libstdc++
simd_math.h
1// Math overloads for simd -*- C++ -*-
2
3// Copyright (C) 2020-2022 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25#ifndef _GLIBCXX_EXPERIMENTAL_SIMD_MATH_H_
26#define _GLIBCXX_EXPERIMENTAL_SIMD_MATH_H_
27
28#if __cplusplus >= 201703L
29
30#include <utility>
31#include <iomanip>
32
33_GLIBCXX_SIMD_BEGIN_NAMESPACE
34template <typename _Tp, typename _V>
35 using _Samesize = fixed_size_simd<_Tp, _V::size()>;
36
37// _Math_return_type {{{
38template <typename _DoubleR, typename _Tp, typename _Abi>
39 struct _Math_return_type;
40
41template <typename _DoubleR, typename _Tp, typename _Abi>
42 using _Math_return_type_t =
43 typename _Math_return_type<_DoubleR, _Tp, _Abi>::type;
44
45template <typename _Tp, typename _Abi>
46 struct _Math_return_type<double, _Tp, _Abi>
47 { using type = simd<_Tp, _Abi>; };
48
49template <typename _Tp, typename _Abi>
50 struct _Math_return_type<bool, _Tp, _Abi>
51 { using type = simd_mask<_Tp, _Abi>; };
52
53template <typename _DoubleR, typename _Tp, typename _Abi>
54 struct _Math_return_type
55 { using type = fixed_size_simd<_DoubleR, simd_size_v<_Tp, _Abi>>; };
56
57//}}}
58// _GLIBCXX_SIMD_MATH_CALL_ {{{
59#define _GLIBCXX_SIMD_MATH_CALL_(__name) \
60template <typename _Tp, typename _Abi, typename..., \
61 typename _R = _Math_return_type_t< \
62 decltype(std::__name(declval<double>())), _Tp, _Abi>> \
63 _GLIBCXX_SIMD_ALWAYS_INLINE \
64 enable_if_t<is_floating_point_v<_Tp>, _R> \
65 __name(simd<_Tp, _Abi> __x) \
66 { return {__private_init, _Abi::_SimdImpl::_S_##__name(__data(__x))}; }
67
68// }}}
69//_Extra_argument_type{{{
70template <typename _Up, typename _Tp, typename _Abi>
71 struct _Extra_argument_type;
72
73template <typename _Tp, typename _Abi>
74 struct _Extra_argument_type<_Tp*, _Tp, _Abi>
75 {
76 using type = simd<_Tp, _Abi>*;
77 static constexpr double* declval();
78 static constexpr bool __needs_temporary_scalar = true;
79
80 _GLIBCXX_SIMD_INTRINSIC static constexpr auto _S_data(type __x)
81 { return &__data(*__x); }
82 };
83
84template <typename _Up, typename _Tp, typename _Abi>
85 struct _Extra_argument_type<_Up*, _Tp, _Abi>
86 {
87 static_assert(is_integral_v<_Up>);
88 using type = fixed_size_simd<_Up, simd_size_v<_Tp, _Abi>>*;
89 static constexpr _Up* declval();
90 static constexpr bool __needs_temporary_scalar = true;
91
92 _GLIBCXX_SIMD_INTRINSIC static constexpr auto _S_data(type __x)
93 { return &__data(*__x); }
94 };
95
96template <typename _Tp, typename _Abi>
97 struct _Extra_argument_type<_Tp, _Tp, _Abi>
98 {
99 using type = simd<_Tp, _Abi>;
100 static constexpr double declval();
101 static constexpr bool __needs_temporary_scalar = false;
102
103 _GLIBCXX_SIMD_INTRINSIC static constexpr decltype(auto)
104 _S_data(const type& __x)
105 { return __data(__x); }
106 };
107
108template <typename _Up, typename _Tp, typename _Abi>
109 struct _Extra_argument_type
110 {
111 static_assert(is_integral_v<_Up>);
112 using type = fixed_size_simd<_Up, simd_size_v<_Tp, _Abi>>;
113 static constexpr _Up declval();
114 static constexpr bool __needs_temporary_scalar = false;
115
116 _GLIBCXX_SIMD_INTRINSIC static constexpr decltype(auto)
117 _S_data(const type& __x)
118 { return __data(__x); }
119 };
120
121//}}}
122// _GLIBCXX_SIMD_MATH_CALL2_ {{{
123#define _GLIBCXX_SIMD_MATH_CALL2_(__name, __arg2) \
124template < \
125 typename _Tp, typename _Abi, typename..., \
126 typename _Arg2 = _Extra_argument_type<__arg2, _Tp, _Abi>, \
127 typename _R = _Math_return_type_t< \
128 decltype(std::__name(declval<double>(), _Arg2::declval())), _Tp, _Abi>> \
129 _GLIBCXX_SIMD_ALWAYS_INLINE \
130 enable_if_t<is_floating_point_v<_Tp>, _R> \
131 __name(const simd<_Tp, _Abi>& __x, const typename _Arg2::type& __y) \
132 { \
133 return {__private_init, \
134 _Abi::_SimdImpl::_S_##__name(__data(__x), _Arg2::_S_data(__y))}; \
135 } \
136template <typename _Up, typename _Tp, typename _Abi> \
137 _GLIBCXX_SIMD_INTRINSIC _Math_return_type_t< \
138 decltype(std::__name( \
139 declval<double>(), \
140 declval<enable_if_t< \
141 conjunction_v< \
142 is_same<__arg2, _Tp>, \
143 negation<is_same<__remove_cvref_t<_Up>, simd<_Tp, _Abi>>>, \
144 is_convertible<_Up, simd<_Tp, _Abi>>, is_floating_point<_Tp>>, \
145 double>>())), \
146 _Tp, _Abi> \
147 __name(_Up&& __xx, const simd<_Tp, _Abi>& __yy) \
148 { return __name(simd<_Tp, _Abi>(static_cast<_Up&&>(__xx)), __yy); }
149
150// }}}
151// _GLIBCXX_SIMD_MATH_CALL3_ {{{
152#define _GLIBCXX_SIMD_MATH_CALL3_(__name, __arg2, __arg3) \
153template <typename _Tp, typename _Abi, typename..., \
154 typename _Arg2 = _Extra_argument_type<__arg2, _Tp, _Abi>, \
155 typename _Arg3 = _Extra_argument_type<__arg3, _Tp, _Abi>, \
156 typename _R = _Math_return_type_t< \
157 decltype(std::__name(declval<double>(), _Arg2::declval(), \
158 _Arg3::declval())), \
159 _Tp, _Abi>> \
160 _GLIBCXX_SIMD_ALWAYS_INLINE \
161 enable_if_t<is_floating_point_v<_Tp>, _R> \
162 __name(const simd<_Tp, _Abi>& __x, const typename _Arg2::type& __y, \
163 const typename _Arg3::type& __z) \
164 { \
165 return {__private_init, \
166 _Abi::_SimdImpl::_S_##__name(__data(__x), _Arg2::_S_data(__y), \
167 _Arg3::_S_data(__z))}; \
168 } \
169template < \
170 typename _T0, typename _T1, typename _T2, typename..., \
171 typename _U0 = __remove_cvref_t<_T0>, \
172 typename _U1 = __remove_cvref_t<_T1>, \
173 typename _U2 = __remove_cvref_t<_T2>, \
174 typename _Simd = conditional_t<is_simd_v<_U1>, _U1, _U2>, \
175 typename = enable_if_t<conjunction_v< \
176 is_simd<_Simd>, is_convertible<_T0&&, _Simd>, \
177 is_convertible<_T1&&, _Simd>, is_convertible<_T2&&, _Simd>, \
178 negation<conjunction< \
179 is_simd<_U0>, is_floating_point<__value_type_or_identity_t<_U0>>>>>>> \
180 _GLIBCXX_SIMD_INTRINSIC decltype(__name(declval<const _Simd&>(), \
181 declval<const _Simd&>(), \
182 declval<const _Simd&>())) \
183 __name(_T0&& __xx, _T1&& __yy, _T2&& __zz) \
184 { \
185 return __name(_Simd(static_cast<_T0&&>(__xx)), \
186 _Simd(static_cast<_T1&&>(__yy)), \
187 _Simd(static_cast<_T2&&>(__zz))); \
188 }
189
190// }}}
191// __cosSeries {{{
192template <typename _Abi>
193 _GLIBCXX_SIMD_ALWAYS_INLINE static simd<float, _Abi>
194 __cosSeries(const simd<float, _Abi>& __x)
195 {
196 const simd<float, _Abi> __x2 = __x * __x;
197 simd<float, _Abi> __y;
198 __y = 0x1.ap-16f; // 1/8!
199 __y = __y * __x2 - 0x1.6c1p-10f; // -1/6!
200 __y = __y * __x2 + 0x1.555556p-5f; // 1/4!
201 return __y * (__x2 * __x2) - .5f * __x2 + 1.f;
202 }
203
204template <typename _Abi>
205 _GLIBCXX_SIMD_ALWAYS_INLINE static simd<double, _Abi>
206 __cosSeries(const simd<double, _Abi>& __x)
207 {
208 const simd<double, _Abi> __x2 = __x * __x;
209 simd<double, _Abi> __y;
210 __y = 0x1.AC00000000000p-45; // 1/16!
211 __y = __y * __x2 - 0x1.9394000000000p-37; // -1/14!
212 __y = __y * __x2 + 0x1.1EED8C0000000p-29; // 1/12!
213 __y = __y * __x2 - 0x1.27E4FB7400000p-22; // -1/10!
214 __y = __y * __x2 + 0x1.A01A01A018000p-16; // 1/8!
215 __y = __y * __x2 - 0x1.6C16C16C16C00p-10; // -1/6!
216 __y = __y * __x2 + 0x1.5555555555554p-5; // 1/4!
217 return (__y * __x2 - .5f) * __x2 + 1.f;
218 }
219
220// }}}
221// __sinSeries {{{
222template <typename _Abi>
223 _GLIBCXX_SIMD_ALWAYS_INLINE static simd<float, _Abi>
224 __sinSeries(const simd<float, _Abi>& __x)
225 {
226 const simd<float, _Abi> __x2 = __x * __x;
227 simd<float, _Abi> __y;
228 __y = -0x1.9CC000p-13f; // -1/7!
229 __y = __y * __x2 + 0x1.111100p-7f; // 1/5!
230 __y = __y * __x2 - 0x1.555556p-3f; // -1/3!
231 return __y * (__x2 * __x) + __x;
232 }
233
234template <typename _Abi>
235 _GLIBCXX_SIMD_ALWAYS_INLINE static simd<double, _Abi>
236 __sinSeries(const simd<double, _Abi>& __x)
237 {
238 // __x = [0, 0.7854 = pi/4]
239 // __x² = [0, 0.6169 = pi²/8]
240 const simd<double, _Abi> __x2 = __x * __x;
241 simd<double, _Abi> __y;
242 __y = -0x1.ACF0000000000p-41; // -1/15!
243 __y = __y * __x2 + 0x1.6124400000000p-33; // 1/13!
244 __y = __y * __x2 - 0x1.AE64567000000p-26; // -1/11!
245 __y = __y * __x2 + 0x1.71DE3A5540000p-19; // 1/9!
246 __y = __y * __x2 - 0x1.A01A01A01A000p-13; // -1/7!
247 __y = __y * __x2 + 0x1.1111111111110p-7; // 1/5!
248 __y = __y * __x2 - 0x1.5555555555555p-3; // -1/3!
249 return __y * (__x2 * __x) + __x;
250 }
251
252// }}}
253// __zero_low_bits {{{
254template <int _Bits, typename _Tp, typename _Abi>
255 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi>
256 __zero_low_bits(simd<_Tp, _Abi> __x)
257 {
258 const simd<_Tp, _Abi> __bitmask
259 = __bit_cast<_Tp>(~make_unsigned_t<__int_for_sizeof_t<_Tp>>() << _Bits);
260 return {__private_init,
261 _Abi::_SimdImpl::_S_bit_and(__data(__x), __data(__bitmask))};
262 }
263
264// }}}
265// __fold_input {{{
266
267/**@internal
268 * Fold @p x into [-¼π, ¼π] and remember the quadrant it came from:
269 * quadrant 0: [-¼π, ¼π]
270 * quadrant 1: [ ¼π, ¾π]
271 * quadrant 2: [ ¾π, 1¼π]
272 * quadrant 3: [1¼π, 1¾π]
273 *
274 * The algorithm determines `y` as the multiple `x - y * ¼π = [-¼π, ¼π]`. Using
275 * a bitmask, `y` is reduced to `quadrant`. `y` can be calculated as
276 * ```
277 * y = trunc(x / ¼π);
278 * y += fmod(y, 2);
279 * ```
280 * This can be simplified by moving the (implicit) division by 2 into the
281 * truncation expression. The `+= fmod` effect can the be achieved by using
282 * rounding instead of truncation: `y = round(x / ½π) * 2`. If precision allows,
283 * `2/π * x` is better (faster).
284 */
285template <typename _Tp, typename _Abi>
286 struct _Folded
287 {
288 simd<_Tp, _Abi> _M_x;
289 rebind_simd_t<int, simd<_Tp, _Abi>> _M_quadrant;
290 };
291
292namespace __math_float {
293inline constexpr float __pi_over_4 = 0x1.921FB6p-1f; // π/4
294inline constexpr float __2_over_pi = 0x1.45F306p-1f; // 2/π
295inline constexpr float __pi_2_5bits0
296 = 0x1.921fc0p0f; // π/2, 5 0-bits (least significant)
297inline constexpr float __pi_2_5bits0_rem
298 = -0x1.5777a6p-21f; // π/2 - __pi_2_5bits0
299} // namespace __math_float
300namespace __math_double {
301inline constexpr double __pi_over_4 = 0x1.921fb54442d18p-1; // π/4
302inline constexpr double __2_over_pi = 0x1.45F306DC9C883p-1; // 2/π
303inline constexpr double __pi_2 = 0x1.921fb54442d18p0; // π/2
304} // namespace __math_double
305
306template <typename _Abi>
307 _GLIBCXX_SIMD_ALWAYS_INLINE _Folded<float, _Abi>
308 __fold_input(const simd<float, _Abi>& __x)
309 {
310 using _V = simd<float, _Abi>;
311 using _IV = rebind_simd_t<int, _V>;
312 using namespace __math_float;
313 _Folded<float, _Abi> __r;
314 __r._M_x = abs(__x);
315#if 0
316 // zero most mantissa bits:
317 constexpr float __1_over_pi = 0x1.45F306p-2f; // 1/π
318 const auto __y = (__r._M_x * __1_over_pi + 0x1.8p23f) - 0x1.8p23f;
319 // split π into 4 parts, the first three with 13 trailing zeros (to make the
320 // following multiplications precise):
321 constexpr float __pi0 = 0x1.920000p1f;
322 constexpr float __pi1 = 0x1.fb4000p-11f;
323 constexpr float __pi2 = 0x1.444000p-23f;
324 constexpr float __pi3 = 0x1.68c234p-38f;
325 __r._M_x - __y*__pi0 - __y*__pi1 - __y*__pi2 - __y*__pi3
326#else
327 if (_GLIBCXX_SIMD_IS_UNLIKELY(all_of(__r._M_x < __pi_over_4)))
328 __r._M_quadrant = 0;
329 else if (_GLIBCXX_SIMD_IS_LIKELY(all_of(__r._M_x < 6 * __pi_over_4)))
330 {
331 const _V __y = nearbyint(__r._M_x * __2_over_pi);
332 __r._M_quadrant = static_simd_cast<_IV>(__y) & 3; // __y mod 4
333 __r._M_x -= __y * __pi_2_5bits0;
334 __r._M_x -= __y * __pi_2_5bits0_rem;
335 }
336 else
337 {
338 using __math_double::__2_over_pi;
339 using __math_double::__pi_2;
340 using _VD = rebind_simd_t<double, _V>;
341 _VD __xd = static_simd_cast<_VD>(__r._M_x);
342 _VD __y = nearbyint(__xd * __2_over_pi);
343 __r._M_quadrant = static_simd_cast<_IV>(__y) & 3; // = __y mod 4
344 __r._M_x = static_simd_cast<_V>(__xd - __y * __pi_2);
345 }
346#endif
347 return __r;
348 }
349
350template <typename _Abi>
351 _GLIBCXX_SIMD_ALWAYS_INLINE _Folded<double, _Abi>
352 __fold_input(const simd<double, _Abi>& __x)
353 {
354 using _V = simd<double, _Abi>;
355 using _IV = rebind_simd_t<int, _V>;
356 using namespace __math_double;
357
358 _Folded<double, _Abi> __r;
359 __r._M_x = abs(__x);
360 if (_GLIBCXX_SIMD_IS_UNLIKELY(all_of(__r._M_x < __pi_over_4)))
361 {
362 __r._M_quadrant = 0;
363 return __r;
364 }
365 const _V __y = nearbyint(__r._M_x / (2 * __pi_over_4));
366 __r._M_quadrant = static_simd_cast<_IV>(__y) & 3;
367
368 if (_GLIBCXX_SIMD_IS_LIKELY(all_of(__r._M_x < 1025 * __pi_over_4)))
369 {
370 // x - y * pi/2, y uses no more than 11 mantissa bits
371 __r._M_x -= __y * 0x1.921FB54443000p0;
372 __r._M_x -= __y * -0x1.73DCB3B39A000p-43;
373 __r._M_x -= __y * 0x1.45C06E0E68948p-86;
374 }
375 else if (_GLIBCXX_SIMD_IS_LIKELY(all_of(__y <= 0x1.0p30)))
376 {
377 // x - y * pi/2, y uses no more than 29 mantissa bits
378 __r._M_x -= __y * 0x1.921FB40000000p0;
379 __r._M_x -= __y * 0x1.4442D00000000p-24;
380 __r._M_x -= __y * 0x1.8469898CC5170p-48;
381 }
382 else
383 {
384 // x - y * pi/2, y may require all mantissa bits
385 const _V __y_hi = __zero_low_bits<26>(__y);
386 const _V __y_lo = __y - __y_hi;
387 const auto __pi_2_1 = 0x1.921FB50000000p0;
388 const auto __pi_2_2 = 0x1.110B460000000p-26;
389 const auto __pi_2_3 = 0x1.1A62630000000p-54;
390 const auto __pi_2_4 = 0x1.8A2E03707344Ap-81;
391 __r._M_x = __r._M_x - __y_hi * __pi_2_1
392 - max(__y_hi * __pi_2_2, __y_lo * __pi_2_1)
393 - min(__y_hi * __pi_2_2, __y_lo * __pi_2_1)
394 - max(__y_hi * __pi_2_3, __y_lo * __pi_2_2)
395 - min(__y_hi * __pi_2_3, __y_lo * __pi_2_2)
396 - max(__y * __pi_2_4, __y_lo * __pi_2_3)
397 - min(__y * __pi_2_4, __y_lo * __pi_2_3);
398 }
399 return __r;
400 }
401
402// }}}
403// __extract_exponent_as_int {{{
404template <typename _Tp, typename _Abi>
405 _GLIBCXX_SIMD_INTRINSIC
406 rebind_simd_t<int, simd<_Tp, _Abi>>
407 __extract_exponent_as_int(const simd<_Tp, _Abi>& __v)
408 {
409 using _Vp = simd<_Tp, _Abi>;
410 using _Up = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
411 using namespace std::experimental::__float_bitwise_operators;
412 using namespace std::experimental::__proposed;
413 const _Vp __exponent_mask
414 = __infinity_v<_Tp>; // 0x7f800000 or 0x7ff0000000000000
415 return static_simd_cast<rebind_simd_t<int, _Vp>>(
416 simd_bit_cast<rebind_simd_t<_Up, _Vp>>(__v & __exponent_mask)
417 >> (__digits_v<_Tp> - 1));
418 }
419
420// }}}
421// __impl_or_fallback {{{
422template <typename ImplFun, typename FallbackFun, typename... _Args>
423 _GLIBCXX_SIMD_INTRINSIC auto
424 __impl_or_fallback_dispatch(int, ImplFun&& __impl_fun, FallbackFun&&,
425 _Args&&... __args)
426 -> decltype(__impl_fun(static_cast<_Args&&>(__args)...))
427 { return __impl_fun(static_cast<_Args&&>(__args)...); }
428
429template <typename ImplFun, typename FallbackFun, typename... _Args,
430 typename = __detail::__odr_helper>
431 inline auto
432 __impl_or_fallback_dispatch(float, ImplFun&&, FallbackFun&& __fallback_fun,
433 _Args&&... __args)
434 -> decltype(__fallback_fun(static_cast<_Args&&>(__args)...))
435 { return __fallback_fun(static_cast<_Args&&>(__args)...); }
436
437template <typename... _Args>
438 _GLIBCXX_SIMD_INTRINSIC auto
439 __impl_or_fallback(_Args&&... __args)
440 {
441 return __impl_or_fallback_dispatch(int(), static_cast<_Args&&>(__args)...);
442 }
443//}}}
444
445// trigonometric functions {{{
446_GLIBCXX_SIMD_MATH_CALL_(acos)
447_GLIBCXX_SIMD_MATH_CALL_(asin)
448_GLIBCXX_SIMD_MATH_CALL_(atan)
449_GLIBCXX_SIMD_MATH_CALL2_(atan2, _Tp)
450
451/*
452 * algorithm for sine and cosine:
453 *
454 * The result can be calculated with sine or cosine depending on the π/4 section
455 * the input is in. sine ≈ __x + __x³ cosine ≈ 1 - __x²
456 *
457 * sine:
458 * Map -__x to __x and invert the output
459 * Extend precision of __x - n * π/4 by calculating
460 * ((__x - n * p1) - n * p2) - n * p3 (p1 + p2 + p3 = π/4)
461 *
462 * Calculate Taylor series with tuned coefficients.
463 * Fix sign.
464 */
465// cos{{{
466template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
467 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
468 cos(const simd<_Tp, _Abi>& __x)
469 {
470 using _V = simd<_Tp, _Abi>;
471 if constexpr (__is_scalar_abi<_Abi>() || __is_fixed_size_abi_v<_Abi>)
472 return {__private_init, _Abi::_SimdImpl::_S_cos(__data(__x))};
473 else
474 {
475 if constexpr (is_same_v<_Tp, float>)
476 if (_GLIBCXX_SIMD_IS_UNLIKELY(any_of(abs(__x) >= 393382)))
477 return static_simd_cast<_V>(
478 cos(static_simd_cast<rebind_simd_t<double, _V>>(__x)));
479
480 const auto __f = __fold_input(__x);
481 // quadrant | effect
482 // 0 | cosSeries, +
483 // 1 | sinSeries, -
484 // 2 | cosSeries, -
485 // 3 | sinSeries, +
486 using namespace std::experimental::__float_bitwise_operators;
487 const _V __sign_flip
488 = _V(-0.f) & static_simd_cast<_V>((1 + __f._M_quadrant) << 30);
489
490 const auto __need_cos = (__f._M_quadrant & 1) == 0;
491 if (_GLIBCXX_SIMD_IS_UNLIKELY(all_of(__need_cos)))
492 return __sign_flip ^ __cosSeries(__f._M_x);
493 else if (_GLIBCXX_SIMD_IS_UNLIKELY(none_of(__need_cos)))
494 return __sign_flip ^ __sinSeries(__f._M_x);
495 else // some_of(__need_cos)
496 {
497 _V __r = __sinSeries(__f._M_x);
498 where(__need_cos.__cvt(), __r) = __cosSeries(__f._M_x);
499 return __r ^ __sign_flip;
500 }
501 }
502 }
503
504template <typename _Tp>
505 _GLIBCXX_SIMD_ALWAYS_INLINE
506 enable_if_t<is_floating_point<_Tp>::value, simd<_Tp, simd_abi::scalar>>
507 cos(simd<_Tp, simd_abi::scalar> __x)
508 { return std::cos(__data(__x)); }
509
510//}}}
511// sin{{{
512template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
513 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
514 sin(const simd<_Tp, _Abi>& __x)
515 {
516 using _V = simd<_Tp, _Abi>;
517 if constexpr (__is_scalar_abi<_Abi>() || __is_fixed_size_abi_v<_Abi>)
518 return {__private_init, _Abi::_SimdImpl::_S_sin(__data(__x))};
519 else
520 {
521 if constexpr (is_same_v<_Tp, float>)
522 if (_GLIBCXX_SIMD_IS_UNLIKELY(any_of(abs(__x) >= 527449)))
523 return static_simd_cast<_V>(
524 sin(static_simd_cast<rebind_simd_t<double, _V>>(__x)));
525
526 const auto __f = __fold_input(__x);
527 // quadrant | effect
528 // 0 | sinSeries
529 // 1 | cosSeries
530 // 2 | sinSeries, sign flip
531 // 3 | cosSeries, sign flip
532 using namespace std::experimental::__float_bitwise_operators;
533 const auto __sign_flip
534 = (__x ^ static_simd_cast<_V>(1 - __f._M_quadrant)) & _V(_Tp(-0.));
535
536 const auto __need_sin = (__f._M_quadrant & 1) == 0;
537 if (_GLIBCXX_SIMD_IS_UNLIKELY(all_of(__need_sin)))
538 return __sign_flip ^ __sinSeries(__f._M_x);
539 else if (_GLIBCXX_SIMD_IS_UNLIKELY(none_of(__need_sin)))
540 return __sign_flip ^ __cosSeries(__f._M_x);
541 else // some_of(__need_sin)
542 {
543 _V __r = __cosSeries(__f._M_x);
544 where(__need_sin.__cvt(), __r) = __sinSeries(__f._M_x);
545 return __sign_flip ^ __r;
546 }
547 }
548 }
549
550template <typename _Tp>
551 _GLIBCXX_SIMD_ALWAYS_INLINE
552 enable_if_t<is_floating_point<_Tp>::value, simd<_Tp, simd_abi::scalar>>
553 sin(simd<_Tp, simd_abi::scalar> __x)
554 { return std::sin(__data(__x)); }
555
556//}}}
557_GLIBCXX_SIMD_MATH_CALL_(tan)
558_GLIBCXX_SIMD_MATH_CALL_(acosh)
559_GLIBCXX_SIMD_MATH_CALL_(asinh)
560_GLIBCXX_SIMD_MATH_CALL_(atanh)
561_GLIBCXX_SIMD_MATH_CALL_(cosh)
562_GLIBCXX_SIMD_MATH_CALL_(sinh)
563_GLIBCXX_SIMD_MATH_CALL_(tanh)
564// }}}
565// exponential functions {{{
566_GLIBCXX_SIMD_MATH_CALL_(exp)
567_GLIBCXX_SIMD_MATH_CALL_(exp2)
568_GLIBCXX_SIMD_MATH_CALL_(expm1)
569
570// }}}
571// frexp {{{
572#if _GLIBCXX_SIMD_X86INTRIN
573template <typename _Tp, size_t _Np>
574 _GLIBCXX_SIMD_INTRINSIC
575 _SimdWrapper<_Tp, _Np>
576 __getexp(_SimdWrapper<_Tp, _Np> __x)
577 {
578 if constexpr (__have_avx512vl && __is_sse_ps<_Tp, _Np>())
579 return __auto_bitcast(_mm_getexp_ps(__to_intrin(__x)));
580 else if constexpr (__have_avx512f && __is_sse_ps<_Tp, _Np>())
581 return __auto_bitcast(_mm512_getexp_ps(__auto_bitcast(__to_intrin(__x))));
582 else if constexpr (__have_avx512vl && __is_sse_pd<_Tp, _Np>())
583 return _mm_getexp_pd(__x);
584 else if constexpr (__have_avx512f && __is_sse_pd<_Tp, _Np>())
585 return __lo128(_mm512_getexp_pd(__auto_bitcast(__x)));
586 else if constexpr (__have_avx512vl && __is_avx_ps<_Tp, _Np>())
587 return _mm256_getexp_ps(__x);
588 else if constexpr (__have_avx512f && __is_avx_ps<_Tp, _Np>())
589 return __lo256(_mm512_getexp_ps(__auto_bitcast(__x)));
590 else if constexpr (__have_avx512vl && __is_avx_pd<_Tp, _Np>())
591 return _mm256_getexp_pd(__x);
592 else if constexpr (__have_avx512f && __is_avx_pd<_Tp, _Np>())
593 return __lo256(_mm512_getexp_pd(__auto_bitcast(__x)));
594 else if constexpr (__is_avx512_ps<_Tp, _Np>())
595 return _mm512_getexp_ps(__x);
596 else if constexpr (__is_avx512_pd<_Tp, _Np>())
597 return _mm512_getexp_pd(__x);
598 else
599 __assert_unreachable<_Tp>();
600 }
601
602template <typename _Tp, size_t _Np>
603 _GLIBCXX_SIMD_INTRINSIC
604 _SimdWrapper<_Tp, _Np>
605 __getmant_avx512(_SimdWrapper<_Tp, _Np> __x)
606 {
607 if constexpr (__have_avx512vl && __is_sse_ps<_Tp, _Np>())
608 return __auto_bitcast(_mm_getmant_ps(__to_intrin(__x), _MM_MANT_NORM_p5_1,
609 _MM_MANT_SIGN_src));
610 else if constexpr (__have_avx512f && __is_sse_ps<_Tp, _Np>())
611 return __auto_bitcast(_mm512_getmant_ps(__auto_bitcast(__to_intrin(__x)),
612 _MM_MANT_NORM_p5_1,
613 _MM_MANT_SIGN_src));
614 else if constexpr (__have_avx512vl && __is_sse_pd<_Tp, _Np>())
615 return _mm_getmant_pd(__x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
616 else if constexpr (__have_avx512f && __is_sse_pd<_Tp, _Np>())
617 return __lo128(_mm512_getmant_pd(__auto_bitcast(__x), _MM_MANT_NORM_p5_1,
618 _MM_MANT_SIGN_src));
619 else if constexpr (__have_avx512vl && __is_avx_ps<_Tp, _Np>())
620 return _mm256_getmant_ps(__x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
621 else if constexpr (__have_avx512f && __is_avx_ps<_Tp, _Np>())
622 return __lo256(_mm512_getmant_ps(__auto_bitcast(__x), _MM_MANT_NORM_p5_1,
623 _MM_MANT_SIGN_src));
624 else if constexpr (__have_avx512vl && __is_avx_pd<_Tp, _Np>())
625 return _mm256_getmant_pd(__x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
626 else if constexpr (__have_avx512f && __is_avx_pd<_Tp, _Np>())
627 return __lo256(_mm512_getmant_pd(__auto_bitcast(__x), _MM_MANT_NORM_p5_1,
628 _MM_MANT_SIGN_src));
629 else if constexpr (__is_avx512_ps<_Tp, _Np>())
630 return _mm512_getmant_ps(__x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
631 else if constexpr (__is_avx512_pd<_Tp, _Np>())
632 return _mm512_getmant_pd(__x, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_src);
633 else
634 __assert_unreachable<_Tp>();
635 }
636#endif // _GLIBCXX_SIMD_X86INTRIN
637
638/**
639 * splits @p __v into exponent and mantissa, the sign is kept with the mantissa
640 *
641 * The return value will be in the range [0.5, 1.0[
642 * The @p __e value will be an integer defining the power-of-two exponent
643 */
644template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
645 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
646 frexp(const simd<_Tp, _Abi>& __x, _Samesize<int, simd<_Tp, _Abi>>* __exp)
647 {
648 if constexpr (simd_size_v<_Tp, _Abi> == 1)
649 {
650 int __tmp;
651 const auto __r = std::frexp(__x[0], &__tmp);
652 (*__exp)[0] = __tmp;
653 return __r;
654 }
655 else if constexpr (__is_fixed_size_abi_v<_Abi>)
656 return {__private_init, _Abi::_SimdImpl::_S_frexp(__data(__x), __data(*__exp))};
657#if _GLIBCXX_SIMD_X86INTRIN
658 else if constexpr (__have_avx512f)
659 {
660 constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
661 constexpr size_t _NI = _Np < 4 ? 4 : _Np;
662 const auto __v = __data(__x);
663 const auto __isnonzero
664 = _Abi::_SimdImpl::_S_isnonzerovalue_mask(__v._M_data);
665 const _SimdWrapper<int, _NI> __exp_plus1
666 = 1 + __convert<_SimdWrapper<int, _NI>>(__getexp(__v))._M_data;
667 const _SimdWrapper<int, _Np> __e = __wrapper_bitcast<int, _Np>(
668 _Abi::_CommonImpl::_S_blend(_SimdWrapper<bool, _NI>(__isnonzero),
669 _SimdWrapper<int, _NI>(), __exp_plus1));
670 simd_abi::deduce_t<int, _Np>::_CommonImpl::_S_store(__e, __exp);
671 return {__private_init,
672 _Abi::_CommonImpl::_S_blend(_SimdWrapper<bool, _Np>(
673 __isnonzero),
674 __v, __getmant_avx512(__v))};
675 }
676#endif // _GLIBCXX_SIMD_X86INTRIN
677 else
678 {
679 // fallback implementation
680 static_assert(sizeof(_Tp) == 4 || sizeof(_Tp) == 8);
681 using _V = simd<_Tp, _Abi>;
682 using _IV = rebind_simd_t<int, _V>;
683 using namespace std::experimental::__proposed;
684 using namespace std::experimental::__float_bitwise_operators;
685
686 constexpr int __exp_adjust = sizeof(_Tp) == 4 ? 0x7e : 0x3fe;
687 constexpr int __exp_offset = sizeof(_Tp) == 4 ? 0x70 : 0x200;
688 constexpr _Tp __subnorm_scale = sizeof(_Tp) == 4 ? 0x1p112 : 0x1p512;
689 _GLIBCXX_SIMD_USE_CONSTEXPR_API _V __exponent_mask
690 = __infinity_v<_Tp>; // 0x7f800000 or 0x7ff0000000000000
691 _GLIBCXX_SIMD_USE_CONSTEXPR_API _V __p5_1_exponent
692 = -(2 - __epsilon_v<_Tp>) / 2; // 0xbf7fffff or 0xbfefffffffffffff
693
694 _V __mant = __p5_1_exponent & (__exponent_mask | __x); // +/-[.5, 1)
695 const _IV __exponent_bits = __extract_exponent_as_int(__x);
696 if (_GLIBCXX_SIMD_IS_LIKELY(all_of(isnormal(__x))))
697 {
698 *__exp
699 = simd_cast<_Samesize<int, _V>>(__exponent_bits - __exp_adjust);
700 return __mant;
701 }
702
703#if __FINITE_MATH_ONLY__
704 // at least one element of __x is 0 or subnormal, the rest is normal
705 // (inf and NaN are excluded by -ffinite-math-only)
706 const auto __iszero_inf_nan = __x == 0;
707#else
708 using _Ip = __int_for_sizeof_t<_Tp>;
709 const auto __as_int = simd_bit_cast<rebind_simd_t<_Ip, _V>>(abs(__x));
710 const auto __inf = simd_bit_cast<rebind_simd_t<_Ip, _V>>(_V(__infinity_v<_Tp>));
711 const auto __iszero_inf_nan = static_simd_cast<typename _V::mask_type>(
712 __as_int == 0 || __as_int >= __inf);
713#endif
714
715 const _V __scaled_subnormal = __x * __subnorm_scale;
716 const _V __mant_subnormal
717 = __p5_1_exponent & (__exponent_mask | __scaled_subnormal);
718 where(!isnormal(__x), __mant) = __mant_subnormal;
719 where(__iszero_inf_nan, __mant) = __x;
720 _IV __e = __extract_exponent_as_int(__scaled_subnormal);
721 using _MaskType =
722 typename conditional_t<sizeof(typename _V::value_type) == sizeof(int),
723 _V, _IV>::mask_type;
724 const _MaskType __value_isnormal = isnormal(__x).__cvt();
725 where(__value_isnormal.__cvt(), __e) = __exponent_bits;
726 static_assert(sizeof(_IV) == sizeof(__value_isnormal));
727 const _IV __offset
728 = (simd_bit_cast<_IV>(__value_isnormal) & _IV(__exp_adjust))
729 | (simd_bit_cast<_IV>(static_simd_cast<_MaskType>(__exponent_bits == 0)
730 & static_simd_cast<_MaskType>(__x != 0))
731 & _IV(__exp_adjust + __exp_offset));
732 *__exp = simd_cast<_Samesize<int, _V>>(__e - __offset);
733 return __mant;
734 }
735 }
736
737// }}}
738_GLIBCXX_SIMD_MATH_CALL2_(ldexp, int)
739_GLIBCXX_SIMD_MATH_CALL_(ilogb)
740
741// logarithms {{{
742_GLIBCXX_SIMD_MATH_CALL_(log)
743_GLIBCXX_SIMD_MATH_CALL_(log10)
744_GLIBCXX_SIMD_MATH_CALL_(log1p)
745_GLIBCXX_SIMD_MATH_CALL_(log2)
746
747//}}}
748// logb{{{
749template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
750 enable_if_t<is_floating_point<_Tp>::value, simd<_Tp, _Abi>>
751 logb(const simd<_Tp, _Abi>& __x)
752 {
753 constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
754 if constexpr (_Np == 1)
755 return std::logb(__x[0]);
756 else if constexpr (__is_fixed_size_abi_v<_Abi>)
757 return {__private_init, _Abi::_SimdImpl::_S_logb(__data(__x))};
758#if _GLIBCXX_SIMD_X86INTRIN // {{{
759 else if constexpr (__have_avx512vl && __is_sse_ps<_Tp, _Np>())
760 return {__private_init,
761 __auto_bitcast(_mm_getexp_ps(__to_intrin(__as_vector(__x))))};
762 else if constexpr (__have_avx512vl && __is_sse_pd<_Tp, _Np>())
763 return {__private_init, _mm_getexp_pd(__data(__x))};
764 else if constexpr (__have_avx512vl && __is_avx_ps<_Tp, _Np>())
765 return {__private_init, _mm256_getexp_ps(__data(__x))};
766 else if constexpr (__have_avx512vl && __is_avx_pd<_Tp, _Np>())
767 return {__private_init, _mm256_getexp_pd(__data(__x))};
768 else if constexpr (__have_avx512f && __is_avx_ps<_Tp, _Np>())
769 return {__private_init,
770 __lo256(_mm512_getexp_ps(__auto_bitcast(__data(__x))))};
771 else if constexpr (__have_avx512f && __is_avx_pd<_Tp, _Np>())
772 return {__private_init,
773 __lo256(_mm512_getexp_pd(__auto_bitcast(__data(__x))))};
774 else if constexpr (__is_avx512_ps<_Tp, _Np>())
775 return {__private_init, _mm512_getexp_ps(__data(__x))};
776 else if constexpr (__is_avx512_pd<_Tp, _Np>())
777 return {__private_init, _mm512_getexp_pd(__data(__x))};
778#endif // _GLIBCXX_SIMD_X86INTRIN }}}
779 else
780 {
781 using _V = simd<_Tp, _Abi>;
782 using namespace std::experimental::__proposed;
783 auto __is_normal = isnormal(__x);
784
785 // work on abs(__x) to reflect the return value on Linux for negative
786 // inputs (domain-error => implementation-defined value is returned)
787 const _V abs_x = abs(__x);
788
789 // __exponent(__x) returns the exponent value (bias removed) as
790 // simd<_Up> with integral _Up
791 auto&& __exponent = [](const _V& __v) {
792 using namespace std::experimental::__proposed;
793 using _IV = rebind_simd_t<
794 conditional_t<sizeof(_Tp) == sizeof(_LLong), _LLong, int>, _V>;
795 return (simd_bit_cast<_IV>(__v) >> (__digits_v<_Tp> - 1))
796 - (__max_exponent_v<_Tp> - 1);
797 };
798 _V __r = static_simd_cast<_V>(__exponent(abs_x));
799 if (_GLIBCXX_SIMD_IS_LIKELY(all_of(__is_normal)))
800 // without corner cases (nan, inf, subnormal, zero) we have our
801 // answer:
802 return __r;
803 const auto __is_zero = __x == 0;
804 const auto __is_nan = isnan(__x);
805 const auto __is_inf = isinf(__x);
806 where(__is_zero, __r) = -__infinity_v<_Tp>;
807 where(__is_nan, __r) = __x;
808 where(__is_inf, __r) = __infinity_v<_Tp>;
809 __is_normal |= __is_zero || __is_nan || __is_inf;
810 if (all_of(__is_normal))
811 // at this point everything but subnormals is handled
812 return __r;
813 // subnormals repeat the exponent extraction after multiplication of the
814 // input with __a floating point value that has 112 (0x70) in its exponent
815 // (not too big for sp and large enough for dp)
816 const _V __scaled = abs_x * _Tp(0x1p112);
817 _V __scaled_exp = static_simd_cast<_V>(__exponent(__scaled) - 112);
818 where(__is_normal, __scaled_exp) = __r;
819 return __scaled_exp;
820 }
821 }
822
823//}}}
824template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
825 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
826 modf(const simd<_Tp, _Abi>& __x, simd<_Tp, _Abi>* __iptr)
827 {
828 if constexpr (simd_size_v<_Tp, _Abi> == 1)
829 {
830 _Tp __tmp;
831 _Tp __r = std::modf(__x[0], &__tmp);
832 __iptr[0] = __tmp;
833 return __r;
834 }
835 else
836 {
837 const auto __integral = trunc(__x);
838 *__iptr = __integral;
839 auto __r = __x - __integral;
840#if !__FINITE_MATH_ONLY__
841 where(isinf(__x), __r) = _Tp();
842#endif
843 return copysign(__r, __x);
844 }
845 }
846
847_GLIBCXX_SIMD_MATH_CALL2_(scalbn, int)
848_GLIBCXX_SIMD_MATH_CALL2_(scalbln, long)
849
850_GLIBCXX_SIMD_MATH_CALL_(cbrt)
851
852_GLIBCXX_SIMD_MATH_CALL_(abs)
853_GLIBCXX_SIMD_MATH_CALL_(fabs)
854
855// [parallel.simd.math] only asks for is_floating_point_v<_Tp> and forgot to
856// allow signed integral _Tp
857template <typename _Tp, typename _Abi>
858 _GLIBCXX_SIMD_ALWAYS_INLINE
859 enable_if_t<!is_floating_point_v<_Tp> && is_signed_v<_Tp>, simd<_Tp, _Abi>>
860 abs(const simd<_Tp, _Abi>& __x)
861 { return {__private_init, _Abi::_SimdImpl::_S_abs(__data(__x))}; }
862
863#define _GLIBCXX_SIMD_CVTING2(_NAME) \
864template <typename _Tp, typename _Abi> \
865 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
866 const simd<_Tp, _Abi>& __x, const __type_identity_t<simd<_Tp, _Abi>>& __y) \
867 { \
868 return _NAME(__x, __y); \
869 } \
870 \
871template <typename _Tp, typename _Abi> \
872 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
873 const __type_identity_t<simd<_Tp, _Abi>>& __x, const simd<_Tp, _Abi>& __y) \
874 { \
875 return _NAME(__x, __y); \
876 }
877
878#define _GLIBCXX_SIMD_CVTING3(_NAME) \
879template <typename _Tp, typename _Abi> \
880 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
881 const __type_identity_t<simd<_Tp, _Abi>>& __x, const simd<_Tp, _Abi>& __y, \
882 const simd<_Tp, _Abi>& __z) \
883 { \
884 return _NAME(__x, __y, __z); \
885 } \
886 \
887template <typename _Tp, typename _Abi> \
888 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
889 const simd<_Tp, _Abi>& __x, const __type_identity_t<simd<_Tp, _Abi>>& __y, \
890 const simd<_Tp, _Abi>& __z) \
891 { \
892 return _NAME(__x, __y, __z); \
893 } \
894 \
895template <typename _Tp, typename _Abi> \
896 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
897 const simd<_Tp, _Abi>& __x, const simd<_Tp, _Abi>& __y, \
898 const __type_identity_t<simd<_Tp, _Abi>>& __z) \
899 { \
900 return _NAME(__x, __y, __z); \
901 } \
902 \
903template <typename _Tp, typename _Abi> \
904 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
905 const simd<_Tp, _Abi>& __x, const __type_identity_t<simd<_Tp, _Abi>>& __y, \
906 const __type_identity_t<simd<_Tp, _Abi>>& __z) \
907 { \
908 return _NAME(__x, __y, __z); \
909 } \
910 \
911template <typename _Tp, typename _Abi> \
912 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
913 const __type_identity_t<simd<_Tp, _Abi>>& __x, const simd<_Tp, _Abi>& __y, \
914 const __type_identity_t<simd<_Tp, _Abi>>& __z) \
915 { \
916 return _NAME(__x, __y, __z); \
917 } \
918 \
919template <typename _Tp, typename _Abi> \
920 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi> _NAME( \
921 const __type_identity_t<simd<_Tp, _Abi>>& __x, \
922 const __type_identity_t<simd<_Tp, _Abi>>& __y, const simd<_Tp, _Abi>& __z) \
923 { \
924 return _NAME(__x, __y, __z); \
925 }
926
927template <typename _R, typename _ToApply, typename _Tp, typename... _Tps>
928 _GLIBCXX_SIMD_INTRINSIC _R
929 __fixed_size_apply(_ToApply&& __apply, const _Tp& __arg0,
930 const _Tps&... __args)
931 {
932 return {__private_init,
933 __data(__arg0)._M_apply_per_chunk(
934 [&](auto __impl, const auto&... __inner) {
935 using _V = typename decltype(__impl)::simd_type;
936 return __data(__apply(_V(__private_init, __inner)...));
937 },
938 __data(__args)...)};
939 }
940
941template <typename _VV, typename = __detail::__odr_helper>
942 __remove_cvref_t<_VV>
943 __hypot(_VV __x, _VV __y)
944 {
945 using _V = __remove_cvref_t<_VV>;
946 using _Tp = typename _V::value_type;
947 if constexpr (_V::size() == 1)
948 return std::hypot(_Tp(__x[0]), _Tp(__y[0]));
949 else if constexpr (__is_fixed_size_abi_v<typename _V::abi_type>)
950 {
951 return __fixed_size_apply<_V>([](auto __a,
952 auto __b) { return hypot(__a, __b); },
953 __x, __y);
954 }
955 else
956 {
957 // A simple solution for _Tp == float would be to cast to double and
958 // simply calculate sqrt(x²+y²) as it can't over-/underflow anymore with
959 // dp. It still needs the Annex F fixups though and isn't faster on
960 // Skylake-AVX512 (not even for SSE and AVX vectors, and really bad for
961 // AVX-512).
962 using namespace __float_bitwise_operators;
963 using namespace __proposed;
964 _V __absx = abs(__x); // no error
965 _V __absy = abs(__y); // no error
966 _V __hi = max(__absx, __absy); // no error
967 _V __lo = min(__absy, __absx); // no error
968
969 // round __hi down to the next power-of-2:
970 _GLIBCXX_SIMD_USE_CONSTEXPR_API _V __inf(__infinity_v<_Tp>);
971
972#ifndef __FAST_MATH__
973 if constexpr (__have_neon && !__have_neon_a32)
974 { // With ARMv7 NEON, we have no subnormals and must use slightly
975 // different strategy
976 const _V __hi_exp = __hi & __inf;
977 _V __scale_back = __hi_exp;
978 // For large exponents (max & max/2) the inversion comes too close
979 // to subnormals. Subtract 3 from the exponent:
980 where(__hi_exp > 1, __scale_back) = __hi_exp * _Tp(0.125);
981 // Invert and adjust for the off-by-one error of inversion via xor:
982 const _V __scale = (__scale_back ^ __inf) * _Tp(.5);
983 const _V __h1 = __hi * __scale;
984 const _V __l1 = __lo * __scale;
985 _V __r = __scale_back * sqrt(__h1 * __h1 + __l1 * __l1);
986 // Fix up hypot(0, 0) to not be NaN:
987 where(__hi == 0, __r) = 0;
988 return __r;
989 }
990#endif
991
992#ifdef __FAST_MATH__
993 // With fast-math, ignore precision of subnormals and inputs from
994 // __finite_max_v/2 to __finite_max_v. This removes all
995 // branching/masking.
996 if constexpr (true)
997#else
998 if (_GLIBCXX_SIMD_IS_LIKELY(all_of(isnormal(__x))
999 && all_of(isnormal(__y))))
1000#endif
1001 {
1002 const _V __hi_exp = __hi & __inf;
1003 //((__hi + __hi) & __inf) ^ __inf almost works for computing
1004 //__scale,
1005 // except when (__hi + __hi) & __inf == __inf, in which case __scale
1006 // becomes 0 (should be min/2 instead) and thus loses the
1007 // information from __lo.
1008#ifdef __FAST_MATH__
1009 using _Ip = __int_for_sizeof_t<_Tp>;
1010 using _IV = rebind_simd_t<_Ip, _V>;
1011 const auto __as_int = simd_bit_cast<_IV>(__hi_exp);
1012 const _V __scale
1013 = simd_bit_cast<_V>(2 * __bit_cast<_Ip>(_Tp(1)) - __as_int);
1014#else
1015 const _V __scale = (__hi_exp ^ __inf) * _Tp(.5);
1016#endif
1017 _GLIBCXX_SIMD_USE_CONSTEXPR_API _V __mant_mask
1018 = __norm_min_v<_Tp> - __denorm_min_v<_Tp>;
1019 const _V __h1 = (__hi & __mant_mask) | _V(1);
1020 const _V __l1 = __lo * __scale;
1021 return __hi_exp * sqrt(__h1 * __h1 + __l1 * __l1);
1022 }
1023 else
1024 {
1025 // slower path to support subnormals
1026 // if __hi is subnormal, avoid scaling by inf & final mul by 0
1027 // (which yields NaN) by using min()
1028 _V __scale = _V(1 / __norm_min_v<_Tp>);
1029 // invert exponent w/o error and w/o using the slow divider unit:
1030 // xor inverts the exponent but off by 1. Multiplication with .5
1031 // adjusts for the discrepancy.
1032 where(__hi >= __norm_min_v<_Tp>, __scale)
1033 = ((__hi & __inf) ^ __inf) * _Tp(.5);
1034 // adjust final exponent for subnormal inputs
1035 _V __hi_exp = __norm_min_v<_Tp>;
1036 where(__hi >= __norm_min_v<_Tp>, __hi_exp)
1037 = __hi & __inf; // no error
1038 _V __h1 = __hi * __scale; // no error
1039 _V __l1 = __lo * __scale; // no error
1040
1041 // sqrt(x²+y²) = e*sqrt((x/e)²+(y/e)²):
1042 // this ensures no overflow in the argument to sqrt
1043 _V __r = __hi_exp * sqrt(__h1 * __h1 + __l1 * __l1);
1044#ifdef __STDC_IEC_559__
1045 // fixup for Annex F requirements
1046 // the naive fixup goes like this:
1047 //
1048 // where(__l1 == 0, __r) = __hi;
1049 // where(isunordered(__x, __y), __r) = __quiet_NaN_v<_Tp>;
1050 // where(isinf(__absx) || isinf(__absy), __r) = __inf;
1051 //
1052 // The fixup can be prepared in parallel with the sqrt, requiring a
1053 // single blend step after hi_exp * sqrt, reducing latency and
1054 // throughput:
1055 _V __fixup = __hi; // __lo == 0
1056 where(isunordered(__x, __y), __fixup) = __quiet_NaN_v<_Tp>;
1057 where(isinf(__absx) || isinf(__absy), __fixup) = __inf;
1058 where(!(__lo == 0 || isunordered(__x, __y)
1059 || (isinf(__absx) || isinf(__absy))),
1060 __fixup)
1061 = __r;
1062 __r = __fixup;
1063#endif
1064 return __r;
1065 }
1066 }
1067 }
1068
1069template <typename _Tp, typename _Abi>
1070 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi>
1071 hypot(const simd<_Tp, _Abi>& __x, const simd<_Tp, _Abi>& __y)
1072 {
1073 return __hypot<conditional_t<__is_fixed_size_abi_v<_Abi>,
1074 const simd<_Tp, _Abi>&, simd<_Tp, _Abi>>>(__x,
1075 __y);
1076 }
1077
1078_GLIBCXX_SIMD_CVTING2(hypot)
1079
1080 template <typename _VV, typename = __detail::__odr_helper>
1081 __remove_cvref_t<_VV>
1082 __hypot(_VV __x, _VV __y, _VV __z)
1083 {
1084 using _V = __remove_cvref_t<_VV>;
1085 using _Abi = typename _V::abi_type;
1086 using _Tp = typename _V::value_type;
1087 /* FIXME: enable after PR77776 is resolved
1088 if constexpr (_V::size() == 1)
1089 return std::hypot(_Tp(__x[0]), _Tp(__y[0]), _Tp(__z[0]));
1090 else
1091 */
1092 if constexpr (__is_fixed_size_abi_v<_Abi> && _V::size() > 1)
1093 {
1094 return __fixed_size_apply<simd<_Tp, _Abi>>(
1095 [](auto __a, auto __b, auto __c) { return hypot(__a, __b, __c); },
1096 __x, __y, __z);
1097 }
1098 else
1099 {
1100 using namespace __float_bitwise_operators;
1101 using namespace __proposed;
1102 const _V __absx = abs(__x); // no error
1103 const _V __absy = abs(__y); // no error
1104 const _V __absz = abs(__z); // no error
1105 _V __hi = max(max(__absx, __absy), __absz); // no error
1106 _V __l0 = min(__absz, max(__absx, __absy)); // no error
1107 _V __l1 = min(__absy, __absx); // no error
1108 if constexpr (__digits_v<_Tp> == 64 && __max_exponent_v<_Tp> == 0x4000
1109 && __min_exponent_v<_Tp> == -0x3FFD && _V::size() == 1)
1110 { // Seems like x87 fp80, where bit 63 is always 1 unless subnormal or
1111 // NaN. In this case the bit-tricks don't work, they require IEC559
1112 // binary32 or binary64 format.
1113#ifdef __STDC_IEC_559__
1114 // fixup for Annex F requirements
1115 if (isinf(__absx[0]) || isinf(__absy[0]) || isinf(__absz[0]))
1116 return __infinity_v<_Tp>;
1117 else if (isunordered(__absx[0], __absy[0] + __absz[0]))
1118 return __quiet_NaN_v<_Tp>;
1119 else if (__l0[0] == 0 && __l1[0] == 0)
1120 return __hi;
1121#endif
1122 _V __hi_exp = __hi;
1123 const _ULLong __tmp = 0x8000'0000'0000'0000ull;
1124 __builtin_memcpy(&__data(__hi_exp), &__tmp, 8);
1125 const _V __scale = 1 / __hi_exp;
1126 __hi *= __scale;
1127 __l0 *= __scale;
1128 __l1 *= __scale;
1129 return __hi_exp * sqrt((__l0 * __l0 + __l1 * __l1) + __hi * __hi);
1130 }
1131 else
1132 {
1133 // round __hi down to the next power-of-2:
1134 _GLIBCXX_SIMD_USE_CONSTEXPR_API _V __inf(__infinity_v<_Tp>);
1135
1136#ifndef __FAST_MATH__
1137 if constexpr (_V::size() > 1 && __have_neon && !__have_neon_a32)
1138 { // With ARMv7 NEON, we have no subnormals and must use slightly
1139 // different strategy
1140 const _V __hi_exp = __hi & __inf;
1141 _V __scale_back = __hi_exp;
1142 // For large exponents (max & max/2) the inversion comes too
1143 // close to subnormals. Subtract 3 from the exponent:
1144 where(__hi_exp > 1, __scale_back) = __hi_exp * _Tp(0.125);
1145 // Invert and adjust for the off-by-one error of inversion via
1146 // xor:
1147 const _V __scale = (__scale_back ^ __inf) * _Tp(.5);
1148 const _V __h1 = __hi * __scale;
1149 __l0 *= __scale;
1150 __l1 *= __scale;
1151 _V __lo = __l0 * __l0
1152 + __l1 * __l1; // add the two smaller values first
1153 asm("" : "+m"(__lo));
1154 _V __r = __scale_back * sqrt(__h1 * __h1 + __lo);
1155 // Fix up hypot(0, 0, 0) to not be NaN:
1156 where(__hi == 0, __r) = 0;
1157 return __r;
1158 }
1159#endif
1160
1161#ifdef __FAST_MATH__
1162 // With fast-math, ignore precision of subnormals and inputs from
1163 // __finite_max_v/2 to __finite_max_v. This removes all
1164 // branching/masking.
1165 if constexpr (true)
1166#else
1167 if (_GLIBCXX_SIMD_IS_LIKELY(all_of(isnormal(__x))
1168 && all_of(isnormal(__y))
1169 && all_of(isnormal(__z))))
1170#endif
1171 {
1172 const _V __hi_exp = __hi & __inf;
1173 //((__hi + __hi) & __inf) ^ __inf almost works for computing
1174 //__scale, except when (__hi + __hi) & __inf == __inf, in which
1175 // case __scale
1176 // becomes 0 (should be min/2 instead) and thus loses the
1177 // information from __lo.
1178#ifdef __FAST_MATH__
1179 using _Ip = __int_for_sizeof_t<_Tp>;
1180 using _IV = rebind_simd_t<_Ip, _V>;
1181 const auto __as_int = simd_bit_cast<_IV>(__hi_exp);
1182 const _V __scale
1183 = simd_bit_cast<_V>(2 * __bit_cast<_Ip>(_Tp(1)) - __as_int);
1184#else
1185 const _V __scale = (__hi_exp ^ __inf) * _Tp(.5);
1186#endif
1187 constexpr _Tp __mant_mask
1188 = __norm_min_v<_Tp> - __denorm_min_v<_Tp>;
1189 const _V __h1 = (__hi & _V(__mant_mask)) | _V(1);
1190 __l0 *= __scale;
1191 __l1 *= __scale;
1192 const _V __lo
1193 = __l0 * __l0
1194 + __l1 * __l1; // add the two smaller values first
1195 return __hi_exp * sqrt(__lo + __h1 * __h1);
1196 }
1197 else
1198 {
1199 // slower path to support subnormals
1200 // if __hi is subnormal, avoid scaling by inf & final mul by 0
1201 // (which yields NaN) by using min()
1202 _V __scale = _V(1 / __norm_min_v<_Tp>);
1203 // invert exponent w/o error and w/o using the slow divider
1204 // unit: xor inverts the exponent but off by 1. Multiplication
1205 // with .5 adjusts for the discrepancy.
1206 where(__hi >= __norm_min_v<_Tp>, __scale)
1207 = ((__hi & __inf) ^ __inf) * _Tp(.5);
1208 // adjust final exponent for subnormal inputs
1209 _V __hi_exp = __norm_min_v<_Tp>;
1210 where(__hi >= __norm_min_v<_Tp>, __hi_exp)
1211 = __hi & __inf; // no error
1212 _V __h1 = __hi * __scale; // no error
1213 __l0 *= __scale; // no error
1214 __l1 *= __scale; // no error
1215 _V __lo = __l0 * __l0
1216 + __l1 * __l1; // add the two smaller values first
1217 _V __r = __hi_exp * sqrt(__lo + __h1 * __h1);
1218#ifdef __STDC_IEC_559__
1219 // fixup for Annex F requirements
1220 _V __fixup = __hi; // __lo == 0
1221 // where(__lo == 0, __fixup) = __hi;
1222 where(isunordered(__x, __y + __z), __fixup)
1223 = __quiet_NaN_v<_Tp>;
1224 where(isinf(__absx) || isinf(__absy) || isinf(__absz), __fixup)
1225 = __inf;
1226 // Instead of __lo == 0, the following could depend on __h1² ==
1227 // __h1² + __lo (i.e. __hi is so much larger than the other two
1228 // inputs that the result is exactly __hi). While this may
1229 // improve precision, it is likely to reduce efficiency if the
1230 // ISA has FMAs (because __h1² + __lo is an FMA, but the
1231 // intermediate
1232 // __h1² must be kept)
1233 where(!(__lo == 0 || isunordered(__x, __y + __z)
1234 || isinf(__absx) || isinf(__absy) || isinf(__absz)),
1235 __fixup)
1236 = __r;
1237 __r = __fixup;
1238#endif
1239 return __r;
1240 }
1241 }
1242 }
1243 }
1244
1245 template <typename _Tp, typename _Abi>
1246 _GLIBCXX_SIMD_INTRINSIC simd<_Tp, _Abi>
1247 hypot(const simd<_Tp, _Abi>& __x, const simd<_Tp, _Abi>& __y,
1248 const simd<_Tp, _Abi>& __z)
1249 {
1250 return __hypot<conditional_t<__is_fixed_size_abi_v<_Abi>,
1251 const simd<_Tp, _Abi>&, simd<_Tp, _Abi>>>(__x,
1252 __y,
1253 __z);
1254 }
1255
1256_GLIBCXX_SIMD_CVTING3(hypot)
1257
1258_GLIBCXX_SIMD_MATH_CALL2_(pow, _Tp)
1259
1260_GLIBCXX_SIMD_MATH_CALL_(sqrt)
1261_GLIBCXX_SIMD_MATH_CALL_(erf)
1262_GLIBCXX_SIMD_MATH_CALL_(erfc)
1263_GLIBCXX_SIMD_MATH_CALL_(lgamma)
1264_GLIBCXX_SIMD_MATH_CALL_(tgamma)
1265_GLIBCXX_SIMD_MATH_CALL_(ceil)
1266_GLIBCXX_SIMD_MATH_CALL_(floor)
1267_GLIBCXX_SIMD_MATH_CALL_(nearbyint)
1268_GLIBCXX_SIMD_MATH_CALL_(rint)
1269_GLIBCXX_SIMD_MATH_CALL_(lrint)
1270_GLIBCXX_SIMD_MATH_CALL_(llrint)
1271
1272_GLIBCXX_SIMD_MATH_CALL_(round)
1273_GLIBCXX_SIMD_MATH_CALL_(lround)
1274_GLIBCXX_SIMD_MATH_CALL_(llround)
1275
1276_GLIBCXX_SIMD_MATH_CALL_(trunc)
1277
1278_GLIBCXX_SIMD_MATH_CALL2_(fmod, _Tp)
1279_GLIBCXX_SIMD_MATH_CALL2_(remainder, _Tp)
1280_GLIBCXX_SIMD_MATH_CALL3_(remquo, _Tp, int*)
1281
1282template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
1283 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
1284 copysign(const simd<_Tp, _Abi>& __x, const simd<_Tp, _Abi>& __y)
1285 {
1286 if constexpr (simd_size_v<_Tp, _Abi> == 1)
1287 return std::copysign(__x[0], __y[0]);
1288 else if constexpr (__is_fixed_size_abi_v<_Abi>)
1289 return {__private_init, _Abi::_SimdImpl::_S_copysign(__data(__x), __data(__y))};
1290 else
1291 {
1292 using _V = simd<_Tp, _Abi>;
1293 using namespace std::experimental::__float_bitwise_operators;
1294 _GLIBCXX_SIMD_USE_CONSTEXPR_API auto __signmask = _V(1) ^ _V(-1);
1295 return (__x & ~__signmask) | (__y & __signmask);
1296 }
1297 }
1298
1299_GLIBCXX_SIMD_MATH_CALL2_(nextafter, _Tp)
1300// not covered in [parallel.simd.math]:
1301// _GLIBCXX_SIMD_MATH_CALL2_(nexttoward, long double)
1302_GLIBCXX_SIMD_MATH_CALL2_(fdim, _Tp)
1303_GLIBCXX_SIMD_MATH_CALL2_(fmax, _Tp)
1304_GLIBCXX_SIMD_MATH_CALL2_(fmin, _Tp)
1305
1306_GLIBCXX_SIMD_MATH_CALL3_(fma, _Tp, _Tp)
1307_GLIBCXX_SIMD_MATH_CALL_(fpclassify)
1308_GLIBCXX_SIMD_MATH_CALL_(isfinite)
1309
1310// isnan and isinf require special treatment because old glibc may declare
1311// `int isinf(double)`.
1312template <typename _Tp, typename _Abi, typename...,
1313 typename _R = _Math_return_type_t<bool, _Tp, _Abi>>
1314 _GLIBCXX_SIMD_ALWAYS_INLINE
1315 enable_if_t<is_floating_point_v<_Tp>, _R>
1316 isinf(simd<_Tp, _Abi> __x)
1317 { return {__private_init, _Abi::_SimdImpl::_S_isinf(__data(__x))}; }
1318
1319template <typename _Tp, typename _Abi, typename...,
1320 typename _R = _Math_return_type_t<bool, _Tp, _Abi>>
1321 _GLIBCXX_SIMD_ALWAYS_INLINE
1322 enable_if_t<is_floating_point_v<_Tp>, _R>
1323 isnan(simd<_Tp, _Abi> __x)
1324 { return {__private_init, _Abi::_SimdImpl::_S_isnan(__data(__x))}; }
1325
1326_GLIBCXX_SIMD_MATH_CALL_(isnormal)
1327
1328template <typename..., typename _Tp, typename _Abi>
1329 _GLIBCXX_SIMD_ALWAYS_INLINE
1330 simd_mask<_Tp, _Abi>
1331 signbit(simd<_Tp, _Abi> __x)
1332 {
1333 if constexpr (is_integral_v<_Tp>)
1334 {
1335 if constexpr (is_unsigned_v<_Tp>)
1336 return simd_mask<_Tp, _Abi>{}; // false
1337 else
1338 return __x < 0;
1339 }
1340 else
1341 return {__private_init, _Abi::_SimdImpl::_S_signbit(__data(__x))};
1342 }
1343
1344_GLIBCXX_SIMD_MATH_CALL2_(isgreater, _Tp)
1345_GLIBCXX_SIMD_MATH_CALL2_(isgreaterequal, _Tp)
1346_GLIBCXX_SIMD_MATH_CALL2_(isless, _Tp)
1347_GLIBCXX_SIMD_MATH_CALL2_(islessequal, _Tp)
1348_GLIBCXX_SIMD_MATH_CALL2_(islessgreater, _Tp)
1349_GLIBCXX_SIMD_MATH_CALL2_(isunordered, _Tp)
1350
1351/* not covered in [parallel.simd.math]
1352template <typename _Abi> __doublev<_Abi> nan(const char* tagp);
1353template <typename _Abi> __floatv<_Abi> nanf(const char* tagp);
1354template <typename _Abi> __ldoublev<_Abi> nanl(const char* tagp);
1355
1356template <typename _V> struct simd_div_t {
1357 _V quot, rem;
1358};
1359
1360template <typename _Abi>
1361simd_div_t<_SCharv<_Abi>> div(_SCharv<_Abi> numer,
1362 _SCharv<_Abi> denom);
1363template <typename _Abi>
1364simd_div_t<__shortv<_Abi>> div(__shortv<_Abi> numer,
1365 __shortv<_Abi> denom);
1366template <typename _Abi>
1367simd_div_t<__intv<_Abi>> div(__intv<_Abi> numer, __intv<_Abi> denom);
1368template <typename _Abi>
1369simd_div_t<__longv<_Abi>> div(__longv<_Abi> numer,
1370 __longv<_Abi> denom);
1371template <typename _Abi>
1372simd_div_t<__llongv<_Abi>> div(__llongv<_Abi> numer,
1373 __llongv<_Abi> denom);
1374*/
1375
1376// special math {{{
1377template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
1378 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
1379 assoc_laguerre(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
1380 const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __m,
1381 const simd<_Tp, _Abi>& __x)
1382 {
1383 return simd<_Tp, _Abi>([&](auto __i) {
1384 return std::assoc_laguerre(__n[__i], __m[__i], __x[__i]);
1385 });
1386 }
1387
1388template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
1389 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
1390 assoc_legendre(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
1391 const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __m,
1392 const simd<_Tp, _Abi>& __x)
1393 {
1394 return simd<_Tp, _Abi>([&](auto __i) {
1395 return std::assoc_legendre(__n[__i], __m[__i], __x[__i]);
1396 });
1397 }
1398
1399_GLIBCXX_SIMD_MATH_CALL2_(beta, _Tp)
1400_GLIBCXX_SIMD_MATH_CALL_(comp_ellint_1)
1401_GLIBCXX_SIMD_MATH_CALL_(comp_ellint_2)
1402_GLIBCXX_SIMD_MATH_CALL2_(comp_ellint_3, _Tp)
1403_GLIBCXX_SIMD_MATH_CALL2_(cyl_bessel_i, _Tp)
1404_GLIBCXX_SIMD_MATH_CALL2_(cyl_bessel_j, _Tp)
1405_GLIBCXX_SIMD_MATH_CALL2_(cyl_bessel_k, _Tp)
1406_GLIBCXX_SIMD_MATH_CALL2_(cyl_neumann, _Tp)
1407_GLIBCXX_SIMD_MATH_CALL2_(ellint_1, _Tp)
1408_GLIBCXX_SIMD_MATH_CALL2_(ellint_2, _Tp)
1409_GLIBCXX_SIMD_MATH_CALL3_(ellint_3, _Tp, _Tp)
1410_GLIBCXX_SIMD_MATH_CALL_(expint)
1411
1412template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
1413 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
1414 hermite(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
1415 const simd<_Tp, _Abi>& __x)
1416 {
1417 return simd<_Tp, _Abi>(
1418 [&](auto __i) { return std::hermite(__n[__i], __x[__i]); });
1419 }
1420
1421template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
1422 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
1423 laguerre(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
1424 const simd<_Tp, _Abi>& __x)
1425 {
1426 return simd<_Tp, _Abi>(
1427 [&](auto __i) { return std::laguerre(__n[__i], __x[__i]); });
1428 }
1429
1430template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
1431 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
1432 legendre(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
1433 const simd<_Tp, _Abi>& __x)
1434 {
1435 return simd<_Tp, _Abi>(
1436 [&](auto __i) { return std::legendre(__n[__i], __x[__i]); });
1437 }
1438
1439_GLIBCXX_SIMD_MATH_CALL_(riemann_zeta)
1440
1441template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
1442 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
1443 sph_bessel(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
1444 const simd<_Tp, _Abi>& __x)
1445 {
1446 return simd<_Tp, _Abi>(
1447 [&](auto __i) { return std::sph_bessel(__n[__i], __x[__i]); });
1448 }
1449
1450template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
1451 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
1452 sph_legendre(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __l,
1453 const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __m,
1454 const simd<_Tp, _Abi>& theta)
1455 {
1456 return simd<_Tp, _Abi>([&](auto __i) {
1457 return std::assoc_legendre(__l[__i], __m[__i], theta[__i]);
1458 });
1459 }
1460
1461template <typename _Tp, typename _Abi, typename = __detail::__odr_helper>
1462 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Abi>>
1463 sph_neumann(const fixed_size_simd<unsigned, simd_size_v<_Tp, _Abi>>& __n,
1464 const simd<_Tp, _Abi>& __x)
1465 {
1466 return simd<_Tp, _Abi>(
1467 [&](auto __i) { return std::sph_neumann(__n[__i], __x[__i]); });
1468 }
1469// }}}
1470
1471#undef _GLIBCXX_SIMD_CVTING2
1472#undef _GLIBCXX_SIMD_CVTING3
1473#undef _GLIBCXX_SIMD_MATH_CALL_
1474#undef _GLIBCXX_SIMD_MATH_CALL2_
1475#undef _GLIBCXX_SIMD_MATH_CALL3_
1476
1477_GLIBCXX_SIMD_END_NAMESPACE
1478
1479#endif // __cplusplus >= 201703L
1480#endif // _GLIBCXX_EXPERIMENTAL_SIMD_MATH_H_
1481
1482// vim: foldmethod=marker sw=2 ts=8 noet sts=2
complex< _Tp > sin(const complex< _Tp > &)
Return complex sine of z.
Definition: complex:859
_Tp abs(const complex< _Tp > &)
Return magnitude of z.
Definition: complex:630
complex< _Tp > cos(const complex< _Tp > &)
Return complex cosine of z.
Definition: complex:741
complex< _Tp > sqrt(const complex< _Tp > &)
Return complex square root of z.
Definition: complex:933
typename conditional< _Cond, _Iftrue, _Iffalse >::type conditional_t
Alias template for conditional.
Definition: type_traits:2612
auto declval() noexcept -> decltype(__declval< _Tp >(0))
Definition: type_traits:2387
__gnu_cxx::__promote< _Tp >::__type sph_bessel(unsigned int __n, _Tp __x)
Definition: specfun.h:1102
__gnu_cxx::__promote< _Tp >::__type legendre(unsigned int __l, _Tp __x)
Definition: specfun.h:1007
__gnu_cxx::__promote< _Tp >::__type sph_neumann(unsigned int __n, _Tp __x)
Definition: specfun.h:1193
__gnu_cxx::__promote< _Tp >::__type assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
Definition: specfun.h:252
__gnu_cxx::__promote< _Tp >::__type sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
Definition: specfun.h:1149
__gnu_cxx::__promote< _Tp >::__type hermite(unsigned int __n, _Tp __x)
Definition: specfun.h:918
__gnu_cxx::__promote< _Tp >::__type laguerre(unsigned int __n, _Tp __x)
Definition: specfun.h:962
__gnu_cxx::__promote< _Tp >::__type assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
Definition: specfun.h:298