural example shown for ‘~-fdiagnostics-path-format="J
might have this JSON for its path:

"path": [
{
"depth": O,
"description": "when ’PyList_New’ fails, returning NULL",
"function": "test",

"location": {
"column": 10,
"file": "test.c",
"line": 25

"depth": O,
"description": "when ’i < count’",
"function": "test",
"location": {
"column": 3,
"file": "test.c",
"line": 27

"depth": O,
"description": "when calling ’PyList_Append’, passing NULL from (1) as ar-|Jj
gument 1",
"function": "test",
"location": {
"column": 5,
"file": "test.c",
"line": 29

]

Diagnostics have a boolean attribute escape-source, hinting whether non-
ASCII bytes should be escaped when printing the pertinent lines of source code
(true for diagnostics involving source encoding issues).

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions that are not inherently erro-
neous but that are risky or suggest there may have been an error.

The following language-independent options do not enable specific warnings but control
the kinds of diagnostics produced by GCC.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-fmax-errors=n
Limits the maximum number of error messages to n, at which point GCC bails
out rather than attempting to continue processing the source code. If nis 0

90 Using the GNU Compiler Collection (GCC)

(the default), there is no limit on the number of error messages produced. If
‘-Wfatal-errors’ is also specified, then ‘-Wfatal-errors’ takes precedence
over this option.

-w Inhibit all warning messages.
-Werror Make all warnings into errors.

-Werror= Make the specified warning into an error. The specifier for a warning is
appended; for example ‘-Werror=switch’ turns the warnings controlled by
‘-Wswitch’ into errors. This switch takes a negative form, to be used to negate
‘~Werror’ for specific warnings; for example ‘-Wno-error=switch’ makes
‘-Wswitch’ warnings not be errors, even when ‘-Werror’ is in effect.

The warning message for each controllable warning includes the option that
controls the warning. That option can then be used with ‘-Werror=" and
‘~Wno-error=’ as described above. (Printing of the option in the warning mes-
sage can be disabled using the ‘-fno-diagnostics-show-option’ flag.)

Note that specifying ‘-Werror="foo automatically implies ‘-W'foo. However,
‘~Wno-error="foo does not imply anything.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

You can request many specific warnings with options beginning with ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warn-
ing options also has a negative form beginning ‘~Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the de-
fault. For further language-specific options also refer to Section 3.5 [C++ Dialect Options],
page 51 and Section 3.6 [Objective-C and Objective-C++ Dialect Options|, page 74. Ad-
ditional warnings can be produced by enabling the static analyzer; See Section 3.9 [Static
Analyzer Options], page 145.

Some options, such as ‘-Wall’ and ‘-Wextra’, turn on other options, such as ‘-Wunused’,
which may turn on further options, such as ‘-Wunused-value’. The combined effect of
positive and negative forms is that more specific options have priority over less specific ones,
independently of their position in the command-line. For options of the same specificity,
the last one takes effect. Options enabled or disabled via pragmas (see Section 6.62.13
[Diagnostic Pragmas], page 876) take effect as if they appeared at the end of the command-
line.

When an unrecognized warning option is requested (e.g., ‘-Wunknown-warning’),
GCC emits a diagnostic stating that the option is not recognized. However, if the
‘-Wno-’ form is used, the behavior is slightly different: no diagnostic is produced for
‘-Wno-unknown-warning’ unless other diagnostics are being produced. This allows the
use of new ‘-Wno-’ options with old compilers, but if something goes wrong, the compiler
warns that an unrecognized option is present.

The effectiveness of some warnings depends on optimizations also being enabled. For
ex