libstdc++
simd.h
1// Definition of the public simd interfaces -*- C++ -*-
2
3// Copyright (C) 2020-2022 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25#ifndef _GLIBCXX_EXPERIMENTAL_SIMD_H
26#define _GLIBCXX_EXPERIMENTAL_SIMD_H
27
28#if __cplusplus >= 201703L
29
30#include "simd_detail.h"
31#include "numeric_traits.h"
32#include <bit>
33#include <bitset>
34#ifdef _GLIBCXX_DEBUG_UB
35#include <cstdio> // for stderr
36#endif
37#include <cstring>
38#include <cmath>
39#include <functional>
40#include <iosfwd>
41#include <utility>
42
43#if _GLIBCXX_SIMD_X86INTRIN
44#include <x86intrin.h>
45#elif _GLIBCXX_SIMD_HAVE_NEON
46#include <arm_neon.h>
47#endif
48
49/** @ingroup ts_simd
50 * @{
51 */
52/* There are several closely related types, with the following naming
53 * convention:
54 * _Tp: vectorizable (arithmetic) type (or any type)
55 * _TV: __vector_type_t<_Tp, _Np>
56 * _TW: _SimdWrapper<_Tp, _Np>
57 * _TI: __intrinsic_type_t<_Tp, _Np>
58 * _TVT: _VectorTraits<_TV> or _VectorTraits<_TW>
59 * If one additional type is needed use _U instead of _T.
60 * Otherwise use _T\d, _TV\d, _TW\d, TI\d, _TVT\d.
61 *
62 * More naming conventions:
63 * _Ap or _Abi: An ABI tag from the simd_abi namespace
64 * _Ip: often used for integer types with sizeof(_Ip) == sizeof(_Tp),
65 * _IV, _IW as for _TV, _TW
66 * _Np: number of elements (not bytes)
67 * _Bytes: number of bytes
68 *
69 * Variable names:
70 * __k: mask object (vector- or bitmask)
71 */
72_GLIBCXX_SIMD_BEGIN_NAMESPACE
73
74#if !_GLIBCXX_SIMD_X86INTRIN
75using __m128 [[__gnu__::__vector_size__(16)]] = float;
76using __m128d [[__gnu__::__vector_size__(16)]] = double;
77using __m128i [[__gnu__::__vector_size__(16)]] = long long;
78using __m256 [[__gnu__::__vector_size__(32)]] = float;
79using __m256d [[__gnu__::__vector_size__(32)]] = double;
80using __m256i [[__gnu__::__vector_size__(32)]] = long long;
81using __m512 [[__gnu__::__vector_size__(64)]] = float;
82using __m512d [[__gnu__::__vector_size__(64)]] = double;
83using __m512i [[__gnu__::__vector_size__(64)]] = long long;
84#endif
85
86namespace simd_abi {
87// simd_abi forward declarations {{{
88// implementation details:
89struct _Scalar;
90
91template <int _Np>
92 struct _Fixed;
93
94// There are two major ABIs that appear on different architectures.
95// Both have non-boolean values packed into an N Byte register
96// -> #elements = N / sizeof(T)
97// Masks differ:
98// 1. Use value vector registers for masks (all 0 or all 1)
99// 2. Use bitmasks (mask registers) with one bit per value in the corresponding
100// value vector
101//
102// Both can be partially used, masking off the rest when doing horizontal
103// operations or operations that can trap (e.g. FP_INVALID or integer division
104// by 0). This is encoded as the number of used bytes.
105template <int _UsedBytes>
106 struct _VecBuiltin;
107
108template <int _UsedBytes>
109 struct _VecBltnBtmsk;
110
111template <typename _Tp, int _Np>
112 using _VecN = _VecBuiltin<sizeof(_Tp) * _Np>;
113
114template <int _UsedBytes = 16>
115 using _Sse = _VecBuiltin<_UsedBytes>;
116
117template <int _UsedBytes = 32>
118 using _Avx = _VecBuiltin<_UsedBytes>;
119
120template <int _UsedBytes = 64>
121 using _Avx512 = _VecBltnBtmsk<_UsedBytes>;
122
123template <int _UsedBytes = 16>
124 using _Neon = _VecBuiltin<_UsedBytes>;
125
126// implementation-defined:
127using __sse = _Sse<>;
128using __avx = _Avx<>;
129using __avx512 = _Avx512<>;
130using __neon = _Neon<>;
131using __neon128 = _Neon<16>;
132using __neon64 = _Neon<8>;
133
134// standard:
135template <typename _Tp, size_t _Np, typename...>
136 struct deduce;
137
138template <int _Np>
139 using fixed_size = _Fixed<_Np>;
140
141using scalar = _Scalar;
142
143// }}}
144} // namespace simd_abi
145// forward declarations is_simd(_mask), simd(_mask), simd_size {{{
146template <typename _Tp>
147 struct is_simd;
148
149template <typename _Tp>
150 struct is_simd_mask;
151
152template <typename _Tp, typename _Abi>
153 class simd;
154
155template <typename _Tp, typename _Abi>
156 class simd_mask;
157
158template <typename _Tp, typename _Abi>
159 struct simd_size;
160
161// }}}
162// load/store flags {{{
163struct element_aligned_tag
164{
165 template <typename _Tp, typename _Up = typename _Tp::value_type>
166 static constexpr size_t _S_alignment = alignof(_Up);
167
168 template <typename _Tp, typename _Up>
169 _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
170 _S_apply(_Up* __ptr)
171 { return __ptr; }
172};
173
174struct vector_aligned_tag
175{
176 template <typename _Tp, typename _Up = typename _Tp::value_type>
177 static constexpr size_t _S_alignment
178 = std::__bit_ceil(sizeof(_Up) * _Tp::size());
179
180 template <typename _Tp, typename _Up>
181 _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
182 _S_apply(_Up* __ptr)
183 {
184 return static_cast<_Up*>(
185 __builtin_assume_aligned(__ptr, _S_alignment<_Tp, _Up>));
186 }
187};
188
189template <size_t _Np> struct overaligned_tag
190{
191 template <typename _Tp, typename _Up = typename _Tp::value_type>
192 static constexpr size_t _S_alignment = _Np;
193
194 template <typename _Tp, typename _Up>
195 _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
196 _S_apply(_Up* __ptr)
197 { return static_cast<_Up*>(__builtin_assume_aligned(__ptr, _Np)); }
198};
199
200inline constexpr element_aligned_tag element_aligned = {};
201
202inline constexpr vector_aligned_tag vector_aligned = {};
203
204template <size_t _Np>
205 inline constexpr overaligned_tag<_Np> overaligned = {};
206
207// }}}
208template <size_t _Xp>
209 using _SizeConstant = integral_constant<size_t, _Xp>;
210// constexpr feature detection{{{
211constexpr inline bool __have_mmx = _GLIBCXX_SIMD_HAVE_MMX;
212constexpr inline bool __have_sse = _GLIBCXX_SIMD_HAVE_SSE;
213constexpr inline bool __have_sse2 = _GLIBCXX_SIMD_HAVE_SSE2;
214constexpr inline bool __have_sse3 = _GLIBCXX_SIMD_HAVE_SSE3;
215constexpr inline bool __have_ssse3 = _GLIBCXX_SIMD_HAVE_SSSE3;
216constexpr inline bool __have_sse4_1 = _GLIBCXX_SIMD_HAVE_SSE4_1;
217constexpr inline bool __have_sse4_2 = _GLIBCXX_SIMD_HAVE_SSE4_2;
218constexpr inline bool __have_xop = _GLIBCXX_SIMD_HAVE_XOP;
219constexpr inline bool __have_avx = _GLIBCXX_SIMD_HAVE_AVX;
220constexpr inline bool __have_avx2 = _GLIBCXX_SIMD_HAVE_AVX2;
221constexpr inline bool __have_bmi = _GLIBCXX_SIMD_HAVE_BMI1;
222constexpr inline bool __have_bmi2 = _GLIBCXX_SIMD_HAVE_BMI2;
223constexpr inline bool __have_lzcnt = _GLIBCXX_SIMD_HAVE_LZCNT;
224constexpr inline bool __have_sse4a = _GLIBCXX_SIMD_HAVE_SSE4A;
225constexpr inline bool __have_fma = _GLIBCXX_SIMD_HAVE_FMA;
226constexpr inline bool __have_fma4 = _GLIBCXX_SIMD_HAVE_FMA4;
227constexpr inline bool __have_f16c = _GLIBCXX_SIMD_HAVE_F16C;
228constexpr inline bool __have_popcnt = _GLIBCXX_SIMD_HAVE_POPCNT;
229constexpr inline bool __have_avx512f = _GLIBCXX_SIMD_HAVE_AVX512F;
230constexpr inline bool __have_avx512dq = _GLIBCXX_SIMD_HAVE_AVX512DQ;
231constexpr inline bool __have_avx512vl = _GLIBCXX_SIMD_HAVE_AVX512VL;
232constexpr inline bool __have_avx512bw = _GLIBCXX_SIMD_HAVE_AVX512BW;
233constexpr inline bool __have_avx512dq_vl = __have_avx512dq && __have_avx512vl;
234constexpr inline bool __have_avx512bw_vl = __have_avx512bw && __have_avx512vl;
235constexpr inline bool __have_avx512bitalg = _GLIBCXX_SIMD_HAVE_AVX512BITALG;
236constexpr inline bool __have_avx512vbmi2 = _GLIBCXX_SIMD_HAVE_AVX512VBMI2;
237constexpr inline bool __have_avx512vbmi = _GLIBCXX_SIMD_HAVE_AVX512VBMI;
238constexpr inline bool __have_avx512ifma = _GLIBCXX_SIMD_HAVE_AVX512IFMA;
239constexpr inline bool __have_avx512cd = _GLIBCXX_SIMD_HAVE_AVX512CD;
240constexpr inline bool __have_avx512vnni = _GLIBCXX_SIMD_HAVE_AVX512VNNI;
241constexpr inline bool __have_avx512vpopcntdq = _GLIBCXX_SIMD_HAVE_AVX512VPOPCNTDQ;
242constexpr inline bool __have_avx512vp2intersect = _GLIBCXX_SIMD_HAVE_AVX512VP2INTERSECT;
243
244constexpr inline bool __have_neon = _GLIBCXX_SIMD_HAVE_NEON;
245constexpr inline bool __have_neon_a32 = _GLIBCXX_SIMD_HAVE_NEON_A32;
246constexpr inline bool __have_neon_a64 = _GLIBCXX_SIMD_HAVE_NEON_A64;
247constexpr inline bool __support_neon_float =
248#if defined __GCC_IEC_559
249 __GCC_IEC_559 == 0;
250#elif defined __FAST_MATH__
251 true;
252#else
253 false;
254#endif
255
256#ifdef _ARCH_PWR10
257constexpr inline bool __have_power10vec = true;
258#else
259constexpr inline bool __have_power10vec = false;
260#endif
261#ifdef __POWER9_VECTOR__
262constexpr inline bool __have_power9vec = true;
263#else
264constexpr inline bool __have_power9vec = false;
265#endif
266#if defined __POWER8_VECTOR__
267constexpr inline bool __have_power8vec = true;
268#else
269constexpr inline bool __have_power8vec = __have_power9vec;
270#endif
271#if defined __VSX__
272constexpr inline bool __have_power_vsx = true;
273#else
274constexpr inline bool __have_power_vsx = __have_power8vec;
275#endif
276#if defined __ALTIVEC__
277constexpr inline bool __have_power_vmx = true;
278#else
279constexpr inline bool __have_power_vmx = __have_power_vsx;
280#endif
281
282// }}}
283
284namespace __detail
285{
286#ifdef math_errhandling
287 // Determines _S_handle_fpexcept from math_errhandling if it is defined and expands to a constant
288 // expression. math_errhandling may expand to an extern symbol, in which case a constexpr value
289 // must be guessed.
290 template <int = math_errhandling>
291 constexpr bool __handle_fpexcept_impl(int)
292 { return math_errhandling & MATH_ERREXCEPT; }
293#endif
294
295 // Fallback if math_errhandling doesn't work: with fast-math assume floating-point exceptions are
296 // ignored, otherwise implement correct exception behavior.
297 constexpr bool __handle_fpexcept_impl(float)
298 {
299#if defined __FAST_MATH__
300 return false;
301#else
302 return true;
303#endif
304 }
305
306 /// True if math functions must raise floating-point exceptions as specified by C17.
307 static constexpr bool _S_handle_fpexcept = __handle_fpexcept_impl(0);
308
309 constexpr std::uint_least64_t
310 __floating_point_flags()
311 {
312 std::uint_least64_t __flags = 0;
313 if constexpr (_S_handle_fpexcept)
314 __flags |= 1;
315#ifdef __FAST_MATH__
316 __flags |= 1 << 1;
317#elif __FINITE_MATH_ONLY__
318 __flags |= 2 << 1;
319#elif __GCC_IEC_559 < 2
320 __flags |= 3 << 1;
321#endif
322 __flags |= (__FLT_EVAL_METHOD__ + 1) << 3;
323 return __flags;
324 }
325
326 constexpr std::uint_least64_t
327 __machine_flags()
328 {
329 if constexpr (__have_mmx || __have_sse)
330 return __have_mmx
331 | (__have_sse << 1)
332 | (__have_sse2 << 2)
333 | (__have_sse3 << 3)
334 | (__have_ssse3 << 4)
335 | (__have_sse4_1 << 5)
336 | (__have_sse4_2 << 6)
337 | (__have_xop << 7)
338 | (__have_avx << 8)
339 | (__have_avx2 << 9)
340 | (__have_bmi << 10)
341 | (__have_bmi2 << 11)
342 | (__have_lzcnt << 12)
343 | (__have_sse4a << 13)
344 | (__have_fma << 14)
345 | (__have_fma4 << 15)
346 | (__have_f16c << 16)
347 | (__have_popcnt << 17)
348 | (__have_avx512f << 18)
349 | (__have_avx512dq << 19)
350 | (__have_avx512vl << 20)
351 | (__have_avx512bw << 21)
352 | (__have_avx512bitalg << 22)
353 | (__have_avx512vbmi2 << 23)
354 | (__have_avx512vbmi << 24)
355 | (__have_avx512ifma << 25)
356 | (__have_avx512cd << 26)
357 | (__have_avx512vnni << 27)
358 | (__have_avx512vpopcntdq << 28)
359 | (__have_avx512vp2intersect << 29);
360 else if constexpr (__have_neon)
361 return __have_neon
362 | (__have_neon_a32 << 1)
363 | (__have_neon_a64 << 2)
364 | (__have_neon_a64 << 2)
365 | (__support_neon_float << 3);
366 else if constexpr (__have_power_vmx)
367 return __have_power_vmx
368 | (__have_power_vsx << 1)
369 | (__have_power8vec << 2)
370 | (__have_power9vec << 3)
371 | (__have_power10vec << 4);
372 else
373 return 0;
374 }
375
376 namespace
377 {
378 struct _OdrEnforcer {};
379 }
380
381 template <std::uint_least64_t...>
382 struct _MachineFlagsTemplate {};
383
384 /**@internal
385 * Use this type as default template argument to all function templates that
386 * are not declared always_inline. It ensures, that a function
387 * specialization, which the compiler decides not to inline, has a unique symbol
388 * (_OdrEnforcer) or a symbol matching the machine/architecture flags
389 * (_MachineFlagsTemplate). This helps to avoid ODR violations in cases where
390 * users link TUs compiled with different flags. This is especially important
391 * for using simd in libraries.
392 */
393 using __odr_helper
394 = conditional_t<__machine_flags() == 0, _OdrEnforcer,
395 _MachineFlagsTemplate<__machine_flags(), __floating_point_flags()>>;
396
397 struct _Minimum
398 {
399 template <typename _Tp>
400 _GLIBCXX_SIMD_INTRINSIC constexpr
401 _Tp
402 operator()(_Tp __a, _Tp __b) const
403 {
404 using std::min;
405 return min(__a, __b);
406 }
407 };
408
409 struct _Maximum
410 {
411 template <typename _Tp>
412 _GLIBCXX_SIMD_INTRINSIC constexpr
413 _Tp
414 operator()(_Tp __a, _Tp __b) const
415 {
416 using std::max;
417 return max(__a, __b);
418 }
419 };
420} // namespace __detail
421
422// unrolled/pack execution helpers
423// __execute_n_times{{{
424template <typename _Fp, size_t... _I>
425 [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
426 void
427 __execute_on_index_sequence(_Fp&& __f, index_sequence<_I...>)
428 { ((void)__f(_SizeConstant<_I>()), ...); }
429
430template <typename _Fp>
431 _GLIBCXX_SIMD_INTRINSIC constexpr void
432 __execute_on_index_sequence(_Fp&&, index_sequence<>)
433 { }
434
435template <size_t _Np, typename _Fp>
436 _GLIBCXX_SIMD_INTRINSIC constexpr void
437 __execute_n_times(_Fp&& __f)
438 {
439 __execute_on_index_sequence(static_cast<_Fp&&>(__f),
440 make_index_sequence<_Np>{});
441 }
442
443// }}}
444// __generate_from_n_evaluations{{{
445template <typename _R, typename _Fp, size_t... _I>
446 [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
447 _R
448 __execute_on_index_sequence_with_return(_Fp&& __f, index_sequence<_I...>)
449 { return _R{__f(_SizeConstant<_I>())...}; }
450
451template <size_t _Np, typename _R, typename _Fp>
452 _GLIBCXX_SIMD_INTRINSIC constexpr _R
453 __generate_from_n_evaluations(_Fp&& __f)
454 {
455 return __execute_on_index_sequence_with_return<_R>(
456 static_cast<_Fp&&>(__f), make_index_sequence<_Np>{});
457 }
458
459// }}}
460// __call_with_n_evaluations{{{
461template <size_t... _I, typename _F0, typename _FArgs>
462 [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
463 auto
464 __call_with_n_evaluations(index_sequence<_I...>, _F0&& __f0, _FArgs&& __fargs)
465 { return __f0(__fargs(_SizeConstant<_I>())...); }
466
467template <size_t _Np, typename _F0, typename _FArgs>
468 _GLIBCXX_SIMD_INTRINSIC constexpr auto
469 __call_with_n_evaluations(_F0&& __f0, _FArgs&& __fargs)
470 {
471 return __call_with_n_evaluations(make_index_sequence<_Np>{},
472 static_cast<_F0&&>(__f0),
473 static_cast<_FArgs&&>(__fargs));
474 }
475
476// }}}
477// __call_with_subscripts{{{
478template <size_t _First = 0, size_t... _It, typename _Tp, typename _Fp>
479 [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
480 auto
481 __call_with_subscripts(_Tp&& __x, index_sequence<_It...>, _Fp&& __fun)
482 { return __fun(__x[_First + _It]...); }
483
484template <size_t _Np, size_t _First = 0, typename _Tp, typename _Fp>
485 _GLIBCXX_SIMD_INTRINSIC constexpr auto
486 __call_with_subscripts(_Tp&& __x, _Fp&& __fun)
487 {
488 return __call_with_subscripts<_First>(static_cast<_Tp&&>(__x),
489 make_index_sequence<_Np>(),
490 static_cast<_Fp&&>(__fun));
491 }
492
493// }}}
494
495// vvv ---- type traits ---- vvv
496// integer type aliases{{{
497using _UChar = unsigned char;
498using _SChar = signed char;
499using _UShort = unsigned short;
500using _UInt = unsigned int;
501using _ULong = unsigned long;
502using _ULLong = unsigned long long;
503using _LLong = long long;
504
505//}}}
506// __first_of_pack{{{
507template <typename _T0, typename...>
508 struct __first_of_pack
509 { using type = _T0; };
510
511template <typename... _Ts>
512 using __first_of_pack_t = typename __first_of_pack<_Ts...>::type;
513
514//}}}
515// __value_type_or_identity_t {{{
516template <typename _Tp>
517 typename _Tp::value_type
518 __value_type_or_identity_impl(int);
519
520template <typename _Tp>
521 _Tp
522 __value_type_or_identity_impl(float);
523
524template <typename _Tp>
525 using __value_type_or_identity_t
526 = decltype(__value_type_or_identity_impl<_Tp>(int()));
527
528// }}}
529// __is_vectorizable {{{
530template <typename _Tp>
531 struct __is_vectorizable : public is_arithmetic<_Tp> {};
532
533template <>
534 struct __is_vectorizable<bool> : public false_type {};
535
536template <typename _Tp>
537 inline constexpr bool __is_vectorizable_v = __is_vectorizable<_Tp>::value;
538
539// Deduces to a vectorizable type
540template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>>
541 using _Vectorizable = _Tp;
542
543// }}}
544// _LoadStorePtr / __is_possible_loadstore_conversion {{{
545template <typename _Ptr, typename _ValueType>
546 struct __is_possible_loadstore_conversion
547 : conjunction<__is_vectorizable<_Ptr>, __is_vectorizable<_ValueType>> {};
548
549template <>
550 struct __is_possible_loadstore_conversion<bool, bool> : true_type {};
551
552// Deduces to a type allowed for load/store with the given value type.
553template <typename _Ptr, typename _ValueType,
554 typename = enable_if_t<
555 __is_possible_loadstore_conversion<_Ptr, _ValueType>::value>>
556 using _LoadStorePtr = _Ptr;
557
558// }}}
559// __is_bitmask{{{
560template <typename _Tp, typename = void_t<>>
561 struct __is_bitmask : false_type {};
562
563template <typename _Tp>
564 inline constexpr bool __is_bitmask_v = __is_bitmask<_Tp>::value;
565
566// the __mmaskXX case:
567template <typename _Tp>
568 struct __is_bitmask<_Tp,
569 void_t<decltype(declval<unsigned&>() = declval<_Tp>() & 1u)>>
570 : true_type {};
571
572// }}}
573// __int_for_sizeof{{{
574#pragma GCC diagnostic push
575#pragma GCC diagnostic ignored "-Wpedantic"
576template <size_t _Bytes>
577 constexpr auto
578 __int_for_sizeof()
579 {
580 if constexpr (_Bytes == sizeof(int))
581 return int();
582 #ifdef __clang__
583 else if constexpr (_Bytes == sizeof(char))
584 return char();
585 #else
586 else if constexpr (_Bytes == sizeof(_SChar))
587 return _SChar();
588 #endif
589 else if constexpr (_Bytes == sizeof(short))
590 return short();
591 #ifndef __clang__
592 else if constexpr (_Bytes == sizeof(long))
593 return long();
594 #endif
595 else if constexpr (_Bytes == sizeof(_LLong))
596 return _LLong();
597 #ifdef __SIZEOF_INT128__
598 else if constexpr (_Bytes == sizeof(__int128))
599 return __int128();
600 #endif // __SIZEOF_INT128__
601 else if constexpr (_Bytes % sizeof(int) == 0)
602 {
603 constexpr size_t _Np = _Bytes / sizeof(int);
604 struct _Ip
605 {
606 int _M_data[_Np];
607
608 _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
609 operator&(_Ip __rhs) const
610 {
611 return __generate_from_n_evaluations<_Np, _Ip>(
612 [&](auto __i) { return __rhs._M_data[__i] & _M_data[__i]; });
613 }
614
615 _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
616 operator|(_Ip __rhs) const
617 {
618 return __generate_from_n_evaluations<_Np, _Ip>(
619 [&](auto __i) { return __rhs._M_data[__i] | _M_data[__i]; });
620 }
621
622 _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
623 operator^(_Ip __rhs) const
624 {
625 return __generate_from_n_evaluations<_Np, _Ip>(
626 [&](auto __i) { return __rhs._M_data[__i] ^ _M_data[__i]; });
627 }
628
629 _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
630 operator~() const
631 {
632 return __generate_from_n_evaluations<_Np, _Ip>(
633 [&](auto __i) { return ~_M_data[__i]; });
634 }
635 };
636 return _Ip{};
637 }
638 else
639 static_assert(_Bytes != _Bytes, "this should be unreachable");
640 }
641#pragma GCC diagnostic pop
642
643template <typename _Tp>
644 using __int_for_sizeof_t = decltype(__int_for_sizeof<sizeof(_Tp)>());
645
646template <size_t _Np>
647 using __int_with_sizeof_t = decltype(__int_for_sizeof<_Np>());
648
649// }}}
650// __is_fixed_size_abi{{{
651template <typename _Tp>
652 struct __is_fixed_size_abi : false_type {};
653
654template <int _Np>
655 struct __is_fixed_size_abi<simd_abi::fixed_size<_Np>> : true_type {};
656
657template <typename _Tp>
658 inline constexpr bool __is_fixed_size_abi_v = __is_fixed_size_abi<_Tp>::value;
659
660// }}}
661// __is_scalar_abi {{{
662template <typename _Abi>
663 constexpr bool
664 __is_scalar_abi()
665 { return is_same_v<simd_abi::scalar, _Abi>; }
666
667// }}}
668// __abi_bytes_v {{{
669template <template <int> class _Abi, int _Bytes>
670 constexpr int
671 __abi_bytes_impl(_Abi<_Bytes>*)
672 { return _Bytes; }
673
674template <typename _Tp>
675 constexpr int
676 __abi_bytes_impl(_Tp*)
677 { return -1; }
678
679template <typename _Abi>
680 inline constexpr int __abi_bytes_v
681 = __abi_bytes_impl(static_cast<_Abi*>(nullptr));
682
683// }}}
684// __is_builtin_bitmask_abi {{{
685template <typename _Abi>
686 constexpr bool
687 __is_builtin_bitmask_abi()
688 { return is_same_v<simd_abi::_VecBltnBtmsk<__abi_bytes_v<_Abi>>, _Abi>; }
689
690// }}}
691// __is_sse_abi {{{
692template <typename _Abi>
693 constexpr bool
694 __is_sse_abi()
695 {
696 constexpr auto _Bytes = __abi_bytes_v<_Abi>;
697 return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
698 }
699
700// }}}
701// __is_avx_abi {{{
702template <typename _Abi>
703 constexpr bool
704 __is_avx_abi()
705 {
706 constexpr auto _Bytes = __abi_bytes_v<_Abi>;
707 return _Bytes > 16 && _Bytes <= 32
708 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
709 }
710
711// }}}
712// __is_avx512_abi {{{
713template <typename _Abi>
714 constexpr bool
715 __is_avx512_abi()
716 {
717 constexpr auto _Bytes = __abi_bytes_v<_Abi>;
718 return _Bytes <= 64 && is_same_v<simd_abi::_Avx512<_Bytes>, _Abi>;
719 }
720
721// }}}
722// __is_neon_abi {{{
723template <typename _Abi>
724 constexpr bool
725 __is_neon_abi()
726 {
727 constexpr auto _Bytes = __abi_bytes_v<_Abi>;
728 return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
729 }
730
731// }}}
732// __make_dependent_t {{{
733template <typename, typename _Up>
734 struct __make_dependent
735 { using type = _Up; };
736
737template <typename _Tp, typename _Up>
738 using __make_dependent_t = typename __make_dependent<_Tp, _Up>::type;
739
740// }}}
741// ^^^ ---- type traits ---- ^^^
742
743// __invoke_ub{{{
744template <typename... _Args>
745 [[noreturn]] _GLIBCXX_SIMD_ALWAYS_INLINE void
746 __invoke_ub([[maybe_unused]] const char* __msg,
747 [[maybe_unused]] const _Args&... __args)
748 {
749#ifdef _GLIBCXX_DEBUG_UB
750 __builtin_fprintf(stderr, __msg, __args...);
751 __builtin_trap();
752#else
753 __builtin_unreachable();
754#endif
755 }
756
757// }}}
758// __assert_unreachable{{{
759template <typename _Tp>
760 struct __assert_unreachable
761 { static_assert(!is_same_v<_Tp, _Tp>, "this should be unreachable"); };
762
763// }}}
764// __size_or_zero_v {{{
765template <typename _Tp, typename _Ap, size_t _Np = simd_size<_Tp, _Ap>::value>
766 constexpr size_t
767 __size_or_zero_dispatch(int)
768 { return _Np; }
769
770template <typename _Tp, typename _Ap>
771 constexpr size_t
772 __size_or_zero_dispatch(float)
773 { return 0; }
774
775template <typename _Tp, typename _Ap>
776 inline constexpr size_t __size_or_zero_v
777 = __size_or_zero_dispatch<_Tp, _Ap>(0);
778
779// }}}
780// __div_roundup {{{
781inline constexpr size_t
782__div_roundup(size_t __a, size_t __b)
783{ return (__a + __b - 1) / __b; }
784
785// }}}
786// _ExactBool{{{
787class _ExactBool
788{
789 const bool _M_data;
790
791public:
792 _GLIBCXX_SIMD_INTRINSIC constexpr _ExactBool(bool __b) : _M_data(__b) {}
793
794 _ExactBool(int) = delete;
795
796 _GLIBCXX_SIMD_INTRINSIC constexpr operator bool() const { return _M_data; }
797};
798
799// }}}
800// __may_alias{{{
801/**@internal
802 * Helper __may_alias<_Tp> that turns _Tp into the type to be used for an
803 * aliasing pointer. This adds the __may_alias attribute to _Tp (with compilers
804 * that support it).
805 */
806template <typename _Tp>
807 using __may_alias [[__gnu__::__may_alias__]] = _Tp;
808
809// }}}
810// _UnsupportedBase {{{
811// simd and simd_mask base for unsupported <_Tp, _Abi>
812struct _UnsupportedBase
813{
814 _UnsupportedBase() = delete;
815 _UnsupportedBase(const _UnsupportedBase&) = delete;
816 _UnsupportedBase& operator=(const _UnsupportedBase&) = delete;
817 ~_UnsupportedBase() = delete;
818};
819
820// }}}
821// _InvalidTraits {{{
822/**
823 * @internal
824 * Defines the implementation of __a given <_Tp, _Abi>.
825 *
826 * Implementations must ensure that only valid <_Tp, _Abi> instantiations are
827 * possible. Static assertions in the type definition do not suffice. It is
828 * important that SFINAE works.
829 */
830struct _InvalidTraits
831{
832 using _IsValid = false_type;
833 using _SimdBase = _UnsupportedBase;
834 using _MaskBase = _UnsupportedBase;
835
836 static constexpr size_t _S_full_size = 0;
837 static constexpr bool _S_is_partial = false;
838
839 static constexpr size_t _S_simd_align = 1;
840 struct _SimdImpl;
841 struct _SimdMember {};
842 struct _SimdCastType;
843
844 static constexpr size_t _S_mask_align = 1;
845 struct _MaskImpl;
846 struct _MaskMember {};
847 struct _MaskCastType;
848};
849
850// }}}
851// _SimdTraits {{{
852template <typename _Tp, typename _Abi, typename = void_t<>>
853 struct _SimdTraits : _InvalidTraits {};
854
855// }}}
856// __private_init, __bitset_init{{{
857/**
858 * @internal
859 * Tag used for private init constructor of simd and simd_mask
860 */
861inline constexpr struct _PrivateInit {} __private_init = {};
862
863inline constexpr struct _BitsetInit {} __bitset_init = {};
864
865// }}}
866// __is_narrowing_conversion<_From, _To>{{{
867template <typename _From, typename _To, bool = is_arithmetic_v<_From>,
868 bool = is_arithmetic_v<_To>>
869 struct __is_narrowing_conversion;
870
871// ignore "signed/unsigned mismatch" in the following trait.
872// The implicit conversions will do the right thing here.
873template <typename _From, typename _To>
874 struct __is_narrowing_conversion<_From, _To, true, true>
875 : public __bool_constant<(
876 __digits_v<_From> > __digits_v<_To>
877 || __finite_max_v<_From> > __finite_max_v<_To>
878 || __finite_min_v<_From> < __finite_min_v<_To>
879 || (is_signed_v<_From> && is_unsigned_v<_To>))> {};
880
881template <typename _Tp>
882 struct __is_narrowing_conversion<_Tp, bool, true, true>
883 : public true_type {};
884
885template <>
886 struct __is_narrowing_conversion<bool, bool, true, true>
887 : public false_type {};
888
889template <typename _Tp>
890 struct __is_narrowing_conversion<_Tp, _Tp, true, true>
891 : public false_type {};
892
893template <typename _From, typename _To>
894 struct __is_narrowing_conversion<_From, _To, false, true>
895 : public negation<is_convertible<_From, _To>> {};
896
897// }}}
898// __converts_to_higher_integer_rank{{{
899template <typename _From, typename _To, bool = (sizeof(_From) < sizeof(_To))>
900 struct __converts_to_higher_integer_rank : public true_type {};
901
902// this may fail for char -> short if sizeof(char) == sizeof(short)
903template <typename _From, typename _To>
904 struct __converts_to_higher_integer_rank<_From, _To, false>
905 : public is_same<decltype(declval<_From>() + declval<_To>()), _To> {};
906
907// }}}
908// __data(simd/simd_mask) {{{
909template <typename _Tp, typename _Ap>
910 _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
911 __data(const simd<_Tp, _Ap>& __x);
912
913template <typename _Tp, typename _Ap>
914 _GLIBCXX_SIMD_INTRINSIC constexpr auto&
915 __data(simd<_Tp, _Ap>& __x);
916
917template <typename _Tp, typename _Ap>
918 _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
919 __data(const simd_mask<_Tp, _Ap>& __x);
920
921template <typename _Tp, typename _Ap>
922 _GLIBCXX_SIMD_INTRINSIC constexpr auto&
923 __data(simd_mask<_Tp, _Ap>& __x);
924
925// }}}
926// _SimdConverter {{{
927template <typename _FromT, typename _FromA, typename _ToT, typename _ToA,
928 typename = void>
929 struct _SimdConverter;
930
931template <typename _Tp, typename _Ap>
932 struct _SimdConverter<_Tp, _Ap, _Tp, _Ap, void>
933 {
934 template <typename _Up>
935 _GLIBCXX_SIMD_INTRINSIC const _Up&
936 operator()(const _Up& __x)
937 { return __x; }
938 };
939
940// }}}
941// __to_value_type_or_member_type {{{
942template <typename _V>
943 _GLIBCXX_SIMD_INTRINSIC constexpr auto
944 __to_value_type_or_member_type(const _V& __x) -> decltype(__data(__x))
945 { return __data(__x); }
946
947template <typename _V>
948 _GLIBCXX_SIMD_INTRINSIC constexpr const typename _V::value_type&
949 __to_value_type_or_member_type(const typename _V::value_type& __x)
950 { return __x; }
951
952// }}}
953// __bool_storage_member_type{{{
954template <size_t _Size>
955 struct __bool_storage_member_type;
956
957template <size_t _Size>
958 using __bool_storage_member_type_t =
959 typename __bool_storage_member_type<_Size>::type;
960
961// }}}
962// _SimdTuple {{{
963// why not tuple?
964// 1. tuple gives no guarantee about the storage order, but I require
965// storage
966// equivalent to array<_Tp, _Np>
967// 2. direct access to the element type (first template argument)
968// 3. enforces equal element type, only different _Abi types are allowed
969template <typename _Tp, typename... _Abis>
970 struct _SimdTuple;
971
972//}}}
973// __fixed_size_storage_t {{{
974template <typename _Tp, int _Np>
975 struct __fixed_size_storage;
976
977template <typename _Tp, int _Np>
978 using __fixed_size_storage_t = typename __fixed_size_storage<_Tp, _Np>::type;
979
980// }}}
981// _SimdWrapper fwd decl{{{
982template <typename _Tp, size_t _Size, typename = void_t<>>
983 struct _SimdWrapper;
984
985template <typename _Tp>
986 using _SimdWrapper8 = _SimdWrapper<_Tp, 8 / sizeof(_Tp)>;
987template <typename _Tp>
988 using _SimdWrapper16 = _SimdWrapper<_Tp, 16 / sizeof(_Tp)>;
989template <typename _Tp>
990 using _SimdWrapper32 = _SimdWrapper<_Tp, 32 / sizeof(_Tp)>;
991template <typename _Tp>
992 using _SimdWrapper64 = _SimdWrapper<_Tp, 64 / sizeof(_Tp)>;
993
994// }}}
995// __is_simd_wrapper {{{
996template <typename _Tp>
997 struct __is_simd_wrapper : false_type {};
998
999template <typename _Tp, size_t _Np>
1000 struct __is_simd_wrapper<_SimdWrapper<_Tp, _Np>> : true_type {};
1001
1002template <typename _Tp>
1003 inline constexpr bool __is_simd_wrapper_v = __is_simd_wrapper<_Tp>::value;
1004
1005// }}}
1006// _BitOps {{{
1007struct _BitOps
1008{
1009 // _S_bit_iteration {{{
1010 template <typename _Tp, typename _Fp>
1011 static void
1012 _S_bit_iteration(_Tp __mask, _Fp&& __f)
1013 {
1014 static_assert(sizeof(_ULLong) >= sizeof(_Tp));
1015 conditional_t<sizeof(_Tp) <= sizeof(_UInt), _UInt, _ULLong> __k;
1016 if constexpr (is_convertible_v<_Tp, decltype(__k)>)
1017 __k = __mask;
1018 else
1019 __k = __mask.to_ullong();
1020 while(__k)
1021 {
1022 __f(std::__countr_zero(__k));
1023 __k &= (__k - 1);
1024 }
1025 }
1026
1027 //}}}
1028};
1029
1030//}}}
1031// __increment, __decrement {{{
1032template <typename _Tp = void>
1033 struct __increment
1034 { constexpr _Tp operator()(_Tp __a) const { return ++__a; } };
1035
1036template <>
1037 struct __increment<void>
1038 {
1039 template <typename _Tp>
1040 constexpr _Tp
1041 operator()(_Tp __a) const
1042 { return ++__a; }
1043 };
1044
1045template <typename _Tp = void>
1046 struct __decrement
1047 { constexpr _Tp operator()(_Tp __a) const { return --__a; } };
1048
1049template <>
1050 struct __decrement<void>
1051 {
1052 template <typename _Tp>
1053 constexpr _Tp
1054 operator()(_Tp __a) const
1055 { return --__a; }
1056 };
1057
1058// }}}
1059// _ValuePreserving(OrInt) {{{
1060template <typename _From, typename _To,
1061 typename = enable_if_t<negation<
1062 __is_narrowing_conversion<__remove_cvref_t<_From>, _To>>::value>>
1063 using _ValuePreserving = _From;
1064
1065template <typename _From, typename _To,
1066 typename _DecayedFrom = __remove_cvref_t<_From>,
1067 typename = enable_if_t<conjunction<
1068 is_convertible<_From, _To>,
1069 disjunction<
1070 is_same<_DecayedFrom, _To>, is_same<_DecayedFrom, int>,
1071 conjunction<is_same<_DecayedFrom, _UInt>, is_unsigned<_To>>,
1072 negation<__is_narrowing_conversion<_DecayedFrom, _To>>>>::value>>
1073 using _ValuePreservingOrInt = _From;
1074
1075// }}}
1076// __intrinsic_type {{{
1077template <typename _Tp, size_t _Bytes, typename = void_t<>>
1078 struct __intrinsic_type;
1079
1080template <typename _Tp, size_t _Size>
1081 using __intrinsic_type_t =
1082 typename __intrinsic_type<_Tp, _Size * sizeof(_Tp)>::type;
1083
1084template <typename _Tp>
1085 using __intrinsic_type2_t = typename __intrinsic_type<_Tp, 2>::type;
1086template <typename _Tp>
1087 using __intrinsic_type4_t = typename __intrinsic_type<_Tp, 4>::type;
1088template <typename _Tp>
1089 using __intrinsic_type8_t = typename __intrinsic_type<_Tp, 8>::type;
1090template <typename _Tp>
1091 using __intrinsic_type16_t = typename __intrinsic_type<_Tp, 16>::type;
1092template <typename _Tp>
1093 using __intrinsic_type32_t = typename __intrinsic_type<_Tp, 32>::type;
1094template <typename _Tp>
1095 using __intrinsic_type64_t = typename __intrinsic_type<_Tp, 64>::type;
1096
1097// }}}
1098// _BitMask {{{
1099template <size_t _Np, bool _Sanitized = false>
1100 struct _BitMask;
1101
1102template <size_t _Np, bool _Sanitized>
1103 struct __is_bitmask<_BitMask<_Np, _Sanitized>, void> : true_type {};
1104
1105template <size_t _Np>
1106 using _SanitizedBitMask = _BitMask<_Np, true>;
1107
1108template <size_t _Np, bool _Sanitized>
1109 struct _BitMask
1110 {
1111 static_assert(_Np > 0);
1112
1113 static constexpr size_t _NBytes = __div_roundup(_Np, __CHAR_BIT__);
1114
1115 using _Tp = conditional_t<_Np == 1, bool,
1116 make_unsigned_t<__int_with_sizeof_t<std::min(
1117 sizeof(_ULLong), std::__bit_ceil(_NBytes))>>>;
1118
1119 static constexpr int _S_array_size = __div_roundup(_NBytes, sizeof(_Tp));
1120
1121 _Tp _M_bits[_S_array_size];
1122
1123 static constexpr int _S_unused_bits
1124 = _Np == 1 ? 0 : _S_array_size * sizeof(_Tp) * __CHAR_BIT__ - _Np;
1125
1126 static constexpr _Tp _S_bitmask = +_Tp(~_Tp()) >> _S_unused_bits;
1127
1128 constexpr _BitMask() noexcept = default;
1129
1130 constexpr _BitMask(unsigned long long __x) noexcept
1131 : _M_bits{static_cast<_Tp>(__x)} {}
1132
1133 _BitMask(bitset<_Np> __x) noexcept : _BitMask(__x.to_ullong()) {}
1134
1135 constexpr _BitMask(const _BitMask&) noexcept = default;
1136
1137 template <bool _RhsSanitized, typename = enable_if_t<_RhsSanitized == false
1138 && _Sanitized == true>>
1139 constexpr _BitMask(const _BitMask<_Np, _RhsSanitized>& __rhs) noexcept
1140 : _BitMask(__rhs._M_sanitized()) {}
1141
1142 constexpr operator _SimdWrapper<bool, _Np>() const noexcept
1143 {
1144 static_assert(_S_array_size == 1);
1145 return _M_bits[0];
1146 }
1147
1148 // precondition: is sanitized
1149 constexpr _Tp
1150 _M_to_bits() const noexcept
1151 {
1152 static_assert(_S_array_size == 1);
1153 return _M_bits[0];
1154 }
1155
1156 // precondition: is sanitized
1157 constexpr unsigned long long
1158 to_ullong() const noexcept
1159 {
1160 static_assert(_S_array_size == 1);
1161 return _M_bits[0];
1162 }
1163
1164 // precondition: is sanitized
1165 constexpr unsigned long
1166 to_ulong() const noexcept
1167 {
1168 static_assert(_S_array_size == 1);
1169 return _M_bits[0];
1170 }
1171
1172 constexpr bitset<_Np>
1173 _M_to_bitset() const noexcept
1174 {
1175 static_assert(_S_array_size == 1);
1176 return _M_bits[0];
1177 }
1178
1179 constexpr decltype(auto)
1180 _M_sanitized() const noexcept
1181 {
1182 if constexpr (_Sanitized)
1183 return *this;
1184 else if constexpr (_Np == 1)
1185 return _SanitizedBitMask<_Np>(_M_bits[0]);
1186 else
1187 {
1188 _SanitizedBitMask<_Np> __r = {};
1189 for (int __i = 0; __i < _S_array_size; ++__i)
1190 __r._M_bits[__i] = _M_bits[__i];
1191 if constexpr (_S_unused_bits > 0)
1192 __r._M_bits[_S_array_size - 1] &= _S_bitmask;
1193 return __r;
1194 }
1195 }
1196
1197 template <size_t _Mp, bool _LSanitized>
1198 constexpr _BitMask<_Np + _Mp, _Sanitized>
1199 _M_prepend(_BitMask<_Mp, _LSanitized> __lsb) const noexcept
1200 {
1201 constexpr size_t _RN = _Np + _Mp;
1202 using _Rp = _BitMask<_RN, _Sanitized>;
1203 if constexpr (_Rp::_S_array_size == 1)
1204 {
1205 _Rp __r{{_M_bits[0]}};
1206 __r._M_bits[0] <<= _Mp;
1207 __r._M_bits[0] |= __lsb._M_sanitized()._M_bits[0];
1208 return __r;
1209 }
1210 else
1211 __assert_unreachable<_Rp>();
1212 }
1213
1214 // Return a new _BitMask with size _NewSize while dropping _DropLsb least
1215 // significant bits. If the operation implicitly produces a sanitized bitmask,
1216 // the result type will have _Sanitized set.
1217 template <size_t _DropLsb, size_t _NewSize = _Np - _DropLsb>
1218 constexpr auto
1219 _M_extract() const noexcept
1220 {
1221 static_assert(_Np > _DropLsb);
1222 static_assert(_DropLsb + _NewSize <= sizeof(_ULLong) * __CHAR_BIT__,
1223 "not implemented for bitmasks larger than one ullong");
1224 if constexpr (_NewSize == 1)
1225 // must sanitize because the return _Tp is bool
1226 return _SanitizedBitMask<1>(_M_bits[0] & (_Tp(1) << _DropLsb));
1227 else
1228 return _BitMask<_NewSize,
1229 ((_NewSize + _DropLsb == sizeof(_Tp) * __CHAR_BIT__
1230 && _NewSize + _DropLsb <= _Np)
1231 || ((_Sanitized || _Np == sizeof(_Tp) * __CHAR_BIT__)
1232 && _NewSize + _DropLsb >= _Np))>(_M_bits[0]
1233 >> _DropLsb);
1234 }
1235
1236 // True if all bits are set. Implicitly sanitizes if _Sanitized == false.
1237 constexpr bool
1238 all() const noexcept
1239 {
1240 if constexpr (_Np == 1)
1241 return _M_bits[0];
1242 else if constexpr (!_Sanitized)
1243 return _M_sanitized().all();
1244 else
1245 {
1246 constexpr _Tp __allbits = ~_Tp();
1247 for (int __i = 0; __i < _S_array_size - 1; ++__i)
1248 if (_M_bits[__i] != __allbits)
1249 return false;
1250 return _M_bits[_S_array_size - 1] == _S_bitmask;
1251 }
1252 }
1253
1254 // True if at least one bit is set. Implicitly sanitizes if _Sanitized ==
1255 // false.
1256 constexpr bool
1257 any() const noexcept
1258 {
1259 if constexpr (_Np == 1)
1260 return _M_bits[0];
1261 else if constexpr (!_Sanitized)
1262 return _M_sanitized().any();
1263 else
1264 {
1265 for (int __i = 0; __i < _S_array_size - 1; ++__i)
1266 if (_M_bits[__i] != 0)
1267 return true;
1268 return _M_bits[_S_array_size - 1] != 0;
1269 }
1270 }
1271
1272 // True if no bit is set. Implicitly sanitizes if _Sanitized == false.
1273 constexpr bool
1274 none() const noexcept
1275 {
1276 if constexpr (_Np == 1)
1277 return !_M_bits[0];
1278 else if constexpr (!_Sanitized)
1279 return _M_sanitized().none();
1280 else
1281 {
1282 for (int __i = 0; __i < _S_array_size - 1; ++__i)
1283 if (_M_bits[__i] != 0)
1284 return false;
1285 return _M_bits[_S_array_size - 1] == 0;
1286 }
1287 }
1288
1289 // Returns the number of set bits. Implicitly sanitizes if _Sanitized ==
1290 // false.
1291 constexpr int
1292 count() const noexcept
1293 {
1294 if constexpr (_Np == 1)
1295 return _M_bits[0];
1296 else if constexpr (!_Sanitized)
1297 return _M_sanitized().none();
1298 else
1299 {
1300 int __result = __builtin_popcountll(_M_bits[0]);
1301 for (int __i = 1; __i < _S_array_size; ++__i)
1302 __result += __builtin_popcountll(_M_bits[__i]);
1303 return __result;
1304 }
1305 }
1306
1307 // Returns the bit at offset __i as bool.
1308 constexpr bool
1309 operator[](size_t __i) const noexcept
1310 {
1311 if constexpr (_Np == 1)
1312 return _M_bits[0];
1313 else if constexpr (_S_array_size == 1)
1314 return (_M_bits[0] >> __i) & 1;
1315 else
1316 {
1317 const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1318 const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1319 return (_M_bits[__j] >> __shift) & 1;
1320 }
1321 }
1322
1323 template <size_t __i>
1324 constexpr bool
1325 operator[](_SizeConstant<__i>) const noexcept
1326 {
1327 static_assert(__i < _Np);
1328 constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1329 constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1330 return static_cast<bool>(_M_bits[__j] & (_Tp(1) << __shift));
1331 }
1332
1333 // Set the bit at offset __i to __x.
1334 constexpr void
1335 set(size_t __i, bool __x) noexcept
1336 {
1337 if constexpr (_Np == 1)
1338 _M_bits[0] = __x;
1339 else if constexpr (_S_array_size == 1)
1340 {
1341 _M_bits[0] &= ~_Tp(_Tp(1) << __i);
1342 _M_bits[0] |= _Tp(_Tp(__x) << __i);
1343 }
1344 else
1345 {
1346 const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1347 const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1348 _M_bits[__j] &= ~_Tp(_Tp(1) << __shift);
1349 _M_bits[__j] |= _Tp(_Tp(__x) << __shift);
1350 }
1351 }
1352
1353 template <size_t __i>
1354 constexpr void
1355 set(_SizeConstant<__i>, bool __x) noexcept
1356 {
1357 static_assert(__i < _Np);
1358 if constexpr (_Np == 1)
1359 _M_bits[0] = __x;
1360 else
1361 {
1362 constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1363 constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1364 constexpr _Tp __mask = ~_Tp(_Tp(1) << __shift);
1365 _M_bits[__j] &= __mask;
1366 _M_bits[__j] |= _Tp(_Tp(__x) << __shift);
1367 }
1368 }
1369
1370 // Inverts all bits. Sanitized input leads to sanitized output.
1371 constexpr _BitMask
1372 operator~() const noexcept
1373 {
1374 if constexpr (_Np == 1)
1375 return !_M_bits[0];
1376 else
1377 {
1378 _BitMask __result{};
1379 for (int __i = 0; __i < _S_array_size - 1; ++__i)
1380 __result._M_bits[__i] = ~_M_bits[__i];
1381 if constexpr (_Sanitized)
1382 __result._M_bits[_S_array_size - 1]
1383 = _M_bits[_S_array_size - 1] ^ _S_bitmask;
1384 else
1385 __result._M_bits[_S_array_size - 1] = ~_M_bits[_S_array_size - 1];
1386 return __result;
1387 }
1388 }
1389
1390 constexpr _BitMask&
1391 operator^=(const _BitMask& __b) & noexcept
1392 {
1393 __execute_n_times<_S_array_size>(
1394 [&](auto __i) { _M_bits[__i] ^= __b._M_bits[__i]; });
1395 return *this;
1396 }
1397
1398 constexpr _BitMask&
1399 operator|=(const _BitMask& __b) & noexcept
1400 {
1401 __execute_n_times<_S_array_size>(
1402 [&](auto __i) { _M_bits[__i] |= __b._M_bits[__i]; });
1403 return *this;
1404 }
1405
1406 constexpr _BitMask&
1407 operator&=(const _BitMask& __b) & noexcept
1408 {
1409 __execute_n_times<_S_array_size>(
1410 [&](auto __i) { _M_bits[__i] &= __b._M_bits[__i]; });
1411 return *this;
1412 }
1413
1414 friend constexpr _BitMask
1415 operator^(const _BitMask& __a, const _BitMask& __b) noexcept
1416 {
1417 _BitMask __r = __a;
1418 __r ^= __b;
1419 return __r;
1420 }
1421
1422 friend constexpr _BitMask
1423 operator|(const _BitMask& __a, const _BitMask& __b) noexcept
1424 {
1425 _BitMask __r = __a;
1426 __r |= __b;
1427 return __r;
1428 }
1429
1430 friend constexpr _BitMask
1431 operator&(const _BitMask& __a, const _BitMask& __b) noexcept
1432 {
1433 _BitMask __r = __a;
1434 __r &= __b;
1435 return __r;
1436 }
1437
1438 _GLIBCXX_SIMD_INTRINSIC
1439 constexpr bool
1440 _M_is_constprop() const
1441 {
1442 if constexpr (_S_array_size == 0)
1443 return __builtin_constant_p(_M_bits[0]);
1444 else
1445 {
1446 for (int __i = 0; __i < _S_array_size; ++__i)
1447 if (!__builtin_constant_p(_M_bits[__i]))
1448 return false;
1449 return true;
1450 }
1451 }
1452 };
1453
1454// }}}
1455
1456// vvv ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- vvv
1457// __min_vector_size {{{
1458template <typename _Tp = void>
1459 static inline constexpr int __min_vector_size = 2 * sizeof(_Tp);
1460
1461#if _GLIBCXX_SIMD_HAVE_NEON
1462template <>
1463 inline constexpr int __min_vector_size<void> = 8;
1464#else
1465template <>
1466 inline constexpr int __min_vector_size<void> = 16;
1467#endif
1468
1469// }}}
1470// __vector_type {{{
1471template <typename _Tp, size_t _Np, typename = void>
1472 struct __vector_type_n {};
1473
1474// substition failure for 0-element case
1475template <typename _Tp>
1476 struct __vector_type_n<_Tp, 0, void> {};
1477
1478// special case 1-element to be _Tp itself
1479template <typename _Tp>
1480 struct __vector_type_n<_Tp, 1, enable_if_t<__is_vectorizable_v<_Tp>>>
1481 { using type = _Tp; };
1482
1483// else, use GNU-style builtin vector types
1484template <typename _Tp, size_t _Np>
1485 struct __vector_type_n<_Tp, _Np,
1486 enable_if_t<__is_vectorizable_v<_Tp> && _Np >= 2>>
1487 {
1488 static constexpr size_t _S_Np2 = std::__bit_ceil(_Np * sizeof(_Tp));
1489
1490 static constexpr size_t _S_Bytes =
1491#ifdef __i386__
1492 // Using [[gnu::vector_size(8)]] would wreak havoc on the FPU because
1493 // those objects are passed via MMX registers and nothing ever calls EMMS.
1494 _S_Np2 == 8 ? 16 :
1495#endif
1496 _S_Np2 < __min_vector_size<_Tp> ? __min_vector_size<_Tp>
1497 : _S_Np2;
1498
1499 using type [[__gnu__::__vector_size__(_S_Bytes)]] = _Tp;
1500 };
1501
1502template <typename _Tp, size_t _Bytes, size_t = _Bytes % sizeof(_Tp)>
1503 struct __vector_type;
1504
1505template <typename _Tp, size_t _Bytes>
1506 struct __vector_type<_Tp, _Bytes, 0>
1507 : __vector_type_n<_Tp, _Bytes / sizeof(_Tp)> {};
1508
1509template <typename _Tp, size_t _Size>
1510 using __vector_type_t = typename __vector_type_n<_Tp, _Size>::type;
1511
1512template <typename _Tp>
1513 using __vector_type2_t = typename __vector_type<_Tp, 2>::type;
1514template <typename _Tp>
1515 using __vector_type4_t = typename __vector_type<_Tp, 4>::type;
1516template <typename _Tp>
1517 using __vector_type8_t = typename __vector_type<_Tp, 8>::type;
1518template <typename _Tp>
1519 using __vector_type16_t = typename __vector_type<_Tp, 16>::type;
1520template <typename _Tp>
1521 using __vector_type32_t = typename __vector_type<_Tp, 32>::type;
1522template <typename _Tp>
1523 using __vector_type64_t = typename __vector_type<_Tp, 64>::type;
1524
1525// }}}
1526// __is_vector_type {{{
1527template <typename _Tp, typename = void_t<>>
1528 struct __is_vector_type : false_type {};
1529
1530template <typename _Tp>
1531 struct __is_vector_type<
1532 _Tp, void_t<typename __vector_type<
1533 remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>>
1534 : is_same<_Tp, typename __vector_type<
1535 remove_reference_t<decltype(declval<_Tp>()[0])>,
1536 sizeof(_Tp)>::type> {};
1537
1538template <typename _Tp>
1539 inline constexpr bool __is_vector_type_v = __is_vector_type<_Tp>::value;
1540
1541// }}}
1542// __is_intrinsic_type {{{
1543#if _GLIBCXX_SIMD_HAVE_SSE_ABI
1544template <typename _Tp>
1545 using __is_intrinsic_type = __is_vector_type<_Tp>;
1546#else // not SSE (x86)
1547template <typename _Tp, typename = void_t<>>
1548 struct __is_intrinsic_type : false_type {};
1549
1550template <typename _Tp>
1551 struct __is_intrinsic_type<
1552 _Tp, void_t<typename __intrinsic_type<
1553 remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>>
1554 : is_same<_Tp, typename __intrinsic_type<
1555 remove_reference_t<decltype(declval<_Tp>()[0])>,
1556 sizeof(_Tp)>::type> {};
1557#endif
1558
1559template <typename _Tp>
1560 inline constexpr bool __is_intrinsic_type_v = __is_intrinsic_type<_Tp>::value;
1561
1562// }}}
1563// _VectorTraits{{{
1564template <typename _Tp, typename = void_t<>>
1565 struct _VectorTraitsImpl;
1566
1567template <typename _Tp>
1568 struct _VectorTraitsImpl<_Tp, enable_if_t<__is_vector_type_v<_Tp>
1569 || __is_intrinsic_type_v<_Tp>>>
1570 {
1571 using type = _Tp;
1572 using value_type = remove_reference_t<decltype(declval<_Tp>()[0])>;
1573 static constexpr int _S_full_size = sizeof(_Tp) / sizeof(value_type);
1574 using _Wrapper = _SimdWrapper<value_type, _S_full_size>;
1575 template <typename _Up, int _W = _S_full_size>
1576 static constexpr bool _S_is
1577 = is_same_v<value_type, _Up> && _W == _S_full_size;
1578 };
1579
1580template <typename _Tp, size_t _Np>
1581 struct _VectorTraitsImpl<_SimdWrapper<_Tp, _Np>,
1582 void_t<__vector_type_t<_Tp, _Np>>>
1583 {
1584 using type = __vector_type_t<_Tp, _Np>;
1585 using value_type = _Tp;
1586 static constexpr int _S_full_size = sizeof(type) / sizeof(value_type);
1587 using _Wrapper = _SimdWrapper<_Tp, _Np>;
1588 static constexpr bool _S_is_partial = (_Np == _S_full_size);
1589 static constexpr int _S_partial_width = _Np;
1590 template <typename _Up, int _W = _S_full_size>
1591 static constexpr bool _S_is
1592 = is_same_v<value_type, _Up>&& _W == _S_full_size;
1593 };
1594
1595template <typename _Tp, typename = typename _VectorTraitsImpl<_Tp>::type>
1596 using _VectorTraits = _VectorTraitsImpl<_Tp>;
1597
1598// }}}
1599// __as_vector{{{
1600template <typename _V>
1601 _GLIBCXX_SIMD_INTRINSIC constexpr auto
1602 __as_vector(_V __x)
1603 {
1604 if constexpr (__is_vector_type_v<_V>)
1605 return __x;
1606 else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value)
1607 return __data(__x)._M_data;
1608 else if constexpr (__is_vectorizable_v<_V>)
1609 return __vector_type_t<_V, 2>{__x};
1610 else
1611 return __x._M_data;
1612 }
1613
1614// }}}
1615// __as_wrapper{{{
1616template <size_t _Np = 0, typename _V>
1617 _GLIBCXX_SIMD_INTRINSIC constexpr auto
1618 __as_wrapper(_V __x)
1619 {
1620 if constexpr (__is_vector_type_v<_V>)
1621 return _SimdWrapper<typename _VectorTraits<_V>::value_type,
1622 (_Np > 0 ? _Np : _VectorTraits<_V>::_S_full_size)>(__x);
1623 else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value)
1624 {
1625 static_assert(_V::size() == _Np);
1626 return __data(__x);
1627 }
1628 else
1629 {
1630 static_assert(_V::_S_size == _Np);
1631 return __x;
1632 }
1633 }
1634
1635// }}}
1636// __intrin_bitcast{{{
1637template <typename _To, typename _From>
1638 _GLIBCXX_SIMD_INTRINSIC constexpr _To
1639 __intrin_bitcast(_From __v)
1640 {
1641 static_assert((__is_vector_type_v<_From> || __is_intrinsic_type_v<_From>)
1642 && (__is_vector_type_v<_To> || __is_intrinsic_type_v<_To>));
1643 if constexpr (sizeof(_To) == sizeof(_From))
1644 return reinterpret_cast<_To>(__v);
1645 else if constexpr (sizeof(_From) > sizeof(_To))
1646 if constexpr (sizeof(_To) >= 16)
1647 return reinterpret_cast<const __may_alias<_To>&>(__v);
1648 else
1649 {
1650 _To __r;
1651 __builtin_memcpy(&__r, &__v, sizeof(_To));
1652 return __r;
1653 }
1654#if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1655 else if constexpr (__have_avx && sizeof(_From) == 16 && sizeof(_To) == 32)
1656 return reinterpret_cast<_To>(__builtin_ia32_ps256_ps(
1657 reinterpret_cast<__vector_type_t<float, 4>>(__v)));
1658 else if constexpr (__have_avx512f && sizeof(_From) == 16
1659 && sizeof(_To) == 64)
1660 return reinterpret_cast<_To>(__builtin_ia32_ps512_ps(
1661 reinterpret_cast<__vector_type_t<float, 4>>(__v)));
1662 else if constexpr (__have_avx512f && sizeof(_From) == 32
1663 && sizeof(_To) == 64)
1664 return reinterpret_cast<_To>(__builtin_ia32_ps512_256ps(
1665 reinterpret_cast<__vector_type_t<float, 8>>(__v)));
1666#endif // _GLIBCXX_SIMD_X86INTRIN
1667 else if constexpr (sizeof(__v) <= 8)
1668 return reinterpret_cast<_To>(
1669 __vector_type_t<__int_for_sizeof_t<_From>, sizeof(_To) / sizeof(_From)>{
1670 reinterpret_cast<__int_for_sizeof_t<_From>>(__v)});
1671 else
1672 {
1673 static_assert(sizeof(_To) > sizeof(_From));
1674 _To __r = {};
1675 __builtin_memcpy(&__r, &__v, sizeof(_From));
1676 return __r;
1677 }
1678 }
1679
1680// }}}
1681// __vector_bitcast{{{
1682template <typename _To, size_t _NN = 0, typename _From,
1683 typename _FromVT = _VectorTraits<_From>,
1684 size_t _Np = _NN == 0 ? sizeof(_From) / sizeof(_To) : _NN>
1685 _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np>
1686 __vector_bitcast(_From __x)
1687 {
1688 using _R = __vector_type_t<_To, _Np>;
1689 return __intrin_bitcast<_R>(__x);
1690 }
1691
1692template <typename _To, size_t _NN = 0, typename _Tp, size_t _Nx,
1693 size_t _Np
1694 = _NN == 0 ? sizeof(_SimdWrapper<_Tp, _Nx>) / sizeof(_To) : _NN>
1695 _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np>
1696 __vector_bitcast(const _SimdWrapper<_Tp, _Nx>& __x)
1697 {
1698 static_assert(_Np > 1);
1699 return __intrin_bitcast<__vector_type_t<_To, _Np>>(__x._M_data);
1700 }
1701
1702// }}}
1703// __convert_x86 declarations {{{
1704#ifdef _GLIBCXX_SIMD_WORKAROUND_PR85048
1705template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1706 _To __convert_x86(_Tp);
1707
1708template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1709 _To __convert_x86(_Tp, _Tp);
1710
1711template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1712 _To __convert_x86(_Tp, _Tp, _Tp, _Tp);
1713
1714template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1715 _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp);
1716
1717template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1718 _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp,
1719 _Tp, _Tp, _Tp, _Tp);
1720#endif // _GLIBCXX_SIMD_WORKAROUND_PR85048
1721
1722//}}}
1723// __bit_cast {{{
1724template <typename _To, typename _From>
1725 _GLIBCXX_SIMD_INTRINSIC constexpr _To
1726 __bit_cast(const _From __x)
1727 {
1728#if __has_builtin(__builtin_bit_cast)
1729 return __builtin_bit_cast(_To, __x);
1730#else
1731 static_assert(sizeof(_To) == sizeof(_From));
1732 constexpr bool __to_is_vectorizable
1733 = is_arithmetic_v<_To> || is_enum_v<_To>;
1734 constexpr bool __from_is_vectorizable
1735 = is_arithmetic_v<_From> || is_enum_v<_From>;
1736 if constexpr (__is_vector_type_v<_To> && __is_vector_type_v<_From>)
1737 return reinterpret_cast<_To>(__x);
1738 else if constexpr (__is_vector_type_v<_To> && __from_is_vectorizable)
1739 {
1740 using _FV [[gnu::vector_size(sizeof(_From))]] = _From;
1741 return reinterpret_cast<_To>(_FV{__x});
1742 }
1743 else if constexpr (__to_is_vectorizable && __from_is_vectorizable)
1744 {
1745 using _TV [[gnu::vector_size(sizeof(_To))]] = _To;
1746 using _FV [[gnu::vector_size(sizeof(_From))]] = _From;
1747 return reinterpret_cast<_TV>(_FV{__x})[0];
1748 }
1749 else if constexpr (__to_is_vectorizable && __is_vector_type_v<_From>)
1750 {
1751 using _TV [[gnu::vector_size(sizeof(_To))]] = _To;
1752 return reinterpret_cast<_TV>(__x)[0];
1753 }
1754 else
1755 {
1756 _To __r;
1757 __builtin_memcpy(reinterpret_cast<char*>(&__r),
1758 reinterpret_cast<const char*>(&__x), sizeof(_To));
1759 return __r;
1760 }
1761#endif
1762 }
1763
1764// }}}
1765// __to_intrin {{{
1766template <typename _Tp, typename _TVT = _VectorTraits<_Tp>,
1767 typename _R
1768 = __intrinsic_type_t<typename _TVT::value_type, _TVT::_S_full_size>>
1769 _GLIBCXX_SIMD_INTRINSIC constexpr _R
1770 __to_intrin(_Tp __x)
1771 {
1772 static_assert(sizeof(__x) <= sizeof(_R),
1773 "__to_intrin may never drop values off the end");
1774 if constexpr (sizeof(__x) == sizeof(_R))
1775 return reinterpret_cast<_R>(__as_vector(__x));
1776 else
1777 {
1778 using _Up = __int_for_sizeof_t<_Tp>;
1779 return reinterpret_cast<_R>(
1780 __vector_type_t<_Up, sizeof(_R) / sizeof(_Up)>{__bit_cast<_Up>(__x)});
1781 }
1782 }
1783
1784// }}}
1785// __make_vector{{{
1786template <typename _Tp, typename... _Args>
1787 _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, sizeof...(_Args)>
1788 __make_vector(const _Args&... __args)
1789 {
1790 return __vector_type_t<_Tp, sizeof...(_Args)>{static_cast<_Tp>(__args)...};
1791 }
1792
1793// }}}
1794// __vector_broadcast{{{
1795template <size_t _Np, typename _Tp, size_t... _I>
1796 _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1797 __vector_broadcast_impl(_Tp __x, index_sequence<_I...>)
1798 { return __vector_type_t<_Tp, _Np>{((void)_I, __x)...}; }
1799
1800template <size_t _Np, typename _Tp>
1801 _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1802 __vector_broadcast(_Tp __x)
1803 { return __vector_broadcast_impl<_Np, _Tp>(__x, make_index_sequence<_Np>()); }
1804
1805// }}}
1806// __generate_vector{{{
1807 template <typename _Tp, size_t _Np, typename _Gp, size_t... _I>
1808 _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1809 __generate_vector_impl(_Gp&& __gen, index_sequence<_I...>)
1810 {
1811 return __vector_type_t<_Tp, _Np>{
1812 static_cast<_Tp>(__gen(_SizeConstant<_I>()))...};
1813 }
1814
1815template <typename _V, typename _VVT = _VectorTraits<_V>, typename _Gp>
1816 _GLIBCXX_SIMD_INTRINSIC constexpr _V
1817 __generate_vector(_Gp&& __gen)
1818 {
1819 if constexpr (__is_vector_type_v<_V>)
1820 return __generate_vector_impl<typename _VVT::value_type,
1821 _VVT::_S_full_size>(
1822 static_cast<_Gp&&>(__gen), make_index_sequence<_VVT::_S_full_size>());
1823 else
1824 return __generate_vector_impl<typename _VVT::value_type,
1825 _VVT::_S_partial_width>(
1826 static_cast<_Gp&&>(__gen),
1827 make_index_sequence<_VVT::_S_partial_width>());
1828 }
1829
1830template <typename _Tp, size_t _Np, typename _Gp>
1831 _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1832 __generate_vector(_Gp&& __gen)
1833 {
1834 return __generate_vector_impl<_Tp, _Np>(static_cast<_Gp&&>(__gen),
1835 make_index_sequence<_Np>());
1836 }
1837
1838// }}}
1839// __xor{{{
1840template <typename _TW>
1841 _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1842 __xor(_TW __a, _TW __b) noexcept
1843 {
1844 if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1845 {
1846 using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1847 _VectorTraitsImpl<_TW>>::value_type;
1848 if constexpr (is_floating_point_v<_Tp>)
1849 {
1850 using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1851 return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1852 ^ __vector_bitcast<_Ip>(__b));
1853 }
1854 else if constexpr (__is_vector_type_v<_TW>)
1855 return __a ^ __b;
1856 else
1857 return __a._M_data ^ __b._M_data;
1858 }
1859 else
1860 return __a ^ __b;
1861 }
1862
1863// }}}
1864// __or{{{
1865template <typename _TW>
1866 _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1867 __or(_TW __a, _TW __b) noexcept
1868 {
1869 if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1870 {
1871 using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1872 _VectorTraitsImpl<_TW>>::value_type;
1873 if constexpr (is_floating_point_v<_Tp>)
1874 {
1875 using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1876 return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1877 | __vector_bitcast<_Ip>(__b));
1878 }
1879 else if constexpr (__is_vector_type_v<_TW>)
1880 return __a | __b;
1881 else
1882 return __a._M_data | __b._M_data;
1883 }
1884 else
1885 return __a | __b;
1886 }
1887
1888// }}}
1889// __and{{{
1890template <typename _TW>
1891 _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1892 __and(_TW __a, _TW __b) noexcept
1893 {
1894 if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1895 {
1896 using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1897 _VectorTraitsImpl<_TW>>::value_type;
1898 if constexpr (is_floating_point_v<_Tp>)
1899 {
1900 using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1901 return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1902 & __vector_bitcast<_Ip>(__b));
1903 }
1904 else if constexpr (__is_vector_type_v<_TW>)
1905 return __a & __b;
1906 else
1907 return __a._M_data & __b._M_data;
1908 }
1909 else
1910 return __a & __b;
1911 }
1912
1913// }}}
1914// __andnot{{{
1915#if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1916static constexpr struct
1917{
1918 _GLIBCXX_SIMD_INTRINSIC __v4sf
1919 operator()(__v4sf __a, __v4sf __b) const noexcept
1920 { return __builtin_ia32_andnps(__a, __b); }
1921
1922 _GLIBCXX_SIMD_INTRINSIC __v2df
1923 operator()(__v2df __a, __v2df __b) const noexcept
1924 { return __builtin_ia32_andnpd(__a, __b); }
1925
1926 _GLIBCXX_SIMD_INTRINSIC __v2di
1927 operator()(__v2di __a, __v2di __b) const noexcept
1928 { return __builtin_ia32_pandn128(__a, __b); }
1929
1930 _GLIBCXX_SIMD_INTRINSIC __v8sf
1931 operator()(__v8sf __a, __v8sf __b) const noexcept
1932 { return __builtin_ia32_andnps256(__a, __b); }
1933
1934 _GLIBCXX_SIMD_INTRINSIC __v4df
1935 operator()(__v4df __a, __v4df __b) const noexcept
1936 { return __builtin_ia32_andnpd256(__a, __b); }
1937
1938 _GLIBCXX_SIMD_INTRINSIC __v4di
1939 operator()(__v4di __a, __v4di __b) const noexcept
1940 {
1941 if constexpr (__have_avx2)
1942 return __builtin_ia32_andnotsi256(__a, __b);
1943 else
1944 return reinterpret_cast<__v4di>(
1945 __builtin_ia32_andnpd256(reinterpret_cast<__v4df>(__a),
1946 reinterpret_cast<__v4df>(__b)));
1947 }
1948
1949 _GLIBCXX_SIMD_INTRINSIC __v16sf
1950 operator()(__v16sf __a, __v16sf __b) const noexcept
1951 {
1952 if constexpr (__have_avx512dq)
1953 return _mm512_andnot_ps(__a, __b);
1954 else
1955 return reinterpret_cast<__v16sf>(
1956 _mm512_andnot_si512(reinterpret_cast<__v8di>(__a),
1957 reinterpret_cast<__v8di>(__b)));
1958 }
1959
1960 _GLIBCXX_SIMD_INTRINSIC __v8df
1961 operator()(__v8df __a, __v8df __b) const noexcept
1962 {
1963 if constexpr (__have_avx512dq)
1964 return _mm512_andnot_pd(__a, __b);
1965 else
1966 return reinterpret_cast<__v8df>(
1967 _mm512_andnot_si512(reinterpret_cast<__v8di>(__a),
1968 reinterpret_cast<__v8di>(__b)));
1969 }
1970
1971 _GLIBCXX_SIMD_INTRINSIC __v8di
1972 operator()(__v8di __a, __v8di __b) const noexcept
1973 { return _mm512_andnot_si512(__a, __b); }
1974} _S_x86_andnot;
1975#endif // _GLIBCXX_SIMD_X86INTRIN && !__clang__
1976
1977template <typename _TW>
1978 _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1979 __andnot(_TW __a, _TW __b) noexcept
1980 {
1981 if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1982 {
1983 using _TVT = conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1984 _VectorTraitsImpl<_TW>>;
1985 using _Tp = typename _TVT::value_type;
1986#if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1987 if constexpr (sizeof(_TW) >= 16)
1988 {
1989 const auto __ai = __to_intrin(__a);
1990 const auto __bi = __to_intrin(__b);
1991 if (!__builtin_is_constant_evaluated()
1992 && !(__builtin_constant_p(__ai) && __builtin_constant_p(__bi)))
1993 {
1994 const auto __r = _S_x86_andnot(__ai, __bi);
1995 if constexpr (is_convertible_v<decltype(__r), _TW>)
1996 return __r;
1997 else
1998 return reinterpret_cast<typename _TVT::type>(__r);
1999 }
2000 }
2001#endif // _GLIBCXX_SIMD_X86INTRIN
2002 using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
2003 return __vector_bitcast<_Tp>(~__vector_bitcast<_Ip>(__a)
2004 & __vector_bitcast<_Ip>(__b));
2005 }
2006 else
2007 return ~__a & __b;
2008 }
2009
2010// }}}
2011// __not{{{
2012template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
2013 _GLIBCXX_SIMD_INTRINSIC constexpr _Tp
2014 __not(_Tp __a) noexcept
2015 {
2016 if constexpr (is_floating_point_v<typename _TVT::value_type>)
2017 return reinterpret_cast<typename _TVT::type>(
2018 ~__vector_bitcast<unsigned>(__a));
2019 else
2020 return ~__a;
2021 }
2022
2023// }}}
2024// __concat{{{
2025template <typename _Tp, typename _TVT = _VectorTraits<_Tp>,
2026 typename _R = __vector_type_t<typename _TVT::value_type,
2027 _TVT::_S_full_size * 2>>
2028 constexpr _R
2029 __concat(_Tp a_, _Tp b_)
2030 {
2031#ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1
2032 using _W
2033 = conditional_t<is_floating_point_v<typename _TVT::value_type>, double,
2034 conditional_t<(sizeof(_Tp) >= 2 * sizeof(long long)),
2035 long long, typename _TVT::value_type>>;
2036 constexpr int input_width = sizeof(_Tp) / sizeof(_W);
2037 const auto __a = __vector_bitcast<_W>(a_);
2038 const auto __b = __vector_bitcast<_W>(b_);
2039 using _Up = __vector_type_t<_W, sizeof(_R) / sizeof(_W)>;
2040#else
2041 constexpr int input_width = _TVT::_S_full_size;
2042 const _Tp& __a = a_;
2043 const _Tp& __b = b_;
2044 using _Up = _R;
2045#endif
2046 if constexpr (input_width == 2)
2047 return reinterpret_cast<_R>(_Up{__a[0], __a[1], __b[0], __b[1]});
2048 else if constexpr (input_width == 4)
2049 return reinterpret_cast<_R>(
2050 _Up{__a[0], __a[1], __a[2], __a[3], __b[0], __b[1], __b[2], __b[3]});
2051 else if constexpr (input_width == 8)
2052 return reinterpret_cast<_R>(
2053 _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7],
2054 __b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7]});
2055 else if constexpr (input_width == 16)
2056 return reinterpret_cast<_R>(
2057 _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6],
2058 __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13],
2059 __a[14], __a[15], __b[0], __b[1], __b[2], __b[3], __b[4],
2060 __b[5], __b[6], __b[7], __b[8], __b[9], __b[10], __b[11],
2061 __b[12], __b[13], __b[14], __b[15]});
2062 else if constexpr (input_width == 32)
2063 return reinterpret_cast<_R>(
2064 _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6],
2065 __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13],
2066 __a[14], __a[15], __a[16], __a[17], __a[18], __a[19], __a[20],
2067 __a[21], __a[22], __a[23], __a[24], __a[25], __a[26], __a[27],
2068 __a[28], __a[29], __a[30], __a[31], __b[0], __b[1], __b[2],
2069 __b[3], __b[4], __b[5], __b[6], __b[7], __b[8], __b[9],
2070 __b[10], __b[11], __b[12], __b[13], __b[14], __b[15], __b[16],
2071 __b[17], __b[18], __b[19], __b[20], __b[21], __b[22], __b[23],
2072 __b[24], __b[25], __b[26], __b[27], __b[28], __b[29], __b[30],
2073 __b[31]});
2074 }
2075
2076// }}}
2077// __zero_extend {{{
2078template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
2079 struct _ZeroExtendProxy
2080 {
2081 using value_type = typename _TVT::value_type;
2082 static constexpr size_t _Np = _TVT::_S_full_size;
2083 const _Tp __x;
2084
2085 template <typename _To, typename _ToVT = _VectorTraits<_To>,
2086 typename
2087 = enable_if_t<is_same_v<typename _ToVT::value_type, value_type>>>
2088 _GLIBCXX_SIMD_INTRINSIC operator _To() const
2089 {
2090 constexpr size_t _ToN = _ToVT::_S_full_size;
2091 if constexpr (_ToN == _Np)
2092 return __x;
2093 else if constexpr (_ToN == 2 * _Np)
2094 {
2095#ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3
2096 if constexpr (__have_avx && _TVT::template _S_is<float, 4>)
2097 return __vector_bitcast<value_type>(
2098 _mm256_insertf128_ps(__m256(), __x, 0));
2099 else if constexpr (__have_avx && _TVT::template _S_is<double, 2>)
2100 return __vector_bitcast<value_type>(
2101 _mm256_insertf128_pd(__m256d(), __x, 0));
2102 else if constexpr (__have_avx2 && _Np * sizeof(value_type) == 16)
2103 return __vector_bitcast<value_type>(
2104 _mm256_insertf128_si256(__m256i(), __to_intrin(__x), 0));
2105 else if constexpr (__have_avx512f && _TVT::template _S_is<float, 8>)
2106 {
2107 if constexpr (__have_avx512dq)
2108 return __vector_bitcast<value_type>(
2109 _mm512_insertf32x8(__m512(), __x, 0));
2110 else
2111 return reinterpret_cast<__m512>(
2112 _mm512_insertf64x4(__m512d(),
2113 reinterpret_cast<__m256d>(__x), 0));
2114 }
2115 else if constexpr (__have_avx512f
2116 && _TVT::template _S_is<double, 4>)
2117 return __vector_bitcast<value_type>(
2118 _mm512_insertf64x4(__m512d(), __x, 0));
2119 else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 32)
2120 return __vector_bitcast<value_type>(
2121 _mm512_inserti64x4(__m512i(), __to_intrin(__x), 0));
2122#endif
2123 return __concat(__x, _Tp());
2124 }
2125 else if constexpr (_ToN == 4 * _Np)
2126 {
2127#ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3
2128 if constexpr (__have_avx512dq && _TVT::template _S_is<double, 2>)
2129 {
2130 return __vector_bitcast<value_type>(
2131 _mm512_insertf64x2(__m512d(), __x, 0));
2132 }
2133 else if constexpr (__have_avx512f
2134 && is_floating_point_v<value_type>)
2135 {
2136 return __vector_bitcast<value_type>(
2137 _mm512_insertf32x4(__m512(), reinterpret_cast<__m128>(__x),
2138 0));
2139 }
2140 else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 16)
2141 {
2142 return __vector_bitcast<value_type>(
2143 _mm512_inserti32x4(__m512i(), __to_intrin(__x), 0));
2144 }
2145#endif
2146 return __concat(__concat(__x, _Tp()),
2147 __vector_type_t<value_type, _Np * 2>());
2148 }
2149 else if constexpr (_ToN == 8 * _Np)
2150 return __concat(operator __vector_type_t<value_type, _Np * 4>(),
2151 __vector_type_t<value_type, _Np * 4>());
2152 else if constexpr (_ToN == 16 * _Np)
2153 return __concat(operator __vector_type_t<value_type, _Np * 8>(),
2154 __vector_type_t<value_type, _Np * 8>());
2155 else
2156 __assert_unreachable<_Tp>();
2157 }
2158 };
2159
2160template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
2161 _GLIBCXX_SIMD_INTRINSIC _ZeroExtendProxy<_Tp, _TVT>
2162 __zero_extend(_Tp __x)
2163 { return {__x}; }
2164
2165// }}}
2166// __extract<_Np, By>{{{
2167template <int _Offset,
2168 int _SplitBy,
2169 typename _Tp,
2170 typename _TVT = _VectorTraits<_Tp>,
2171 typename _R = __vector_type_t<typename _TVT::value_type,
2172 _TVT::_S_full_size / _SplitBy>>
2173 _GLIBCXX_SIMD_INTRINSIC constexpr _R
2174 __extract(_Tp __in)
2175 {
2176 using value_type = typename _TVT::value_type;
2177#if _GLIBCXX_SIMD_X86INTRIN // {{{
2178 if constexpr (sizeof(_Tp) == 64 && _SplitBy == 4 && _Offset > 0)
2179 {
2180 if constexpr (__have_avx512dq && is_same_v<double, value_type>)
2181 return _mm512_extractf64x2_pd(__to_intrin(__in), _Offset);
2182 else if constexpr (is_floating_point_v<value_type>)
2183 return __vector_bitcast<value_type>(
2184 _mm512_extractf32x4_ps(__intrin_bitcast<__m512>(__in), _Offset));
2185 else
2186 return reinterpret_cast<_R>(
2187 _mm512_extracti32x4_epi32(__intrin_bitcast<__m512i>(__in),
2188 _Offset));
2189 }
2190 else
2191#endif // _GLIBCXX_SIMD_X86INTRIN }}}
2192 {
2193#ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1
2194 using _W = conditional_t<
2195 is_floating_point_v<value_type>, double,
2196 conditional_t<(sizeof(_R) >= 16), long long, value_type>>;
2197 static_assert(sizeof(_R) % sizeof(_W) == 0);
2198 constexpr int __return_width = sizeof(_R) / sizeof(_W);
2199 using _Up = __vector_type_t<_W, __return_width>;
2200 const auto __x = __vector_bitcast<_W>(__in);
2201#else
2202 constexpr int __return_width = _TVT::_S_full_size / _SplitBy;
2203 using _Up = _R;
2204 const __vector_type_t<value_type, _TVT::_S_full_size>& __x
2205 = __in; // only needed for _Tp = _SimdWrapper<value_type, _Np>
2206#endif
2207 constexpr int _O = _Offset * __return_width;
2208 return __call_with_subscripts<__return_width, _O>(
2209 __x, [](auto... __entries) {
2210 return reinterpret_cast<_R>(_Up{__entries...});
2211 });
2212 }
2213 }
2214
2215// }}}
2216// __lo/__hi64[z]{{{
2217template <typename _Tp,
2218 typename _R
2219 = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2220 _GLIBCXX_SIMD_INTRINSIC constexpr _R
2221 __lo64(_Tp __x)
2222 {
2223 _R __r{};
2224 __builtin_memcpy(&__r, &__x, 8);
2225 return __r;
2226 }
2227
2228template <typename _Tp,
2229 typename _R
2230 = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2231 _GLIBCXX_SIMD_INTRINSIC constexpr _R
2232 __hi64(_Tp __x)
2233 {
2234 static_assert(sizeof(_Tp) == 16, "use __hi64z if you meant it");
2235 _R __r{};
2236 __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8);
2237 return __r;
2238 }
2239
2240template <typename _Tp,
2241 typename _R
2242 = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2243 _GLIBCXX_SIMD_INTRINSIC constexpr _R
2244 __hi64z([[maybe_unused]] _Tp __x)
2245 {
2246 _R __r{};
2247 if constexpr (sizeof(_Tp) == 16)
2248 __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8);
2249 return __r;
2250 }
2251
2252// }}}
2253// __lo/__hi128{{{
2254template <typename _Tp>
2255 _GLIBCXX_SIMD_INTRINSIC constexpr auto
2256 __lo128(_Tp __x)
2257 { return __extract<0, sizeof(_Tp) / 16>(__x); }
2258
2259template <typename _Tp>
2260 _GLIBCXX_SIMD_INTRINSIC constexpr auto
2261 __hi128(_Tp __x)
2262 {
2263 static_assert(sizeof(__x) == 32);
2264 return __extract<1, 2>(__x);
2265 }
2266
2267// }}}
2268// __lo/__hi256{{{
2269template <typename _Tp>
2270 _GLIBCXX_SIMD_INTRINSIC constexpr auto
2271 __lo256(_Tp __x)
2272 {
2273 static_assert(sizeof(__x) == 64);
2274 return __extract<0, 2>(__x);
2275 }
2276
2277template <typename _Tp>
2278 _GLIBCXX_SIMD_INTRINSIC constexpr auto
2279 __hi256(_Tp __x)
2280 {
2281 static_assert(sizeof(__x) == 64);
2282 return __extract<1, 2>(__x);
2283 }
2284
2285// }}}
2286// __auto_bitcast{{{
2287template <typename _Tp>
2288 struct _AutoCast
2289 {
2290 static_assert(__is_vector_type_v<_Tp>);
2291
2292 const _Tp __x;
2293
2294 template <typename _Up, typename _UVT = _VectorTraits<_Up>>
2295 _GLIBCXX_SIMD_INTRINSIC constexpr operator _Up() const
2296 { return __intrin_bitcast<typename _UVT::type>(__x); }
2297 };
2298
2299template <typename _Tp>
2300 _GLIBCXX_SIMD_INTRINSIC constexpr _AutoCast<_Tp>
2301 __auto_bitcast(const _Tp& __x)
2302 { return {__x}; }
2303
2304template <typename _Tp, size_t _Np>
2305 _GLIBCXX_SIMD_INTRINSIC constexpr
2306 _AutoCast<typename _SimdWrapper<_Tp, _Np>::_BuiltinType>
2307 __auto_bitcast(const _SimdWrapper<_Tp, _Np>& __x)
2308 { return {__x._M_data}; }
2309
2310// }}}
2311// ^^^ ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- ^^^
2312
2313#if _GLIBCXX_SIMD_HAVE_SSE_ABI
2314// __bool_storage_member_type{{{
2315#if _GLIBCXX_SIMD_HAVE_AVX512F && _GLIBCXX_SIMD_X86INTRIN
2316template <size_t _Size>
2317 struct __bool_storage_member_type
2318 {
2319 static_assert((_Size & (_Size - 1)) != 0,
2320 "This trait may only be used for non-power-of-2 sizes. "
2321 "Power-of-2 sizes must be specialized.");
2322 using type =
2323 typename __bool_storage_member_type<std::__bit_ceil(_Size)>::type;
2324 };
2325
2326template <>
2327 struct __bool_storage_member_type<1> { using type = bool; };
2328
2329template <>
2330 struct __bool_storage_member_type<2> { using type = __mmask8; };
2331
2332template <>
2333 struct __bool_storage_member_type<4> { using type = __mmask8; };
2334
2335template <>
2336 struct __bool_storage_member_type<8> { using type = __mmask8; };
2337
2338template <>
2339 struct __bool_storage_member_type<16> { using type = __mmask16; };
2340
2341template <>
2342 struct __bool_storage_member_type<32> { using type = __mmask32; };
2343
2344template <>
2345 struct __bool_storage_member_type<64> { using type = __mmask64; };
2346#endif // _GLIBCXX_SIMD_HAVE_AVX512F
2347
2348// }}}
2349// __intrinsic_type (x86){{{
2350// the following excludes bool via __is_vectorizable
2351#if _GLIBCXX_SIMD_HAVE_SSE
2352template <typename _Tp, size_t _Bytes>
2353 struct __intrinsic_type<_Tp, _Bytes,
2354 enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 64>>
2355 {
2356 static_assert(!is_same_v<_Tp, long double>,
2357 "no __intrinsic_type support for long double on x86");
2358
2359 static constexpr size_t _S_VBytes = _Bytes <= 16 ? 16
2360 : _Bytes <= 32 ? 32
2361 : 64;
2362
2363 using type [[__gnu__::__vector_size__(_S_VBytes)]]
2364 = conditional_t<is_integral_v<_Tp>, long long int, _Tp>;
2365 };
2366#endif // _GLIBCXX_SIMD_HAVE_SSE
2367
2368// }}}
2369#endif // _GLIBCXX_SIMD_HAVE_SSE_ABI
2370// __intrinsic_type (ARM){{{
2371#if _GLIBCXX_SIMD_HAVE_NEON
2372template <>
2373 struct __intrinsic_type<float, 8, void>
2374 { using type = float32x2_t; };
2375
2376template <>
2377 struct __intrinsic_type<float, 16, void>
2378 { using type = float32x4_t; };
2379
2380#if _GLIBCXX_SIMD_HAVE_NEON_A64
2381template <>
2382 struct __intrinsic_type<double, 8, void>
2383 { using type = float64x1_t; };
2384
2385template <>
2386 struct __intrinsic_type<double, 16, void>
2387 { using type = float64x2_t; };
2388#endif
2389
2390#define _GLIBCXX_SIMD_ARM_INTRIN(_Bits, _Np) \
2391template <> \
2392 struct __intrinsic_type<__int_with_sizeof_t<_Bits / 8>, \
2393 _Np * _Bits / 8, void> \
2394 { using type = int##_Bits##x##_Np##_t; }; \
2395template <> \
2396 struct __intrinsic_type<make_unsigned_t<__int_with_sizeof_t<_Bits / 8>>, \
2397 _Np * _Bits / 8, void> \
2398 { using type = uint##_Bits##x##_Np##_t; }
2399_GLIBCXX_SIMD_ARM_INTRIN(8, 8);
2400_GLIBCXX_SIMD_ARM_INTRIN(8, 16);
2401_GLIBCXX_SIMD_ARM_INTRIN(16, 4);
2402_GLIBCXX_SIMD_ARM_INTRIN(16, 8);
2403_GLIBCXX_SIMD_ARM_INTRIN(32, 2);
2404_GLIBCXX_SIMD_ARM_INTRIN(32, 4);
2405_GLIBCXX_SIMD_ARM_INTRIN(64, 1);
2406_GLIBCXX_SIMD_ARM_INTRIN(64, 2);
2407#undef _GLIBCXX_SIMD_ARM_INTRIN
2408
2409template <typename _Tp, size_t _Bytes>
2410 struct __intrinsic_type<_Tp, _Bytes,
2411 enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>>
2412 {
2413 static constexpr int _SVecBytes = _Bytes <= 8 ? 8 : 16;
2414 using _Ip = __int_for_sizeof_t<_Tp>;
2415 using _Up = conditional_t<
2416 is_floating_point_v<_Tp>, _Tp,
2417 conditional_t<is_unsigned_v<_Tp>, make_unsigned_t<_Ip>, _Ip>>;
2418 static_assert(!is_same_v<_Tp, _Up> || _SVecBytes != _Bytes,
2419 "should use explicit specialization above");
2420 using type = typename __intrinsic_type<_Up, _SVecBytes>::type;
2421 };
2422#endif // _GLIBCXX_SIMD_HAVE_NEON
2423
2424// }}}
2425// __intrinsic_type (PPC){{{
2426#ifdef __ALTIVEC__
2427template <typename _Tp>
2428 struct __intrinsic_type_impl;
2429
2430#define _GLIBCXX_SIMD_PPC_INTRIN(_Tp) \
2431 template <> \
2432 struct __intrinsic_type_impl<_Tp> { using type = __vector _Tp; }
2433_GLIBCXX_SIMD_PPC_INTRIN(float);
2434#ifdef __VSX__
2435_GLIBCXX_SIMD_PPC_INTRIN(double);
2436#endif
2437_GLIBCXX_SIMD_PPC_INTRIN(signed char);
2438_GLIBCXX_SIMD_PPC_INTRIN(unsigned char);
2439_GLIBCXX_SIMD_PPC_INTRIN(signed short);
2440_GLIBCXX_SIMD_PPC_INTRIN(unsigned short);
2441_GLIBCXX_SIMD_PPC_INTRIN(signed int);
2442_GLIBCXX_SIMD_PPC_INTRIN(unsigned int);
2443#if defined __VSX__ || __SIZEOF_LONG__ == 4
2444_GLIBCXX_SIMD_PPC_INTRIN(signed long);
2445_GLIBCXX_SIMD_PPC_INTRIN(unsigned long);
2446#endif
2447#ifdef __VSX__
2448_GLIBCXX_SIMD_PPC_INTRIN(signed long long);
2449_GLIBCXX_SIMD_PPC_INTRIN(unsigned long long);
2450#endif
2451#undef _GLIBCXX_SIMD_PPC_INTRIN
2452
2453template <typename _Tp, size_t _Bytes>
2454 struct __intrinsic_type<_Tp, _Bytes,
2455 enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>>
2456 {
2457 static constexpr bool _S_is_ldouble = is_same_v<_Tp, long double>;
2458 // allow _Tp == long double with -mlong-double-64
2459 static_assert(!(_S_is_ldouble && sizeof(long double) > sizeof(double)),
2460 "no __intrinsic_type support for 128-bit floating point on PowerPC");
2461#ifndef __VSX__
2462 static_assert(!(is_same_v<_Tp, double>
2463 || (_S_is_ldouble && sizeof(long double) == sizeof(double))),
2464 "no __intrinsic_type support for 64-bit floating point on PowerPC w/o VSX");
2465#endif
2466 using type =
2467 typename __intrinsic_type_impl<
2468 conditional_t<is_floating_point_v<_Tp>,
2469 conditional_t<_S_is_ldouble, double, _Tp>,
2470 __int_for_sizeof_t<_Tp>>>::type;
2471 };
2472#endif // __ALTIVEC__
2473
2474// }}}
2475// _SimdWrapper<bool>{{{1
2476template <size_t _Width>
2477 struct _SimdWrapper<bool, _Width,
2478 void_t<typename __bool_storage_member_type<_Width>::type>>
2479 {
2480 using _BuiltinType = typename __bool_storage_member_type<_Width>::type;
2481 using value_type = bool;
2482
2483 static constexpr size_t _S_full_size = sizeof(_BuiltinType) * __CHAR_BIT__;
2484
2485 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<bool, _S_full_size>
2486 __as_full_vector() const { return _M_data; }
2487
2488 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default;
2489 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_BuiltinType __k)
2490 : _M_data(__k) {};
2491
2492 _GLIBCXX_SIMD_INTRINSIC operator const _BuiltinType&() const
2493 { return _M_data; }
2494
2495 _GLIBCXX_SIMD_INTRINSIC operator _BuiltinType&()
2496 { return _M_data; }
2497
2498 _GLIBCXX_SIMD_INTRINSIC _BuiltinType __intrin() const
2499 { return _M_data; }
2500
2501 _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator[](size_t __i) const
2502 { return _M_data & (_BuiltinType(1) << __i); }
2503
2504 template <size_t __i>
2505 _GLIBCXX_SIMD_INTRINSIC constexpr value_type
2506 operator[](_SizeConstant<__i>) const
2507 { return _M_data & (_BuiltinType(1) << __i); }
2508
2509 _GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, value_type __x)
2510 {
2511 if (__x)
2512 _M_data |= (_BuiltinType(1) << __i);
2513 else
2514 _M_data &= ~(_BuiltinType(1) << __i);
2515 }
2516
2517 _GLIBCXX_SIMD_INTRINSIC
2518 constexpr bool _M_is_constprop() const
2519 { return __builtin_constant_p(_M_data); }
2520
2521 _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const
2522 {
2523 if (__builtin_constant_p(_M_data))
2524 {
2525 constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__;
2526 constexpr _BuiltinType __active_mask
2527 = ~_BuiltinType() >> (__nbits - _Width);
2528 return (_M_data & __active_mask) == 0;
2529 }
2530 return false;
2531 }
2532
2533 _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const
2534 {
2535 if (__builtin_constant_p(_M_data))
2536 {
2537 constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__;
2538 constexpr _BuiltinType __active_mask
2539 = ~_BuiltinType() >> (__nbits - _Width);
2540 return (_M_data & __active_mask) == __active_mask;
2541 }
2542 return false;
2543 }
2544
2545 _BuiltinType _M_data;
2546 };
2547
2548// _SimdWrapperBase{{{1
2549template <bool _MustZeroInitPadding, typename _BuiltinType>
2550 struct _SimdWrapperBase;
2551
2552template <typename _BuiltinType>
2553 struct _SimdWrapperBase<false, _BuiltinType> // no padding or no SNaNs
2554 {
2555 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() = default;
2556 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init)
2557 : _M_data(__init)
2558 {}
2559
2560 _BuiltinType _M_data;
2561 };
2562
2563template <typename _BuiltinType>
2564 struct _SimdWrapperBase<true, _BuiltinType> // with padding that needs to
2565 // never become SNaN
2566 {
2567 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() : _M_data() {}
2568 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init)
2569 : _M_data(__init)
2570 {}
2571
2572 _BuiltinType _M_data;
2573 };
2574
2575// }}}
2576// _SimdWrapper{{{
2577template <typename _Tp, size_t _Width>
2578 struct _SimdWrapper<
2579 _Tp, _Width,
2580 void_t<__vector_type_t<_Tp, _Width>, __intrinsic_type_t<_Tp, _Width>>>
2581 : _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value
2582 && sizeof(_Tp) * _Width
2583 == sizeof(__vector_type_t<_Tp, _Width>),
2584 __vector_type_t<_Tp, _Width>>
2585 {
2586 using _Base
2587 = _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value
2588 && sizeof(_Tp) * _Width
2589 == sizeof(__vector_type_t<_Tp, _Width>),
2590 __vector_type_t<_Tp, _Width>>;
2591
2592 static_assert(__is_vectorizable_v<_Tp>);
2593 static_assert(_Width >= 2); // 1 doesn't make sense, use _Tp directly then
2594
2595 using _BuiltinType = __vector_type_t<_Tp, _Width>;
2596 using value_type = _Tp;
2597
2598 static inline constexpr size_t _S_full_size
2599 = sizeof(_BuiltinType) / sizeof(value_type);
2600 static inline constexpr int _S_size = _Width;
2601 static inline constexpr bool _S_is_partial = _S_full_size != _S_size;
2602
2603 using _Base::_M_data;
2604
2605 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<_Tp, _S_full_size>
2606 __as_full_vector() const
2607 { return _M_data; }
2608
2609 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(initializer_list<_Tp> __init)
2610 : _Base(__generate_from_n_evaluations<_Width, _BuiltinType>(
2611 [&](auto __i) { return __init.begin()[__i.value]; })) {}
2612
2613 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default;
2614 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(const _SimdWrapper&)
2615 = default;
2616 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_SimdWrapper&&) = default;
2617
2618 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper&
2619 operator=(const _SimdWrapper&) = default;
2620 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper&
2621 operator=(_SimdWrapper&&) = default;
2622
2623 template <typename _V, typename = enable_if_t<disjunction_v<
2624 is_same<_V, __vector_type_t<_Tp, _Width>>,
2625 is_same<_V, __intrinsic_type_t<_Tp, _Width>>>>>
2626 _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_V __x)
2627 // __vector_bitcast can convert e.g. __m128 to __vector(2) float
2628 : _Base(__vector_bitcast<_Tp, _Width>(__x)) {}
2629
2630 template <typename... _As,
2631 typename = enable_if_t<((is_same_v<simd_abi::scalar, _As> && ...)
2632 && sizeof...(_As) <= _Width)>>
2633 _GLIBCXX_SIMD_INTRINSIC constexpr
2634 operator _SimdTuple<_Tp, _As...>() const
2635 {
2636 const auto& dd = _M_data; // workaround for GCC7 ICE
2637 return __generate_from_n_evaluations<sizeof...(_As),
2638 _SimdTuple<_Tp, _As...>>([&](
2639 auto __i) constexpr { return dd[int(__i)]; });
2640 }
2641
2642 _GLIBCXX_SIMD_INTRINSIC constexpr operator const _BuiltinType&() const
2643 { return _M_data; }
2644
2645 _GLIBCXX_SIMD_INTRINSIC constexpr operator _BuiltinType&()
2646 { return _M_data; }
2647
2648 _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](size_t __i) const
2649 { return _M_data[__i]; }
2650
2651 template <size_t __i>
2652 _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](_SizeConstant<__i>) const
2653 { return _M_data[__i]; }
2654
2655 _GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, _Tp __x)
2656 { _M_data[__i] = __x; }
2657
2658 _GLIBCXX_SIMD_INTRINSIC
2659 constexpr bool _M_is_constprop() const
2660 { return __builtin_constant_p(_M_data); }
2661
2662 _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const
2663 {
2664 if (__builtin_constant_p(_M_data))
2665 {
2666 bool __r = true;
2667 if constexpr (is_floating_point_v<_Tp>)
2668 {
2669 using _Ip = __int_for_sizeof_t<_Tp>;
2670 const auto __intdata = __vector_bitcast<_Ip>(_M_data);
2671 __execute_n_times<_Width>(
2672 [&](auto __i) { __r &= __intdata[__i.value] == _Ip(); });
2673 }
2674 else
2675 __execute_n_times<_Width>(
2676 [&](auto __i) { __r &= _M_data[__i.value] == _Tp(); });
2677 if (__builtin_constant_p(__r))
2678 return __r;
2679 }
2680 return false;
2681 }
2682
2683 _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const
2684 {
2685 if (__builtin_constant_p(_M_data))
2686 {
2687 bool __r = true;
2688 if constexpr (is_floating_point_v<_Tp>)
2689 {
2690 using _Ip = __int_for_sizeof_t<_Tp>;
2691 const auto __intdata = __vector_bitcast<_Ip>(_M_data);
2692 __execute_n_times<_Width>(
2693 [&](auto __i) { __r &= __intdata[__i.value] == ~_Ip(); });
2694 }
2695 else
2696 __execute_n_times<_Width>(
2697 [&](auto __i) { __r &= _M_data[__i.value] == ~_Tp(); });
2698 if (__builtin_constant_p(__r))
2699 return __r;
2700 }
2701 return false;
2702 }
2703 };
2704
2705// }}}
2706
2707// __vectorized_sizeof {{{
2708template <typename _Tp>
2709 constexpr size_t
2710 __vectorized_sizeof()
2711 {
2712 if constexpr (!__is_vectorizable_v<_Tp>)
2713 return 0;
2714
2715 if constexpr (sizeof(_Tp) <= 8)
2716 {
2717 // X86:
2718 if constexpr (__have_avx512bw)
2719 return 64;
2720 if constexpr (__have_avx512f && sizeof(_Tp) >= 4)
2721 return 64;
2722 if constexpr (__have_avx2)
2723 return 32;
2724 if constexpr (__have_avx && is_floating_point_v<_Tp>)
2725 return 32;
2726 if constexpr (__have_sse2)
2727 return 16;
2728 if constexpr (__have_sse && is_same_v<_Tp, float>)
2729 return 16;
2730 /* The following is too much trouble because of mixed MMX and x87 code.
2731 * While nothing here explicitly calls MMX instructions of registers,
2732 * they are still emitted but no EMMS cleanup is done.
2733 if constexpr (__have_mmx && sizeof(_Tp) <= 4 && is_integral_v<_Tp>)
2734 return 8;
2735 */
2736
2737 // PowerPC:
2738 if constexpr (__have_power8vec
2739 || (__have_power_vmx && (sizeof(_Tp) < 8))
2740 || (__have_power_vsx && is_floating_point_v<_Tp>) )
2741 return 16;
2742
2743 // ARM:
2744 if constexpr (__have_neon_a64
2745 || (__have_neon_a32 && !is_same_v<_Tp, double>) )
2746 return 16;
2747 if constexpr (__have_neon
2748 && sizeof(_Tp) < 8
2749 // Only allow fp if the user allows non-ICE559 fp (e.g.
2750 // via -ffast-math). ARMv7 NEON fp is not conforming to
2751 // IEC559.
2752 && (__support_neon_float || !is_floating_point_v<_Tp>))
2753 return 16;
2754 }
2755
2756 return sizeof(_Tp);
2757 }
2758
2759// }}}
2760namespace simd_abi {
2761// most of simd_abi is defined in simd_detail.h
2762template <typename _Tp>
2763 inline constexpr int max_fixed_size
2764 = (__have_avx512bw && sizeof(_Tp) == 1) ? 64 : 32;
2765
2766// compatible {{{
2767#if defined __x86_64__ || defined __aarch64__
2768template <typename _Tp>
2769 using compatible = conditional_t<(sizeof(_Tp) <= 8), _VecBuiltin<16>, scalar>;
2770#elif defined __ARM_NEON
2771// FIXME: not sure, probably needs to be scalar (or dependent on the hard-float
2772// ABI?)
2773template <typename _Tp>
2774 using compatible
2775 = conditional_t<(sizeof(_Tp) < 8
2776 && (__support_neon_float || !is_floating_point_v<_Tp>)),
2777 _VecBuiltin<16>, scalar>;
2778#else
2779template <typename>
2780 using compatible = scalar;
2781#endif
2782
2783// }}}
2784// native {{{
2785template <typename _Tp>
2786 constexpr auto
2787 __determine_native_abi()
2788 {
2789 constexpr size_t __bytes = __vectorized_sizeof<_Tp>();
2790 if constexpr (__bytes == sizeof(_Tp))
2791 return static_cast<scalar*>(nullptr);
2792 else if constexpr (__have_avx512vl || (__have_avx512f && __bytes == 64))
2793 return static_cast<_VecBltnBtmsk<__bytes>*>(nullptr);
2794 else
2795 return static_cast<_VecBuiltin<__bytes>*>(nullptr);
2796 }
2797
2798template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>>
2799 using native = remove_pointer_t<decltype(__determine_native_abi<_Tp>())>;
2800
2801// }}}
2802// __default_abi {{{
2803#if defined _GLIBCXX_SIMD_DEFAULT_ABI
2804template <typename _Tp>
2805 using __default_abi = _GLIBCXX_SIMD_DEFAULT_ABI<_Tp>;
2806#else
2807template <typename _Tp>
2808 using __default_abi = compatible<_Tp>;
2809#endif
2810
2811// }}}
2812} // namespace simd_abi
2813
2814// traits {{{1
2815// is_abi_tag {{{2
2816template <typename _Tp, typename = void_t<>>
2817 struct is_abi_tag : false_type {};
2818
2819template <typename _Tp>
2820 struct is_abi_tag<_Tp, void_t<typename _Tp::_IsValidAbiTag>>
2821 : public _Tp::_IsValidAbiTag {};
2822
2823template <typename _Tp>
2824 inline constexpr bool is_abi_tag_v = is_abi_tag<_Tp>::value;
2825
2826// is_simd(_mask) {{{2
2827template <typename _Tp>
2828 struct is_simd : public false_type {};
2829
2830template <typename _Tp>
2831 inline constexpr bool is_simd_v = is_simd<_Tp>::value;
2832
2833template <typename _Tp>
2834 struct is_simd_mask : public false_type {};
2835
2836template <typename _Tp>
2837inline constexpr bool is_simd_mask_v = is_simd_mask<_Tp>::value;
2838
2839// simd_size {{{2
2840template <typename _Tp, typename _Abi, typename = void>
2841 struct __simd_size_impl {};
2842
2843template <typename _Tp, typename _Abi>
2844 struct __simd_size_impl<
2845 _Tp, _Abi,
2846 enable_if_t<conjunction_v<__is_vectorizable<_Tp>, is_abi_tag<_Abi>>>>
2847 : _SizeConstant<_Abi::template _S_size<_Tp>> {};
2848
2849template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2850 struct simd_size : __simd_size_impl<_Tp, _Abi> {};
2851
2852template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2853 inline constexpr size_t simd_size_v = simd_size<_Tp, _Abi>::value;
2854
2855// simd_abi::deduce {{{2
2856template <typename _Tp, size_t _Np, typename = void>
2857 struct __deduce_impl;
2858
2859namespace simd_abi {
2860/**
2861 * @tparam _Tp The requested `value_type` for the elements.
2862 * @tparam _Np The requested number of elements.
2863 * @tparam _Abis This parameter is ignored, since this implementation cannot
2864 * make any use of it. Either __a good native ABI is matched and used as `type`
2865 * alias, or the `fixed_size<_Np>` ABI is used, which internally is built from
2866 * the best matching native ABIs.
2867 */
2868template <typename _Tp, size_t _Np, typename...>
2869 struct deduce : __deduce_impl<_Tp, _Np> {};
2870
2871template <typename _Tp, size_t _Np, typename... _Abis>
2872 using deduce_t = typename deduce<_Tp, _Np, _Abis...>::type;
2873} // namespace simd_abi
2874
2875// }}}2
2876// rebind_simd {{{2
2877template <typename _Tp, typename _V, typename = void>
2878 struct rebind_simd;
2879
2880template <typename _Tp, typename _Up, typename _Abi>
2881 struct rebind_simd<
2882 _Tp, simd<_Up, _Abi>,
2883 void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>>
2884 {
2885 using type
2886 = simd<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>;
2887 };
2888
2889template <typename _Tp, typename _Up, typename _Abi>
2890 struct rebind_simd<
2891 _Tp, simd_mask<_Up, _Abi>,
2892 void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>>
2893 {
2894 using type
2895 = simd_mask<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>;
2896 };
2897
2898template <typename _Tp, typename _V>
2899 using rebind_simd_t = typename rebind_simd<_Tp, _V>::type;
2900
2901// resize_simd {{{2
2902template <int _Np, typename _V, typename = void>
2903 struct resize_simd;
2904
2905template <int _Np, typename _Tp, typename _Abi>
2906 struct resize_simd<_Np, simd<_Tp, _Abi>,
2907 void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>>
2908 { using type = simd<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; };
2909
2910template <int _Np, typename _Tp, typename _Abi>
2911 struct resize_simd<_Np, simd_mask<_Tp, _Abi>,
2912 void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>>
2913 { using type = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; };
2914
2915template <int _Np, typename _V>
2916 using resize_simd_t = typename resize_simd<_Np, _V>::type;
2917
2918// }}}2
2919// memory_alignment {{{2
2920template <typename _Tp, typename _Up = typename _Tp::value_type>
2921 struct memory_alignment
2922 : public _SizeConstant<vector_aligned_tag::_S_alignment<_Tp, _Up>> {};
2923
2924template <typename _Tp, typename _Up = typename _Tp::value_type>
2925 inline constexpr size_t memory_alignment_v = memory_alignment<_Tp, _Up>::value;
2926
2927// class template simd [simd] {{{1
2928template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2929 class simd;
2930
2931template <typename _Tp, typename _Abi>
2932 struct is_simd<simd<_Tp, _Abi>> : public true_type {};
2933
2934template <typename _Tp>
2935 using native_simd = simd<_Tp, simd_abi::native<_Tp>>;
2936
2937template <typename _Tp, int _Np>
2938 using fixed_size_simd = simd<_Tp, simd_abi::fixed_size<_Np>>;
2939
2940template <typename _Tp, size_t _Np>
2941 using __deduced_simd = simd<_Tp, simd_abi::deduce_t<_Tp, _Np>>;
2942
2943// class template simd_mask [simd_mask] {{{1
2944template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2945 class simd_mask;
2946
2947template <typename _Tp, typename _Abi>
2948 struct is_simd_mask<simd_mask<_Tp, _Abi>> : public true_type {};
2949
2950template <typename _Tp>
2951 using native_simd_mask = simd_mask<_Tp, simd_abi::native<_Tp>>;
2952
2953template <typename _Tp, int _Np>
2954 using fixed_size_simd_mask = simd_mask<_Tp, simd_abi::fixed_size<_Np>>;
2955
2956template <typename _Tp, size_t _Np>
2957 using __deduced_simd_mask = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np>>;
2958
2959// casts [simd.casts] {{{1
2960// static_simd_cast {{{2
2961template <typename _Tp, typename _Up, typename _Ap, bool = is_simd_v<_Tp>,
2962 typename = void>
2963 struct __static_simd_cast_return_type;
2964
2965template <typename _Tp, typename _A0, typename _Up, typename _Ap>
2966 struct __static_simd_cast_return_type<simd_mask<_Tp, _A0>, _Up, _Ap, false,
2967 void>
2968 : __static_simd_cast_return_type<simd<_Tp, _A0>, _Up, _Ap> {};
2969
2970template <typename _Tp, typename _Up, typename _Ap>
2971 struct __static_simd_cast_return_type<
2972 _Tp, _Up, _Ap, true, enable_if_t<_Tp::size() == simd_size_v<_Up, _Ap>>>
2973 { using type = _Tp; };
2974
2975template <typename _Tp, typename _Ap>
2976 struct __static_simd_cast_return_type<_Tp, _Tp, _Ap, false,
2977#ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66
2978 enable_if_t<__is_vectorizable_v<_Tp>>
2979#else
2980 void
2981#endif
2982 >
2983 { using type = simd<_Tp, _Ap>; };
2984
2985template <typename _Tp, typename = void>
2986 struct __safe_make_signed { using type = _Tp;};
2987
2988template <typename _Tp>
2989 struct __safe_make_signed<_Tp, enable_if_t<is_integral_v<_Tp>>>
2990 {
2991 // the extra make_unsigned_t is because of PR85951
2992 using type = make_signed_t<make_unsigned_t<_Tp>>;
2993 };
2994
2995template <typename _Tp>
2996 using safe_make_signed_t = typename __safe_make_signed<_Tp>::type;
2997
2998template <typename _Tp, typename _Up, typename _Ap>
2999 struct __static_simd_cast_return_type<_Tp, _Up, _Ap, false,
3000#ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66
3001 enable_if_t<__is_vectorizable_v<_Tp>>
3002#else
3003 void
3004#endif
3005 >
3006 {
3007 using type = conditional_t<
3008 (is_integral_v<_Up> && is_integral_v<_Tp> &&
3009#ifndef _GLIBCXX_SIMD_FIX_P2TS_ISSUE65
3010 is_signed_v<_Up> != is_signed_v<_Tp> &&
3011#endif
3012 is_same_v<safe_make_signed_t<_Up>, safe_make_signed_t<_Tp>>),
3013 simd<_Tp, _Ap>, fixed_size_simd<_Tp, simd_size_v<_Up, _Ap>>>;
3014 };
3015
3016template <typename _Tp, typename _Up, typename _Ap,
3017 typename _R
3018 = typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type>
3019 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _R
3020 static_simd_cast(const simd<_Up, _Ap>& __x)
3021 {
3022 if constexpr (is_same<_R, simd<_Up, _Ap>>::value)
3023 return __x;
3024 else
3025 {
3026 _SimdConverter<_Up, _Ap, typename _R::value_type, typename _R::abi_type>
3027 __c;
3028 return _R(__private_init, __c(__data(__x)));
3029 }
3030 }
3031
3032namespace __proposed {
3033template <typename _Tp, typename _Up, typename _Ap,
3034 typename _R
3035 = typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type>
3036 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR typename _R::mask_type
3037 static_simd_cast(const simd_mask<_Up, _Ap>& __x)
3038 {
3039 using _RM = typename _R::mask_type;
3040 return {__private_init, _RM::abi_type::_MaskImpl::template _S_convert<
3041 typename _RM::simd_type::value_type>(__x)};
3042 }
3043
3044template <typename _To, typename _Up, typename _Abi>
3045 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3046 _To
3047 simd_bit_cast(const simd<_Up, _Abi>& __x)
3048 {
3049 using _Tp = typename _To::value_type;
3050 using _ToMember = typename _SimdTraits<_Tp, typename _To::abi_type>::_SimdMember;
3051 using _From = simd<_Up, _Abi>;
3052 using _FromMember = typename _SimdTraits<_Up, _Abi>::_SimdMember;
3053 // with concepts, the following should be constraints
3054 static_assert(sizeof(_To) == sizeof(_From));
3055 static_assert(is_trivially_copyable_v<_Tp> && is_trivially_copyable_v<_Up>);
3056 static_assert(is_trivially_copyable_v<_ToMember> && is_trivially_copyable_v<_FromMember>);
3057#if __has_builtin(__builtin_bit_cast)
3058 return {__private_init, __builtin_bit_cast(_ToMember, __data(__x))};
3059#else
3060 return {__private_init, __bit_cast<_ToMember>(__data(__x))};
3061#endif
3062 }
3063
3064template <typename _To, typename _Up, typename _Abi>
3065 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3066 _To
3067 simd_bit_cast(const simd_mask<_Up, _Abi>& __x)
3068 {
3069 using _From = simd_mask<_Up, _Abi>;
3070 static_assert(sizeof(_To) == sizeof(_From));
3071 static_assert(is_trivially_copyable_v<_From>);
3072 // _To can be simd<T, A>, specifically simd<T, fixed_size<N>> in which case _To is not trivially
3073 // copyable.
3074 if constexpr (is_simd_v<_To>)
3075 {
3076 using _Tp = typename _To::value_type;
3077 using _ToMember = typename _SimdTraits<_Tp, typename _To::abi_type>::_SimdMember;
3078 static_assert(is_trivially_copyable_v<_ToMember>);
3079#if __has_builtin(__builtin_bit_cast)
3080 return {__private_init, __builtin_bit_cast(_ToMember, __x)};
3081#else
3082 return {__private_init, __bit_cast<_ToMember>(__x)};
3083#endif
3084 }
3085 else
3086 {
3087 static_assert(is_trivially_copyable_v<_To>);
3088#if __has_builtin(__builtin_bit_cast)
3089 return __builtin_bit_cast(_To, __x);
3090#else
3091 return __bit_cast<_To>(__x);
3092#endif
3093 }
3094 }
3095} // namespace __proposed
3096
3097// simd_cast {{{2
3098template <typename _Tp, typename _Up, typename _Ap,
3099 typename _To = __value_type_or_identity_t<_Tp>>
3100 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto
3101 simd_cast(const simd<_ValuePreserving<_Up, _To>, _Ap>& __x)
3102 -> decltype(static_simd_cast<_Tp>(__x))
3103 { return static_simd_cast<_Tp>(__x); }
3104
3105namespace __proposed {
3106template <typename _Tp, typename _Up, typename _Ap,
3107 typename _To = __value_type_or_identity_t<_Tp>>
3108 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto
3109 simd_cast(const simd_mask<_ValuePreserving<_Up, _To>, _Ap>& __x)
3110 -> decltype(static_simd_cast<_Tp>(__x))
3111 { return static_simd_cast<_Tp>(__x); }
3112} // namespace __proposed
3113
3114// }}}2
3115// resizing_simd_cast {{{
3116namespace __proposed {
3117/* Proposed spec:
3118
3119template <class T, class U, class Abi>
3120T resizing_simd_cast(const simd<U, Abi>& x)
3121
3122p1 Constraints:
3123 - is_simd_v<T> is true and
3124 - T::value_type is the same type as U
3125
3126p2 Returns:
3127 A simd object with the i^th element initialized to x[i] for all i in the
3128 range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger
3129 than simd_size_v<U, Abi>, the remaining elements are value-initialized.
3130
3131template <class T, class U, class Abi>
3132T resizing_simd_cast(const simd_mask<U, Abi>& x)
3133
3134p1 Constraints: is_simd_mask_v<T> is true
3135
3136p2 Returns:
3137 A simd_mask object with the i^th element initialized to x[i] for all i in
3138the range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger
3139 than simd_size_v<U, Abi>, the remaining elements are initialized to false.
3140
3141 */
3142
3143template <typename _Tp, typename _Up, typename _Ap>
3144 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR enable_if_t<
3145 conjunction_v<is_simd<_Tp>, is_same<typename _Tp::value_type, _Up>>, _Tp>
3146 resizing_simd_cast(const simd<_Up, _Ap>& __x)
3147 {
3148 if constexpr (is_same_v<typename _Tp::abi_type, _Ap>)
3149 return __x;
3150 else if constexpr (simd_size_v<_Up, _Ap> == 1)
3151 {
3152 _Tp __r{};
3153 __r[0] = __x[0];
3154 return __r;
3155 }
3156 else if constexpr (_Tp::size() == 1)
3157 return __x[0];
3158 else if constexpr (sizeof(_Tp) == sizeof(__x)
3159 && !__is_fixed_size_abi_v<_Ap>)
3160 return {__private_init,
3161 __vector_bitcast<typename _Tp::value_type, _Tp::size()>(
3162 _Ap::_S_masked(__data(__x))._M_data)};
3163 else
3164 {
3165 _Tp __r{};
3166 __builtin_memcpy(&__data(__r), &__data(__x),
3167 sizeof(_Up)
3168 * std::min(_Tp::size(), simd_size_v<_Up, _Ap>));
3169 return __r;
3170 }
3171 }
3172
3173template <typename _Tp, typename _Up, typename _Ap>
3174 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3175 enable_if_t<is_simd_mask_v<_Tp>, _Tp>
3176 resizing_simd_cast(const simd_mask<_Up, _Ap>& __x)
3177 {
3178 return {__private_init, _Tp::abi_type::_MaskImpl::template _S_convert<
3179 typename _Tp::simd_type::value_type>(__x)};
3180 }
3181} // namespace __proposed
3182
3183// }}}
3184// to_fixed_size {{{2
3185template <typename _Tp, int _Np>
3186 _GLIBCXX_SIMD_INTRINSIC fixed_size_simd<_Tp, _Np>
3187 to_fixed_size(const fixed_size_simd<_Tp, _Np>& __x)
3188 { return __x; }
3189
3190template <typename _Tp, int _Np>
3191 _GLIBCXX_SIMD_INTRINSIC fixed_size_simd_mask<_Tp, _Np>
3192 to_fixed_size(const fixed_size_simd_mask<_Tp, _Np>& __x)
3193 { return __x; }
3194
3195template <typename _Tp, typename _Ap>
3196 _GLIBCXX_SIMD_INTRINSIC auto
3197 to_fixed_size(const simd<_Tp, _Ap>& __x)
3198 {
3199 return simd<_Tp, simd_abi::fixed_size<simd_size_v<_Tp, _Ap>>>([&__x](
3200 auto __i) constexpr { return __x[__i]; });
3201 }
3202
3203template <typename _Tp, typename _Ap>
3204 _GLIBCXX_SIMD_INTRINSIC auto
3205 to_fixed_size(const simd_mask<_Tp, _Ap>& __x)
3206 {
3207 constexpr int _Np = simd_mask<_Tp, _Ap>::size();
3208 fixed_size_simd_mask<_Tp, _Np> __r;
3209 __execute_n_times<_Np>([&](auto __i) constexpr { __r[__i] = __x[__i]; });
3210 return __r;
3211 }
3212
3213// to_native {{{2
3214template <typename _Tp, int _Np>
3215 _GLIBCXX_SIMD_INTRINSIC
3216 enable_if_t<(_Np == native_simd<_Tp>::size()), native_simd<_Tp>>
3217 to_native(const fixed_size_simd<_Tp, _Np>& __x)
3218 {
3219 alignas(memory_alignment_v<native_simd<_Tp>>) _Tp __mem[_Np];
3220 __x.copy_to(__mem, vector_aligned);
3221 return {__mem, vector_aligned};
3222 }
3223
3224template <typename _Tp, size_t _Np>
3225 _GLIBCXX_SIMD_INTRINSIC
3226 enable_if_t<(_Np == native_simd_mask<_Tp>::size()), native_simd_mask<_Tp>>
3227 to_native(const fixed_size_simd_mask<_Tp, _Np>& __x)
3228 {
3229 return native_simd_mask<_Tp>([&](auto __i) constexpr { return __x[__i]; });
3230 }
3231
3232// to_compatible {{{2
3233template <typename _Tp, size_t _Np>
3234 _GLIBCXX_SIMD_INTRINSIC enable_if_t<(_Np == simd<_Tp>::size()), simd<_Tp>>
3235 to_compatible(const simd<_Tp, simd_abi::fixed_size<_Np>>& __x)
3236 {
3237 alignas(memory_alignment_v<simd<_Tp>>) _Tp __mem[_Np];
3238 __x.copy_to(__mem, vector_aligned);
3239 return {__mem, vector_aligned};
3240 }
3241
3242template <typename _Tp, size_t _Np>
3243 _GLIBCXX_SIMD_INTRINSIC
3244 enable_if_t<(_Np == simd_mask<_Tp>::size()), simd_mask<_Tp>>
3245 to_compatible(const simd_mask<_Tp, simd_abi::fixed_size<_Np>>& __x)
3246 { return simd_mask<_Tp>([&](auto __i) constexpr { return __x[__i]; }); }
3247
3248// masked assignment [simd_mask.where] {{{1
3249
3250// where_expression {{{1
3251// const_where_expression<M, T> {{{2
3252template <typename _M, typename _Tp>
3253 class const_where_expression
3254 {
3255 using _V = _Tp;
3256 static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>);
3257
3258 struct _Wrapper { using value_type = _V; };
3259
3260 protected:
3261 using _Impl = typename _V::_Impl;
3262
3263 using value_type =
3264 typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type;
3265
3266 _GLIBCXX_SIMD_INTRINSIC friend const _M&
3267 __get_mask(const const_where_expression& __x)
3268 { return __x._M_k; }
3269
3270 _GLIBCXX_SIMD_INTRINSIC friend const _Tp&
3271 __get_lvalue(const const_where_expression& __x)
3272 { return __x._M_value; }
3273
3274 const _M& _M_k;
3275 _Tp& _M_value;
3276
3277 public:
3278 const_where_expression(const const_where_expression&) = delete;
3279 const_where_expression& operator=(const const_where_expression&) = delete;
3280
3281 _GLIBCXX_SIMD_INTRINSIC const_where_expression(const _M& __kk, const _Tp& dd)
3282 : _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {}
3283
3284 _GLIBCXX_SIMD_INTRINSIC _V
3285 operator-() const&&
3286 {
3287 return {__private_init,
3288 _Impl::template _S_masked_unary<negate>(__data(_M_k),
3289 __data(_M_value))};
3290 }
3291
3292 template <typename _Up, typename _Flags>
3293 [[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _V
3294 copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3295 {
3296 return {__private_init,
3297 _Impl::_S_masked_load(__data(_M_value), __data(_M_k),
3298 _Flags::template _S_apply<_V>(__mem))};
3299 }
3300
3301 template <typename _Up, typename _Flags>
3302 _GLIBCXX_SIMD_INTRINSIC void
3303 copy_to(_LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3304 {
3305 _Impl::_S_masked_store(__data(_M_value),
3306 _Flags::template _S_apply<_V>(__mem),
3307 __data(_M_k));
3308 }
3309 };
3310
3311// const_where_expression<bool, T> {{{2
3312template <typename _Tp>
3313 class const_where_expression<bool, _Tp>
3314 {
3315 using _M = bool;
3316 using _V = _Tp;
3317
3318 static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>);
3319
3320 struct _Wrapper { using value_type = _V; };
3321
3322 protected:
3323 using value_type =
3324 typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type;
3325
3326 _GLIBCXX_SIMD_INTRINSIC friend const _M&
3327 __get_mask(const const_where_expression& __x)
3328 { return __x._M_k; }
3329
3330 _GLIBCXX_SIMD_INTRINSIC friend const _Tp&
3331 __get_lvalue(const const_where_expression& __x)
3332 { return __x._M_value; }
3333
3334 const bool _M_k;
3335 _Tp& _M_value;
3336
3337 public:
3338 const_where_expression(const const_where_expression&) = delete;
3339 const_where_expression& operator=(const const_where_expression&) = delete;
3340
3341 _GLIBCXX_SIMD_INTRINSIC const_where_expression(const bool __kk, const _Tp& dd)
3342 : _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {}
3343
3344 _GLIBCXX_SIMD_INTRINSIC _V operator-() const&&
3345 { return _M_k ? -_M_value : _M_value; }
3346
3347 template <typename _Up, typename _Flags>
3348 [[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _V
3349 copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3350 { return _M_k ? static_cast<_V>(__mem[0]) : _M_value; }
3351
3352 template <typename _Up, typename _Flags>
3353 _GLIBCXX_SIMD_INTRINSIC void
3354 copy_to(_LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3355 {
3356 if (_M_k)
3357 __mem[0] = _M_value;
3358 }
3359 };
3360
3361// where_expression<M, T> {{{2
3362template <typename _M, typename _Tp>
3363 class where_expression : public const_where_expression<_M, _Tp>
3364 {
3365 using _Impl = typename const_where_expression<_M, _Tp>::_Impl;
3366
3367 static_assert(!is_const<_Tp>::value,
3368 "where_expression may only be instantiated with __a non-const "
3369 "_Tp parameter");
3370
3371 using typename const_where_expression<_M, _Tp>::value_type;
3372 using const_where_expression<_M, _Tp>::_M_k;
3373 using const_where_expression<_M, _Tp>::_M_value;
3374
3375 static_assert(
3376 is_same<typename _M::abi_type, typename _Tp::abi_type>::value, "");
3377 static_assert(_M::size() == _Tp::size(), "");
3378
3379 _GLIBCXX_SIMD_INTRINSIC friend _Tp& __get_lvalue(where_expression& __x)
3380 { return __x._M_value; }
3381
3382 public:
3383 where_expression(const where_expression&) = delete;
3384 where_expression& operator=(const where_expression&) = delete;
3385
3386 _GLIBCXX_SIMD_INTRINSIC where_expression(const _M& __kk, _Tp& dd)
3387 : const_where_expression<_M, _Tp>(__kk, dd) {}
3388
3389 template <typename _Up>
3390 _GLIBCXX_SIMD_INTRINSIC void operator=(_Up&& __x) &&
3391 {
3392 _Impl::_S_masked_assign(__data(_M_k), __data(_M_value),
3393 __to_value_type_or_member_type<_Tp>(
3394 static_cast<_Up&&>(__x)));
3395 }
3396
3397#define _GLIBCXX_SIMD_OP_(__op, __name) \
3398 template <typename _Up> \
3399 _GLIBCXX_SIMD_INTRINSIC void operator __op##=(_Up&& __x)&& \
3400 { \
3401 _Impl::template _S_masked_cassign( \
3402 __data(_M_k), __data(_M_value), \
3403 __to_value_type_or_member_type<_Tp>(static_cast<_Up&&>(__x)), \
3404 [](auto __impl, auto __lhs, auto __rhs) constexpr { \
3405 return __impl.__name(__lhs, __rhs); \
3406 }); \
3407 } \
3408 static_assert(true)
3409 _GLIBCXX_SIMD_OP_(+, _S_plus);
3410 _GLIBCXX_SIMD_OP_(-, _S_minus);
3411 _GLIBCXX_SIMD_OP_(*, _S_multiplies);
3412 _GLIBCXX_SIMD_OP_(/, _S_divides);
3413 _GLIBCXX_SIMD_OP_(%, _S_modulus);
3414 _GLIBCXX_SIMD_OP_(&, _S_bit_and);
3415 _GLIBCXX_SIMD_OP_(|, _S_bit_or);
3416 _GLIBCXX_SIMD_OP_(^, _S_bit_xor);
3417 _GLIBCXX_SIMD_OP_(<<, _S_shift_left);
3418 _GLIBCXX_SIMD_OP_(>>, _S_shift_right);
3419#undef _GLIBCXX_SIMD_OP_
3420
3421 _GLIBCXX_SIMD_INTRINSIC void operator++() &&
3422 {
3423 __data(_M_value)
3424 = _Impl::template _S_masked_unary<__increment>(__data(_M_k),
3425 __data(_M_value));
3426 }
3427
3428 _GLIBCXX_SIMD_INTRINSIC void operator++(int) &&
3429 {
3430 __data(_M_value)
3431 = _Impl::template _S_masked_unary<__increment>(__data(_M_k),
3432 __data(_M_value));
3433 }
3434
3435 _GLIBCXX_SIMD_INTRINSIC void operator--() &&
3436 {
3437 __data(_M_value)
3438 = _Impl::template _S_masked_unary<__decrement>(__data(_M_k),
3439 __data(_M_value));
3440 }
3441
3442 _GLIBCXX_SIMD_INTRINSIC void operator--(int) &&
3443 {
3444 __data(_M_value)
3445 = _Impl::template _S_masked_unary<__decrement>(__data(_M_k),
3446 __data(_M_value));
3447 }
3448
3449 // intentionally hides const_where_expression::copy_from
3450 template <typename _Up, typename _Flags>
3451 _GLIBCXX_SIMD_INTRINSIC void
3452 copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) &&
3453 {
3454 __data(_M_value)
3455 = _Impl::_S_masked_load(__data(_M_value), __data(_M_k),
3456 _Flags::template _S_apply<_Tp>(__mem));
3457 }
3458 };
3459
3460// where_expression<bool, T> {{{2
3461template <typename _Tp>
3462 class where_expression<bool, _Tp> : public const_where_expression<bool, _Tp>
3463 {
3464 using _M = bool;
3465 using typename const_where_expression<_M, _Tp>::value_type;
3466 using const_where_expression<_M, _Tp>::_M_k;
3467 using const_where_expression<_M, _Tp>::_M_value;
3468
3469 public:
3470 where_expression(const where_expression&) = delete;
3471 where_expression& operator=(const where_expression&) = delete;
3472
3473 _GLIBCXX_SIMD_INTRINSIC where_expression(const _M& __kk, _Tp& dd)
3474 : const_where_expression<_M, _Tp>(__kk, dd) {}
3475
3476#define _GLIBCXX_SIMD_OP_(__op) \
3477 template <typename _Up> \
3478 _GLIBCXX_SIMD_INTRINSIC void operator __op(_Up&& __x)&& \
3479 { if (_M_k) _M_value __op static_cast<_Up&&>(__x); }
3480
3481 _GLIBCXX_SIMD_OP_(=)
3482 _GLIBCXX_SIMD_OP_(+=)
3483 _GLIBCXX_SIMD_OP_(-=)
3484 _GLIBCXX_SIMD_OP_(*=)
3485 _GLIBCXX_SIMD_OP_(/=)
3486 _GLIBCXX_SIMD_OP_(%=)
3487 _GLIBCXX_SIMD_OP_(&=)
3488 _GLIBCXX_SIMD_OP_(|=)
3489 _GLIBCXX_SIMD_OP_(^=)
3490 _GLIBCXX_SIMD_OP_(<<=)
3491 _GLIBCXX_SIMD_OP_(>>=)
3492 #undef _GLIBCXX_SIMD_OP_
3493
3494 _GLIBCXX_SIMD_INTRINSIC void operator++() &&
3495 { if (_M_k) ++_M_value; }
3496
3497 _GLIBCXX_SIMD_INTRINSIC void operator++(int) &&
3498 { if (_M_k) ++_M_value; }
3499
3500 _GLIBCXX_SIMD_INTRINSIC void operator--() &&
3501 { if (_M_k) --_M_value; }
3502
3503 _GLIBCXX_SIMD_INTRINSIC void operator--(int) &&
3504 { if (_M_k) --_M_value; }
3505
3506 // intentionally hides const_where_expression::copy_from
3507 template <typename _Up, typename _Flags>
3508 _GLIBCXX_SIMD_INTRINSIC void
3509 copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) &&
3510 { if (_M_k) _M_value = __mem[0]; }
3511 };
3512
3513// where {{{1
3514template <typename _Tp, typename _Ap>
3515 _GLIBCXX_SIMD_INTRINSIC where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>>
3516 where(const typename simd<_Tp, _Ap>::mask_type& __k, simd<_Tp, _Ap>& __value)
3517 { return {__k, __value}; }
3518
3519template <typename _Tp, typename _Ap>
3520 _GLIBCXX_SIMD_INTRINSIC
3521 const_where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>>
3522 where(const typename simd<_Tp, _Ap>::mask_type& __k,
3523 const simd<_Tp, _Ap>& __value)
3524 { return {__k, __value}; }
3525
3526template <typename _Tp, typename _Ap>
3527 _GLIBCXX_SIMD_INTRINSIC
3528 where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>>
3529 where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k,
3530 simd_mask<_Tp, _Ap>& __value)
3531 { return {__k, __value}; }
3532
3533template <typename _Tp, typename _Ap>
3534 _GLIBCXX_SIMD_INTRINSIC
3535 const_where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>>
3536 where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k,
3537 const simd_mask<_Tp, _Ap>& __value)
3538 { return {__k, __value}; }
3539
3540template <typename _Tp>
3541 _GLIBCXX_SIMD_INTRINSIC where_expression<bool, _Tp>
3542 where(_ExactBool __k, _Tp& __value)
3543 { return {__k, __value}; }
3544
3545template <typename _Tp>
3546 _GLIBCXX_SIMD_INTRINSIC const_where_expression<bool, _Tp>
3547 where(_ExactBool __k, const _Tp& __value)
3548 { return {__k, __value}; }
3549
3550 template <typename _Tp, typename _Ap>
3551 void where(bool __k, simd<_Tp, _Ap>& __value) = delete;
3552
3553 template <typename _Tp, typename _Ap>
3554 void where(bool __k, const simd<_Tp, _Ap>& __value) = delete;
3555
3556// proposed mask iterations {{{1
3557namespace __proposed {
3558template <size_t _Np>
3559 class where_range
3560 {
3561 const bitset<_Np> __bits;
3562
3563 public:
3564 where_range(bitset<_Np> __b) : __bits(__b) {}
3565
3566 class iterator
3567 {
3568 size_t __mask;
3569 size_t __bit;
3570
3571 _GLIBCXX_SIMD_INTRINSIC void __next_bit()
3572 { __bit = __builtin_ctzl(__mask); }
3573
3574 _GLIBCXX_SIMD_INTRINSIC void __reset_lsb()
3575 {
3576 // 01100100 - 1 = 01100011
3577 __mask &= (__mask - 1);
3578 // __asm__("btr %1,%0" : "+r"(__mask) : "r"(__bit));
3579 }
3580
3581 public:
3582 iterator(decltype(__mask) __m) : __mask(__m) { __next_bit(); }
3583 iterator(const iterator&) = default;
3584 iterator(iterator&&) = default;
3585
3586 _GLIBCXX_SIMD_ALWAYS_INLINE size_t operator->() const
3587 { return __bit; }
3588
3589 _GLIBCXX_SIMD_ALWAYS_INLINE size_t operator*() const
3590 { return __bit; }
3591
3592 _GLIBCXX_SIMD_ALWAYS_INLINE iterator& operator++()
3593 {
3594 __reset_lsb();
3595 __next_bit();
3596 return *this;
3597 }
3598
3599 _GLIBCXX_SIMD_ALWAYS_INLINE iterator operator++(int)
3600 {
3601 iterator __tmp = *this;
3602 __reset_lsb();
3603 __next_bit();
3604 return __tmp;
3605 }
3606
3607 _GLIBCXX_SIMD_ALWAYS_INLINE bool operator==(const iterator& __rhs) const
3608 { return __mask == __rhs.__mask; }
3609
3610 _GLIBCXX_SIMD_ALWAYS_INLINE bool operator!=(const iterator& __rhs) const
3611 { return __mask != __rhs.__mask; }
3612 };
3613
3614 iterator begin() const
3615 { return __bits.to_ullong(); }
3616
3617 iterator end() const
3618 { return 0; }
3619 };
3620
3621template <typename _Tp, typename _Ap>
3622 where_range<simd_size_v<_Tp, _Ap>>
3623 where(const simd_mask<_Tp, _Ap>& __k)
3624 { return __k.__to_bitset(); }
3625
3626} // namespace __proposed
3627
3628// }}}1
3629// reductions [simd.reductions] {{{1
3630template <typename _Tp, typename _Abi, typename _BinaryOperation = plus<>>
3631 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3632 reduce(const simd<_Tp, _Abi>& __v,
3633 _BinaryOperation __binary_op = _BinaryOperation())
3634 { return _Abi::_SimdImpl::_S_reduce(__v, __binary_op); }
3635
3636template <typename _M, typename _V, typename _BinaryOperation = plus<>>
3637 _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3638 reduce(const const_where_expression<_M, _V>& __x,
3639 typename _V::value_type __identity_element,
3640 _BinaryOperation __binary_op)
3641 {
3642 if (__builtin_expect(none_of(__get_mask(__x)), false))
3643 return __identity_element;
3644
3645 _V __tmp = __identity_element;
3646 _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3647 __data(__get_lvalue(__x)));
3648 return reduce(__tmp, __binary_op);
3649 }
3650
3651template <typename _M, typename _V>
3652 _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3653 reduce(const const_where_expression<_M, _V>& __x, plus<> __binary_op = {})
3654 { return reduce(__x, 0, __binary_op); }
3655
3656template <typename _M, typename _V>
3657 _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3658 reduce(const const_where_expression<_M, _V>& __x, multiplies<> __binary_op)
3659 { return reduce(__x, 1, __binary_op); }
3660
3661template <typename _M, typename _V>
3662 _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3663 reduce(const const_where_expression<_M, _V>& __x, bit_and<> __binary_op)
3664 { return reduce(__x, ~typename _V::value_type(), __binary_op); }
3665
3666template <typename _M, typename _V>
3667 _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3668 reduce(const const_where_expression<_M, _V>& __x, bit_or<> __binary_op)
3669 { return reduce(__x, 0, __binary_op); }
3670
3671template <typename _M, typename _V>
3672 _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3673 reduce(const const_where_expression<_M, _V>& __x, bit_xor<> __binary_op)
3674 { return reduce(__x, 0, __binary_op); }
3675
3676template <typename _Tp, typename _Abi>
3677 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3678 hmin(const simd<_Tp, _Abi>& __v) noexcept
3679 {
3680 return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Minimum());
3681 }
3682
3683template <typename _Tp, typename _Abi>
3684 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3685 hmax(const simd<_Tp, _Abi>& __v) noexcept
3686 {
3687 return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Maximum());
3688 }
3689
3690template <typename _M, typename _V>
3691 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3692 typename _V::value_type
3693 hmin(const const_where_expression<_M, _V>& __x) noexcept
3694 {
3695 using _Tp = typename _V::value_type;
3696 constexpr _Tp __id_elem =
3697#ifdef __FINITE_MATH_ONLY__
3698 __finite_max_v<_Tp>;
3699#else
3700 __value_or<__infinity, _Tp>(__finite_max_v<_Tp>);
3701#endif
3702 _V __tmp = __id_elem;
3703 _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3704 __data(__get_lvalue(__x)));
3705 return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Minimum());
3706 }
3707
3708template <typename _M, typename _V>
3709 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3710 typename _V::value_type
3711 hmax(const const_where_expression<_M, _V>& __x) noexcept
3712 {
3713 using _Tp = typename _V::value_type;
3714 constexpr _Tp __id_elem =
3715#ifdef __FINITE_MATH_ONLY__
3716 __finite_min_v<_Tp>;
3717#else
3718 [] {
3719 if constexpr (__value_exists_v<__infinity, _Tp>)
3720 return -__infinity_v<_Tp>;
3721 else
3722 return __finite_min_v<_Tp>;
3723 }();
3724#endif
3725 _V __tmp = __id_elem;
3726 _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3727 __data(__get_lvalue(__x)));
3728 return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Maximum());
3729 }
3730
3731// }}}1
3732// algorithms [simd.alg] {{{
3733template <typename _Tp, typename _Ap>
3734 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3735 min(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3736 { return {__private_init, _Ap::_SimdImpl::_S_min(__data(__a), __data(__b))}; }
3737
3738template <typename _Tp, typename _Ap>
3739 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3740 max(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3741 { return {__private_init, _Ap::_SimdImpl::_S_max(__data(__a), __data(__b))}; }
3742
3743template <typename _Tp, typename _Ap>
3744 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3745 pair<simd<_Tp, _Ap>, simd<_Tp, _Ap>>
3746 minmax(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3747 {
3748 const auto pair_of_members
3749 = _Ap::_SimdImpl::_S_minmax(__data(__a), __data(__b));
3750 return {simd<_Tp, _Ap>(__private_init, pair_of_members.first),
3751 simd<_Tp, _Ap>(__private_init, pair_of_members.second)};
3752 }
3753
3754template <typename _Tp, typename _Ap>
3755 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3756 clamp(const simd<_Tp, _Ap>& __v, const simd<_Tp, _Ap>& __lo,
3757 const simd<_Tp, _Ap>& __hi)
3758 {
3759 using _Impl = typename _Ap::_SimdImpl;
3760 return {__private_init,
3761 _Impl::_S_min(__data(__hi),
3762 _Impl::_S_max(__data(__lo), __data(__v)))};
3763 }
3764
3765// }}}
3766
3767template <size_t... _Sizes, typename _Tp, typename _Ap,
3768 typename = enable_if_t<((_Sizes + ...) == simd<_Tp, _Ap>::size())>>
3769 inline tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...>
3770 split(const simd<_Tp, _Ap>&);
3771
3772// __extract_part {{{
3773template <int _Index, int _Total, int _Combine = 1, typename _Tp, size_t _Np>
3774 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_CONST
3775 _SimdWrapper<_Tp, _Np / _Total * _Combine>
3776 __extract_part(const _SimdWrapper<_Tp, _Np> __x);
3777
3778template <int _Index, int _Parts, int _Combine = 1, typename _Tp, typename _A0,
3779 typename... _As>
3780 _GLIBCXX_SIMD_INTRINSIC auto
3781 __extract_part(const _SimdTuple<_Tp, _A0, _As...>& __x);
3782
3783// }}}
3784// _SizeList {{{
3785template <size_t _V0, size_t... _Values>
3786 struct _SizeList
3787 {
3788 template <size_t _I>
3789 static constexpr size_t _S_at(_SizeConstant<_I> = {})
3790 {
3791 if constexpr (_I == 0)
3792 return _V0;
3793 else
3794 return _SizeList<_Values...>::template _S_at<_I - 1>();
3795 }
3796
3797 template <size_t _I>
3798 static constexpr auto _S_before(_SizeConstant<_I> = {})
3799 {
3800 if constexpr (_I == 0)
3801 return _SizeConstant<0>();
3802 else
3803 return _SizeConstant<
3804 _V0 + _SizeList<_Values...>::template _S_before<_I - 1>()>();
3805 }
3806
3807 template <size_t _Np>
3808 static constexpr auto _S_pop_front(_SizeConstant<_Np> = {})
3809 {
3810 if constexpr (_Np == 0)
3811 return _SizeList();
3812 else
3813 return _SizeList<_Values...>::template _S_pop_front<_Np - 1>();
3814 }
3815 };
3816
3817// }}}
3818// __extract_center {{{
3819template <typename _Tp, size_t _Np>
3820 _GLIBCXX_SIMD_INTRINSIC _SimdWrapper<_Tp, _Np / 2>
3821 __extract_center(_SimdWrapper<_Tp, _Np> __x)
3822 {
3823 static_assert(_Np >= 4);
3824 static_assert(_Np % 4 == 0); // x0 - x1 - x2 - x3 -> return {x1, x2}
3825#if _GLIBCXX_SIMD_X86INTRIN // {{{
3826 if constexpr (__have_avx512f && sizeof(_Tp) * _Np == 64)
3827 {
3828 const auto __intrin = __to_intrin(__x);
3829 if constexpr (is_integral_v<_Tp>)
3830 return __vector_bitcast<_Tp>(_mm512_castsi512_si256(
3831 _mm512_shuffle_i32x4(__intrin, __intrin,
3832 1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3833 else if constexpr (sizeof(_Tp) == 4)
3834 return __vector_bitcast<_Tp>(_mm512_castps512_ps256(
3835 _mm512_shuffle_f32x4(__intrin, __intrin,
3836 1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3837 else if constexpr (sizeof(_Tp) == 8)
3838 return __vector_bitcast<_Tp>(_mm512_castpd512_pd256(
3839 _mm512_shuffle_f64x2(__intrin, __intrin,
3840 1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3841 else
3842 __assert_unreachable<_Tp>();
3843 }
3844 else if constexpr (sizeof(_Tp) * _Np == 32 && is_floating_point_v<_Tp>)
3845 return __vector_bitcast<_Tp>(
3846 _mm_shuffle_pd(__lo128(__vector_bitcast<double>(__x)),
3847 __hi128(__vector_bitcast<double>(__x)), 1));
3848 else if constexpr (sizeof(__x) == 32 && sizeof(_Tp) * _Np <= 32)
3849 return __vector_bitcast<_Tp>(
3850 _mm_alignr_epi8(__hi128(__vector_bitcast<_LLong>(__x)),
3851 __lo128(__vector_bitcast<_LLong>(__x)),
3852 sizeof(_Tp) * _Np / 4));
3853 else
3854#endif // _GLIBCXX_SIMD_X86INTRIN }}}
3855 {
3856 __vector_type_t<_Tp, _Np / 2> __r;
3857 __builtin_memcpy(&__r,
3858 reinterpret_cast<const char*>(&__x)
3859 + sizeof(_Tp) * _Np / 4,
3860 sizeof(_Tp) * _Np / 2);
3861 return __r;
3862 }
3863 }
3864
3865template <typename _Tp, typename _A0, typename... _As>
3866 _GLIBCXX_SIMD_INTRINSIC
3867 _SimdWrapper<_Tp, _SimdTuple<_Tp, _A0, _As...>::_S_size() / 2>
3868 __extract_center(const _SimdTuple<_Tp, _A0, _As...>& __x)
3869 {
3870 if constexpr (sizeof...(_As) == 0)
3871 return __extract_center(__x.first);
3872 else
3873 return __extract_part<1, 4, 2>(__x);
3874 }
3875
3876// }}}
3877// __split_wrapper {{{
3878template <size_t... _Sizes, typename _Tp, typename... _As>
3879 auto
3880 __split_wrapper(_SizeList<_Sizes...>, const _SimdTuple<_Tp, _As...>& __x)
3881 {
3882 return split<_Sizes...>(
3883 fixed_size_simd<_Tp, _SimdTuple<_Tp, _As...>::_S_size()>(__private_init,
3884 __x));
3885 }
3886
3887// }}}
3888
3889// split<simd>(simd) {{{
3890template <typename _V, typename _Ap,
3891 size_t _Parts = simd_size_v<typename _V::value_type, _Ap> / _V::size()>
3892 enable_if_t<simd_size_v<typename _V::value_type, _Ap> == _Parts * _V::size()
3893 && is_simd_v<_V>, array<_V, _Parts>>
3894 split(const simd<typename _V::value_type, _Ap>& __x)
3895 {
3896 using _Tp = typename _V::value_type;
3897 if constexpr (_Parts == 1)
3898 {
3899 return {simd_cast<_V>(__x)};
3900 }
3901 else if (__x._M_is_constprop())
3902 {
3903 return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3904 auto __i) constexpr {
3905 return _V([&](auto __j) constexpr {
3906 return __x[__i * _V::size() + __j];
3907 });
3908 });
3909 }
3910 else if constexpr (
3911 __is_fixed_size_abi_v<_Ap>
3912 && (is_same_v<typename _V::abi_type, simd_abi::scalar>
3913 || (__is_fixed_size_abi_v<typename _V::abi_type>
3914 && sizeof(_V) == sizeof(_Tp) * _V::size() // _V doesn't have padding
3915 )))
3916 {
3917 // fixed_size -> fixed_size (w/o padding) or scalar
3918#ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
3919 const __may_alias<_Tp>* const __element_ptr
3920 = reinterpret_cast<const __may_alias<_Tp>*>(&__data(__x));
3921 return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3922 auto __i) constexpr {
3923 return _V(__element_ptr + __i * _V::size(), vector_aligned);
3924 });
3925#else
3926 const auto& __xx = __data(__x);
3927 return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3928 auto __i) constexpr {
3929 [[maybe_unused]] constexpr size_t __offset
3930 = decltype(__i)::value * _V::size();
3931 return _V([&](auto __j) constexpr {
3932 constexpr _SizeConstant<__j + __offset> __k;
3933 return __xx[__k];
3934 });
3935 });
3936#endif
3937 }
3938 else if constexpr (is_same_v<typename _V::abi_type, simd_abi::scalar>)
3939 {
3940 // normally memcpy should work here as well
3941 return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3942 auto __i) constexpr { return __x[__i]; });
3943 }
3944 else
3945 {
3946 return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3947 auto __i) constexpr {
3948 if constexpr (__is_fixed_size_abi_v<typename _V::abi_type>)
3949 return _V([&](auto __j) constexpr {
3950 return __x[__i * _V::size() + __j];
3951 });
3952 else
3953 return _V(__private_init,
3954 __extract_part<decltype(__i)::value, _Parts>(__data(__x)));
3955 });
3956 }
3957 }
3958
3959// }}}
3960// split<simd_mask>(simd_mask) {{{
3961template <typename _V, typename _Ap,
3962 size_t _Parts
3963 = simd_size_v<typename _V::simd_type::value_type, _Ap> / _V::size()>
3964 enable_if_t<is_simd_mask_v<_V> && simd_size_v<typename
3965 _V::simd_type::value_type, _Ap> == _Parts * _V::size(), array<_V, _Parts>>
3966 split(const simd_mask<typename _V::simd_type::value_type, _Ap>& __x)
3967 {
3968 if constexpr (is_same_v<_Ap, typename _V::abi_type>)
3969 return {__x};
3970 else if constexpr (_Parts == 1)
3971 return {__proposed::static_simd_cast<_V>(__x)};
3972 else if constexpr (_Parts == 2 && __is_sse_abi<typename _V::abi_type>()
3973 && __is_avx_abi<_Ap>())
3974 return {_V(__private_init, __lo128(__data(__x))),
3975 _V(__private_init, __hi128(__data(__x)))};
3976 else if constexpr (_V::size() <= __CHAR_BIT__ * sizeof(_ULLong))
3977 {
3978 const bitset __bits = __x.__to_bitset();
3979 return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3980 auto __i) constexpr {
3981 constexpr size_t __offset = __i * _V::size();
3982 return _V(__bitset_init, (__bits >> __offset).to_ullong());
3983 });
3984 }
3985 else
3986 {
3987 return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3988 auto __i) constexpr {
3989 constexpr size_t __offset = __i * _V::size();
3990 return _V(
3991 __private_init, [&](auto __j) constexpr {
3992 return __x[__j + __offset];
3993 });
3994 });
3995 }
3996 }
3997
3998// }}}
3999// split<_Sizes...>(simd) {{{
4000template <size_t... _Sizes, typename _Tp, typename _Ap, typename>
4001 _GLIBCXX_SIMD_ALWAYS_INLINE
4002 tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...>
4003 split(const simd<_Tp, _Ap>& __x)
4004 {
4005 using _SL = _SizeList<_Sizes...>;
4006 using _Tuple = tuple<__deduced_simd<_Tp, _Sizes>...>;
4007 constexpr size_t _Np = simd_size_v<_Tp, _Ap>;
4008 constexpr size_t _N0 = _SL::template _S_at<0>();
4009 using _V = __deduced_simd<_Tp, _N0>;
4010
4011 if (__x._M_is_constprop())
4012 return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
4013 auto __i) constexpr {
4014 using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
4015 constexpr size_t __offset = _SL::_S_before(__i);
4016 return _Vi([&](auto __j) constexpr { return __x[__offset + __j]; });
4017 });
4018 else if constexpr (_Np == _N0)
4019 {
4020 static_assert(sizeof...(_Sizes) == 1);
4021 return {simd_cast<_V>(__x)};
4022 }
4023 else if constexpr // split from fixed_size, such that __x::first.size == _N0
4024 (__is_fixed_size_abi_v<
4025 _Ap> && __fixed_size_storage_t<_Tp, _Np>::_S_first_size == _N0)
4026 {
4027 static_assert(
4028 !__is_fixed_size_abi_v<typename _V::abi_type>,
4029 "How can <_Tp, _Np> be __a single _SimdTuple entry but __a "
4030 "fixed_size_simd "
4031 "when deduced?");
4032 // extract first and recurse (__split_wrapper is needed to deduce a new
4033 // _Sizes pack)
4034 return tuple_cat(make_tuple(_V(__private_init, __data(__x).first)),
4035 __split_wrapper(_SL::template _S_pop_front<1>(),
4036 __data(__x).second));
4037 }
4038 else if constexpr ((!is_same_v<simd_abi::scalar,
4039 simd_abi::deduce_t<_Tp, _Sizes>> && ...)
4040 && (!__is_fixed_size_abi_v<
4041 simd_abi::deduce_t<_Tp, _Sizes>> && ...))
4042 {
4043 if constexpr (((_Sizes * 2 == _Np) && ...))
4044 return {{__private_init, __extract_part<0, 2>(__data(__x))},
4045 {__private_init, __extract_part<1, 2>(__data(__x))}};
4046 else if constexpr (is_same_v<_SizeList<_Sizes...>,
4047 _SizeList<_Np / 3, _Np / 3, _Np / 3>>)
4048 return {{__private_init, __extract_part<0, 3>(__data(__x))},
4049 {__private_init, __extract_part<1, 3>(__data(__x))},
4050 {__private_init, __extract_part<2, 3>(__data(__x))}};
4051 else if constexpr (is_same_v<_SizeList<_Sizes...>,
4052 _SizeList<2 * _Np / 3, _Np / 3>>)
4053 return {{__private_init, __extract_part<0, 3, 2>(__data(__x))},
4054 {__private_init, __extract_part<2, 3>(__data(__x))}};
4055 else if constexpr (is_same_v<_SizeList<_Sizes...>,
4056 _SizeList<_Np / 3, 2 * _Np / 3>>)
4057 return {{__private_init, __extract_part<0, 3>(__data(__x))},
4058 {__private_init, __extract_part<1, 3, 2>(__data(__x))}};
4059 else if constexpr (is_same_v<_SizeList<_Sizes...>,
4060 _SizeList<_Np / 2, _Np / 4, _Np / 4>>)
4061 return {{__private_init, __extract_part<0, 2>(__data(__x))},
4062 {__private_init, __extract_part<2, 4>(__data(__x))},
4063 {__private_init, __extract_part<3, 4>(__data(__x))}};
4064 else if constexpr (is_same_v<_SizeList<_Sizes...>,
4065 _SizeList<_Np / 4, _Np / 4, _Np / 2>>)
4066 return {{__private_init, __extract_part<0, 4>(__data(__x))},
4067 {__private_init, __extract_part<1, 4>(__data(__x))},
4068 {__private_init, __extract_part<1, 2>(__data(__x))}};
4069 else if constexpr (is_same_v<_SizeList<_Sizes...>,
4070 _SizeList<_Np / 4, _Np / 2, _Np / 4>>)
4071 return {{__private_init, __extract_part<0, 4>(__data(__x))},
4072 {__private_init, __extract_center(__data(__x))},
4073 {__private_init, __extract_part<3, 4>(__data(__x))}};
4074 else if constexpr (((_Sizes * 4 == _Np) && ...))
4075 return {{__private_init, __extract_part<0, 4>(__data(__x))},
4076 {__private_init, __extract_part<1, 4>(__data(__x))},
4077 {__private_init, __extract_part<2, 4>(__data(__x))},
4078 {__private_init, __extract_part<3, 4>(__data(__x))}};
4079 // else fall through
4080 }
4081#ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
4082 const __may_alias<_Tp>* const __element_ptr
4083 = reinterpret_cast<const __may_alias<_Tp>*>(&__x);
4084 return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
4085 auto __i) constexpr {
4086 using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
4087 constexpr size_t __offset = _SL::_S_before(__i);
4088 constexpr size_t __base_align = alignof(simd<_Tp, _Ap>);
4089 constexpr size_t __a
4090 = __base_align - ((__offset * sizeof(_Tp)) % __base_align);
4091 constexpr size_t __b = ((__a - 1) & __a) ^ __a;
4092 constexpr size_t __alignment = __b == 0 ? __a : __b;
4093 return _Vi(__element_ptr + __offset, overaligned<__alignment>);
4094 });
4095#else
4096 return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
4097 auto __i) constexpr {
4098 using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
4099 const auto& __xx = __data(__x);
4100 using _Offset = decltype(_SL::_S_before(__i));
4101 return _Vi([&](auto __j) constexpr {
4102 constexpr _SizeConstant<_Offset::value + __j> __k;
4103 return __xx[__k];
4104 });
4105 });
4106#endif
4107 }
4108
4109// }}}
4110
4111// __subscript_in_pack {{{
4112template <size_t _I, typename _Tp, typename _Ap, typename... _As>
4113 _GLIBCXX_SIMD_INTRINSIC constexpr _Tp
4114 __subscript_in_pack(const simd<_Tp, _Ap>& __x, const simd<_Tp, _As>&... __xs)
4115 {
4116 if constexpr (_I < simd_size_v<_Tp, _Ap>)
4117 return __x[_I];
4118 else
4119 return __subscript_in_pack<_I - simd_size_v<_Tp, _Ap>>(__xs...);
4120 }
4121
4122// }}}
4123// __store_pack_of_simd {{{
4124template <typename _Tp, typename _A0, typename... _As>
4125 _GLIBCXX_SIMD_INTRINSIC void
4126 __store_pack_of_simd(char* __mem, const simd<_Tp, _A0>& __x0,
4127 const simd<_Tp, _As>&... __xs)
4128 {
4129 constexpr size_t __n_bytes = sizeof(_Tp) * simd_size_v<_Tp, _A0>;
4130 __builtin_memcpy(__mem, &__data(__x0), __n_bytes);
4131 if constexpr (sizeof...(__xs) > 0)
4132 __store_pack_of_simd(__mem + __n_bytes, __xs...);
4133 }
4134
4135// }}}
4136// concat(simd...) {{{
4137template <typename _Tp, typename... _As, typename = __detail::__odr_helper>
4138 inline _GLIBCXX_SIMD_CONSTEXPR
4139 simd<_Tp, simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>
4140 concat(const simd<_Tp, _As>&... __xs)
4141 {
4142 using _Rp = __deduced_simd<_Tp, (simd_size_v<_Tp, _As> + ...)>;
4143 if constexpr (sizeof...(__xs) == 1)
4144 return simd_cast<_Rp>(__xs...);
4145 else if ((... && __xs._M_is_constprop()))
4146 return simd<_Tp,
4147 simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>([&](
4148 auto __i) constexpr { return __subscript_in_pack<__i>(__xs...); });
4149 else
4150 {
4151 _Rp __r{};
4152 __store_pack_of_simd(reinterpret_cast<char*>(&__data(__r)), __xs...);
4153 return __r;
4154 }
4155 }
4156
4157// }}}
4158// concat(array<simd>) {{{
4159template <typename _Tp, typename _Abi, size_t _Np>
4160 _GLIBCXX_SIMD_ALWAYS_INLINE
4161 _GLIBCXX_SIMD_CONSTEXPR __deduced_simd<_Tp, simd_size_v<_Tp, _Abi> * _Np>
4162 concat(const array<simd<_Tp, _Abi>, _Np>& __x)
4163 {
4164 return __call_with_subscripts<_Np>(__x, [](const auto&... __xs) {
4165 return concat(__xs...);
4166 });
4167 }
4168
4169// }}}
4170
4171/// @cond undocumented
4172// _SmartReference {{{
4173template <typename _Up, typename _Accessor = _Up,
4174 typename _ValueType = typename _Up::value_type>
4175 class _SmartReference
4176 {
4177 friend _Accessor;
4178 int _M_index;
4179 _Up& _M_obj;
4180
4181 _GLIBCXX_SIMD_INTRINSIC constexpr _ValueType _M_read() const noexcept
4182 {
4183 if constexpr (is_arithmetic_v<_Up>)
4184 return _M_obj;
4185 else
4186 return _M_obj[_M_index];
4187 }
4188
4189 template <typename _Tp>
4190 _GLIBCXX_SIMD_INTRINSIC constexpr void _M_write(_Tp&& __x) const
4191 { _Accessor::_S_set(_M_obj, _M_index, static_cast<_Tp&&>(__x)); }
4192
4193 public:
4194 _GLIBCXX_SIMD_INTRINSIC constexpr
4195 _SmartReference(_Up& __o, int __i) noexcept
4196 : _M_index(__i), _M_obj(__o) {}
4197
4198 using value_type = _ValueType;
4199
4200 _GLIBCXX_SIMD_INTRINSIC _SmartReference(const _SmartReference&) = delete;
4201
4202 _GLIBCXX_SIMD_INTRINSIC constexpr operator value_type() const noexcept
4203 { return _M_read(); }
4204
4205 template <typename _Tp,
4206 typename
4207 = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, value_type>>
4208 _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator=(_Tp&& __x) &&
4209 {
4210 _M_write(static_cast<_Tp&&>(__x));
4211 return {_M_obj, _M_index};
4212 }
4213
4214#define _GLIBCXX_SIMD_OP_(__op) \
4215 template <typename _Tp, \
4216 typename _TT \
4217 = decltype(declval<value_type>() __op declval<_Tp>()), \
4218 typename = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, _TT>, \
4219 typename = _ValuePreservingOrInt<_TT, value_type>> \
4220 _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference \
4221 operator __op##=(_Tp&& __x) && \
4222 { \
4223 const value_type& __lhs = _M_read(); \
4224 _M_write(__lhs __op __x); \
4225 return {_M_obj, _M_index}; \
4226 }
4227 _GLIBCXX_SIMD_ALL_ARITHMETICS(_GLIBCXX_SIMD_OP_);
4228 _GLIBCXX_SIMD_ALL_SHIFTS(_GLIBCXX_SIMD_OP_);
4229 _GLIBCXX_SIMD_ALL_BINARY(_GLIBCXX_SIMD_OP_);
4230#undef _GLIBCXX_SIMD_OP_
4231
4232 template <typename _Tp = void,
4233 typename
4234 = decltype(++declval<conditional_t<true, value_type, _Tp>&>())>
4235 _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator++() &&
4236 {
4237 value_type __x = _M_read();
4238 _M_write(++__x);
4239 return {_M_obj, _M_index};
4240 }
4241
4242 template <typename _Tp = void,
4243 typename
4244 = decltype(declval<conditional_t<true, value_type, _Tp>&>()++)>
4245 _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator++(int) &&
4246 {
4247 const value_type __r = _M_read();
4248 value_type __x = __r;
4249 _M_write(++__x);
4250 return __r;
4251 }
4252
4253 template <typename _Tp = void,
4254 typename
4255 = decltype(--declval<conditional_t<true, value_type, _Tp>&>())>
4256 _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator--() &&
4257 {
4258 value_type __x = _M_read();
4259 _M_write(--__x);
4260 return {_M_obj, _M_index};
4261 }
4262
4263 template <typename _Tp = void,
4264 typename
4265 = decltype(declval<conditional_t<true, value_type, _Tp>&>()--)>
4266 _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator--(int) &&
4267 {
4268 const value_type __r = _M_read();
4269 value_type __x = __r;
4270 _M_write(--__x);
4271 return __r;
4272 }
4273
4274 _GLIBCXX_SIMD_INTRINSIC friend void
4275 swap(_SmartReference&& __a, _SmartReference&& __b) noexcept(
4276 conjunction<
4277 is_nothrow_constructible<value_type, _SmartReference&&>,
4278 is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4279 {
4280 value_type __tmp = static_cast<_SmartReference&&>(__a);
4281 static_cast<_SmartReference&&>(__a) = static_cast<value_type>(__b);
4282 static_cast<_SmartReference&&>(__b) = std::move(__tmp);
4283 }
4284
4285 _GLIBCXX_SIMD_INTRINSIC friend void
4286 swap(value_type& __a, _SmartReference&& __b) noexcept(
4287 conjunction<
4288 is_nothrow_constructible<value_type, value_type&&>,
4289 is_nothrow_assignable<value_type&, value_type&&>,
4290 is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4291 {
4292 value_type __tmp(std::move(__a));
4293 __a = static_cast<value_type>(__b);
4294 static_cast<_SmartReference&&>(__b) = std::move(__tmp);
4295 }
4296
4297 _GLIBCXX_SIMD_INTRINSIC friend void
4298 swap(_SmartReference&& __a, value_type& __b) noexcept(
4299 conjunction<
4300 is_nothrow_constructible<value_type, _SmartReference&&>,
4301 is_nothrow_assignable<value_type&, value_type&&>,
4302 is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4303 {
4304 value_type __tmp(__a);
4305 static_cast<_SmartReference&&>(__a) = std::move(__b);
4306 __b = std::move(__tmp);
4307 }
4308 };
4309
4310// }}}
4311// __scalar_abi_wrapper {{{
4312template <int _Bytes>
4313 struct __scalar_abi_wrapper
4314 {
4315 template <typename _Tp> static constexpr size_t _S_full_size = 1;
4316 template <typename _Tp> static constexpr size_t _S_size = 1;
4317 template <typename _Tp> static constexpr size_t _S_is_partial = false;
4318
4319 template <typename _Tp, typename _Abi = simd_abi::scalar>
4320 static constexpr bool _S_is_valid_v
4321 = _Abi::template _IsValid<_Tp>::value && sizeof(_Tp) == _Bytes;
4322 };
4323
4324// }}}
4325// __decay_abi metafunction {{{
4326template <typename _Tp>
4327 struct __decay_abi { using type = _Tp; };
4328
4329template <int _Bytes>
4330 struct __decay_abi<__scalar_abi_wrapper<_Bytes>>
4331 { using type = simd_abi::scalar; };
4332
4333// }}}
4334// __find_next_valid_abi metafunction {{{1
4335// Given an ABI tag A<N>, find an N2 < N such that A<N2>::_S_is_valid_v<_Tp> ==
4336// true, N2 is a power-of-2, and A<N2>::_S_is_partial<_Tp> is false. Break
4337// recursion at 2 elements in the resulting ABI tag. In this case
4338// type::_S_is_valid_v<_Tp> may be false.
4339template <template <int> class _Abi, int _Bytes, typename _Tp>
4340 struct __find_next_valid_abi
4341 {
4342 static constexpr auto _S_choose()
4343 {
4344 constexpr int _NextBytes = std::__bit_ceil(_Bytes) / 2;
4345 using _NextAbi = _Abi<_NextBytes>;
4346 if constexpr (_NextBytes < sizeof(_Tp) * 2) // break recursion
4347 return _Abi<_Bytes>();
4348 else if constexpr (_NextAbi::template _S_is_partial<_Tp> == false
4349 && _NextAbi::template _S_is_valid_v<_Tp>)
4350 return _NextAbi();
4351 else
4352 return __find_next_valid_abi<_Abi, _NextBytes, _Tp>::_S_choose();
4353 }
4354
4355 using type = decltype(_S_choose());
4356 };
4357
4358template <int _Bytes, typename _Tp>
4359 struct __find_next_valid_abi<__scalar_abi_wrapper, _Bytes, _Tp>
4360 { using type = simd_abi::scalar; };
4361
4362// _AbiList {{{1
4363template <template <int> class...>
4364 struct _AbiList
4365 {
4366 template <typename, int> static constexpr bool _S_has_valid_abi = false;
4367 template <typename, int> using _FirstValidAbi = void;
4368 template <typename, int> using _BestAbi = void;
4369 };
4370
4371template <template <int> class _A0, template <int> class... _Rest>
4372 struct _AbiList<_A0, _Rest...>
4373 {
4374 template <typename _Tp, int _Np>
4375 static constexpr bool _S_has_valid_abi
4376 = _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<
4377 _Tp> || _AbiList<_Rest...>::template _S_has_valid_abi<_Tp, _Np>;
4378
4379 template <typename _Tp, int _Np>
4380 using _FirstValidAbi = conditional_t<
4381 _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<_Tp>,
4382 typename __decay_abi<_A0<sizeof(_Tp) * _Np>>::type,
4383 typename _AbiList<_Rest...>::template _FirstValidAbi<_Tp, _Np>>;
4384
4385 template <typename _Tp, int _Np>
4386 static constexpr auto _S_determine_best_abi()
4387 {
4388 static_assert(_Np >= 1);
4389 constexpr int _Bytes = sizeof(_Tp) * _Np;
4390 if constexpr (_Np == 1)
4391 return __make_dependent_t<_Tp, simd_abi::scalar>{};
4392 else
4393 {
4394 constexpr int __fullsize = _A0<_Bytes>::template _S_full_size<_Tp>;
4395 // _A0<_Bytes> is good if:
4396 // 1. The ABI tag is valid for _Tp
4397 // 2. The storage overhead is no more than padding to fill the next
4398 // power-of-2 number of bytes
4399 if constexpr (_A0<_Bytes>::template _S_is_valid_v<
4400 _Tp> && __fullsize / 2 < _Np)
4401 return typename __decay_abi<_A0<_Bytes>>::type{};
4402 else
4403 {
4404 using _Bp =
4405 typename __find_next_valid_abi<_A0, _Bytes, _Tp>::type;
4406 if constexpr (_Bp::template _S_is_valid_v<
4407 _Tp> && _Bp::template _S_size<_Tp> <= _Np)
4408 return _Bp{};
4409 else
4410 return
4411 typename _AbiList<_Rest...>::template _BestAbi<_Tp, _Np>{};
4412 }
4413 }
4414 }
4415
4416 template <typename _Tp, int _Np>
4417 using _BestAbi = decltype(_S_determine_best_abi<_Tp, _Np>());
4418 };
4419
4420// }}}1
4421
4422// the following lists all native ABIs, which makes them accessible to
4423// simd_abi::deduce and select_best_vector_type_t (for fixed_size). Order
4424// matters: Whatever comes first has higher priority.
4425using _AllNativeAbis = _AbiList<simd_abi::_VecBltnBtmsk, simd_abi::_VecBuiltin,
4426 __scalar_abi_wrapper>;
4427
4428// valid _SimdTraits specialization {{{1
4429template <typename _Tp, typename _Abi>
4430 struct _SimdTraits<_Tp, _Abi, void_t<typename _Abi::template _IsValid<_Tp>>>
4431 : _Abi::template __traits<_Tp> {};
4432
4433// __deduce_impl specializations {{{1
4434// try all native ABIs (including scalar) first
4435template <typename _Tp, size_t _Np>
4436 struct __deduce_impl<
4437 _Tp, _Np, enable_if_t<_AllNativeAbis::template _S_has_valid_abi<_Tp, _Np>>>
4438 { using type = _AllNativeAbis::_FirstValidAbi<_Tp, _Np>; };
4439
4440// fall back to fixed_size only if scalar and native ABIs don't match
4441template <typename _Tp, size_t _Np, typename = void>
4442 struct __deduce_fixed_size_fallback {};
4443
4444template <typename _Tp, size_t _Np>
4445 struct __deduce_fixed_size_fallback<_Tp, _Np,
4446 enable_if_t<simd_abi::fixed_size<_Np>::template _S_is_valid_v<_Tp>>>
4447 { using type = simd_abi::fixed_size<_Np>; };
4448
4449template <typename _Tp, size_t _Np, typename>
4450 struct __deduce_impl : public __deduce_fixed_size_fallback<_Tp, _Np> {};
4451
4452//}}}1
4453/// @endcond
4454
4455// simd_mask {{{
4456template <typename _Tp, typename _Abi>
4457 class simd_mask : public _SimdTraits<_Tp, _Abi>::_MaskBase
4458 {
4459 // types, tags, and friends {{{
4460 using _Traits = _SimdTraits<_Tp, _Abi>;
4461 using _MemberType = typename _Traits::_MaskMember;
4462
4463 // We map all masks with equal element sizeof to a single integer type, the
4464 // one given by __int_for_sizeof_t<_Tp>. This is the approach
4465 // [[gnu::vector_size(N)]] types take as well and it reduces the number of
4466 // template specializations in the implementation classes.
4467 using _Ip = __int_for_sizeof_t<_Tp>;
4468 static constexpr _Ip* _S_type_tag = nullptr;
4469
4470 friend typename _Traits::_MaskBase;
4471 friend class simd<_Tp, _Abi>; // to construct masks on return
4472 friend typename _Traits::_SimdImpl; // to construct masks on return and
4473 // inspect data on masked operations
4474 public:
4475 using _Impl = typename _Traits::_MaskImpl;
4476 friend _Impl;
4477
4478 // }}}
4479 // member types {{{
4480 using value_type = bool;
4481 using reference = _SmartReference<_MemberType, _Impl, value_type>;
4482 using simd_type = simd<_Tp, _Abi>;
4483 using abi_type = _Abi;
4484
4485 // }}}
4486 static constexpr size_t size() // {{{
4487 { return __size_or_zero_v<_Tp, _Abi>; }
4488
4489 // }}}
4490 // constructors & assignment {{{
4491 simd_mask() = default;
4492 simd_mask(const simd_mask&) = default;
4493 simd_mask(simd_mask&&) = default;
4494 simd_mask& operator=(const simd_mask&) = default;
4495 simd_mask& operator=(simd_mask&&) = default;
4496
4497 // }}}
4498 // access to internal representation (optional feature) {{{
4499 _GLIBCXX_SIMD_ALWAYS_INLINE explicit
4500 simd_mask(typename _Traits::_MaskCastType __init)
4501 : _M_data{__init} {}
4502 // conversions to internal type is done in _MaskBase
4503
4504 // }}}
4505 // bitset interface (extension to be proposed) {{{
4506 // TS_FEEDBACK:
4507 // Conversion of simd_mask to and from bitset makes it much easier to
4508 // interface with other facilities. I suggest adding `static
4509 // simd_mask::from_bitset` and `simd_mask::to_bitset`.
4510 _GLIBCXX_SIMD_ALWAYS_INLINE static simd_mask
4511 __from_bitset(bitset<size()> bs)
4512 { return {__bitset_init, bs}; }
4513
4514 _GLIBCXX_SIMD_ALWAYS_INLINE bitset<size()>
4515 __to_bitset() const
4516 { return _Impl::_S_to_bits(_M_data)._M_to_bitset(); }
4517
4518 // }}}
4519 // explicit broadcast constructor {{{
4520 _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
4521 simd_mask(value_type __x)
4522 : _M_data(_Impl::template _S_broadcast<_Ip>(__x)) {}
4523
4524 // }}}
4525 // implicit type conversion constructor {{{
4526 #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4527 // proposed improvement
4528 template <typename _Up, typename _A2,
4529 typename = enable_if_t<simd_size_v<_Up, _A2> == size()>>
4530 _GLIBCXX_SIMD_ALWAYS_INLINE explicit(sizeof(_MemberType)
4531 != sizeof(typename _SimdTraits<_Up, _A2>::_MaskMember))
4532 simd_mask(const simd_mask<_Up, _A2>& __x)
4533 : simd_mask(__proposed::static_simd_cast<simd_mask>(__x)) {}
4534 #else
4535 // conforming to ISO/IEC 19570:2018
4536 template <typename _Up, typename = enable_if_t<conjunction<
4537 is_same<abi_type, simd_abi::fixed_size<size()>>,
4538 is_same<_Up, _Up>>::value>>
4539 _GLIBCXX_SIMD_ALWAYS_INLINE
4540 simd_mask(const simd_mask<_Up, simd_abi::fixed_size<size()>>& __x)
4541 : _M_data(_Impl::_S_from_bitmask(__data(__x), _S_type_tag)) {}
4542 #endif
4543
4544 // }}}
4545 // load constructor {{{
4546 template <typename _Flags>
4547 _GLIBCXX_SIMD_ALWAYS_INLINE
4548 simd_mask(const value_type* __mem, _Flags)
4549 : _M_data(_Impl::template _S_load<_Ip>(
4550 _Flags::template _S_apply<simd_mask>(__mem))) {}
4551
4552 template <typename _Flags>
4553 _GLIBCXX_SIMD_ALWAYS_INLINE
4554 simd_mask(const value_type* __mem, simd_mask __k, _Flags)
4555 : _M_data{}
4556 {
4557 _M_data
4558 = _Impl::_S_masked_load(_M_data, __k._M_data,
4559 _Flags::template _S_apply<simd_mask>(__mem));
4560 }
4561
4562 // }}}
4563 // loads [simd_mask.load] {{{
4564 template <typename _Flags>
4565 _GLIBCXX_SIMD_ALWAYS_INLINE void
4566 copy_from(const value_type* __mem, _Flags)
4567 {
4568 _M_data = _Impl::template _S_load<_Ip>(
4569 _Flags::template _S_apply<simd_mask>(__mem));
4570 }
4571
4572 // }}}
4573 // stores [simd_mask.store] {{{
4574 template <typename _Flags>
4575 _GLIBCXX_SIMD_ALWAYS_INLINE void
4576 copy_to(value_type* __mem, _Flags) const
4577 { _Impl::_S_store(_M_data, _Flags::template _S_apply<simd_mask>(__mem)); }
4578
4579 // }}}
4580 // scalar access {{{
4581 _GLIBCXX_SIMD_ALWAYS_INLINE reference
4582 operator[](size_t __i)
4583 {
4584 if (__i >= size())
4585 __invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1);
4586 return {_M_data, int(__i)};
4587 }
4588
4589 _GLIBCXX_SIMD_ALWAYS_INLINE value_type
4590 operator[](size_t __i) const
4591 {
4592 if (__i >= size())
4593 __invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1);
4594 if constexpr (__is_scalar_abi<_Abi>())
4595 return _M_data;
4596 else
4597 return static_cast<bool>(_M_data[__i]);
4598 }
4599
4600 // }}}
4601 // negation {{{
4602 _GLIBCXX_SIMD_ALWAYS_INLINE simd_mask
4603 operator!() const
4604 { return {__private_init, _Impl::_S_bit_not(_M_data)}; }
4605
4606 // }}}
4607 // simd_mask binary operators [simd_mask.binary] {{{
4608 #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4609 // simd_mask<int> && simd_mask<uint> needs disambiguation
4610 template <typename _Up, typename _A2,
4611 typename
4612 = enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>>
4613 _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4614 operator&&(const simd_mask& __x, const simd_mask<_Up, _A2>& __y)
4615 {
4616 return {__private_init,
4617 _Impl::_S_logical_and(__x._M_data, simd_mask(__y)._M_data)};
4618 }
4619
4620 template <typename _Up, typename _A2,
4621 typename
4622 = enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>>
4623 _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4624 operator||(const simd_mask& __x, const simd_mask<_Up, _A2>& __y)
4625 {
4626 return {__private_init,
4627 _Impl::_S_logical_or(__x._M_data, simd_mask(__y)._M_data)};
4628 }
4629 #endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4630
4631 _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4632 operator&&(const simd_mask& __x, const simd_mask& __y)
4633 {
4634 return {__private_init, _Impl::_S_logical_and(__x._M_data, __y._M_data)};
4635 }
4636
4637 _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4638 operator||(const simd_mask& __x, const simd_mask& __y)
4639 {
4640 return {__private_init, _Impl::_S_logical_or(__x._M_data, __y._M_data)};
4641 }
4642
4643 _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4644 operator&(const simd_mask& __x, const simd_mask& __y)
4645 { return {__private_init, _Impl::_S_bit_and(__x._M_data, __y._M_data)}; }
4646
4647 _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4648 operator|(const simd_mask& __x, const simd_mask& __y)
4649 { return {__private_init, _Impl::_S_bit_or(__x._M_data, __y._M_data)}; }
4650
4651 _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4652 operator^(const simd_mask& __x, const simd_mask& __y)
4653 { return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; }
4654
4655 _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4656 operator&=(simd_mask& __x, const simd_mask& __y)
4657 {
4658 __x._M_data = _Impl::_S_bit_and(__x._M_data, __y._M_data);
4659 return __x;
4660 }
4661
4662 _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4663 operator|=(simd_mask& __x, const simd_mask& __y)
4664 {
4665 __x._M_data = _Impl::_S_bit_or(__x._M_data, __y._M_data);
4666 return __x;
4667 }
4668
4669 _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4670 operator^=(simd_mask& __x, const simd_mask& __y)
4671 {
4672 __x._M_data = _Impl::_S_bit_xor(__x._M_data, __y._M_data);
4673 return __x;
4674 }
4675
4676 // }}}
4677 // simd_mask compares [simd_mask.comparison] {{{
4678 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4679 operator==(const simd_mask& __x, const simd_mask& __y)
4680 { return !operator!=(__x, __y); }
4681
4682 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4683 operator!=(const simd_mask& __x, const simd_mask& __y)
4684 { return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; }
4685
4686 // }}}
4687 // private_init ctor {{{
4688 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
4689 simd_mask(_PrivateInit, typename _Traits::_MaskMember __init)
4690 : _M_data(__init) {}
4691
4692 // }}}
4693 // private_init generator ctor {{{
4694 template <typename _Fp, typename = decltype(bool(declval<_Fp>()(size_t())))>
4695 _GLIBCXX_SIMD_INTRINSIC constexpr
4696 simd_mask(_PrivateInit, _Fp&& __gen)
4697 : _M_data()
4698 {
4699 __execute_n_times<size()>([&](auto __i) constexpr {
4700 _Impl::_S_set(_M_data, __i, __gen(__i));
4701 });
4702 }
4703
4704 // }}}
4705 // bitset_init ctor {{{
4706 _GLIBCXX_SIMD_INTRINSIC simd_mask(_BitsetInit, bitset<size()> __init)
4707 : _M_data(
4708 _Impl::_S_from_bitmask(_SanitizedBitMask<size()>(__init), _S_type_tag))
4709 {}
4710
4711 // }}}
4712 // __cvt {{{
4713 // TS_FEEDBACK:
4714 // The conversion operator this implements should be a ctor on simd_mask.
4715 // Once you call .__cvt() on a simd_mask it converts conveniently.
4716 // A useful variation: add `explicit(sizeof(_Tp) != sizeof(_Up))`
4717 struct _CvtProxy
4718 {
4719 template <typename _Up, typename _A2,
4720 typename
4721 = enable_if_t<simd_size_v<_Up, _A2> == simd_size_v<_Tp, _Abi>>>
4722 _GLIBCXX_SIMD_ALWAYS_INLINE
4723 operator simd_mask<_Up, _A2>() &&
4724 {
4725 using namespace std::experimental::__proposed;
4726 return static_simd_cast<simd_mask<_Up, _A2>>(_M_data);
4727 }
4728
4729 const simd_mask<_Tp, _Abi>& _M_data;
4730 };
4731
4732 _GLIBCXX_SIMD_INTRINSIC _CvtProxy
4733 __cvt() const
4734 { return {*this}; }
4735
4736 // }}}
4737 // operator?: overloads (suggested extension) {{{
4738 #ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__
4739 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4740 operator?:(const simd_mask& __k, const simd_mask& __where_true,
4741 const simd_mask& __where_false)
4742 {
4743 auto __ret = __where_false;
4744 _Impl::_S_masked_assign(__k._M_data, __ret._M_data, __where_true._M_data);
4745 return __ret;
4746 }
4747
4748 template <typename _U1, typename _U2,
4749 typename _Rp = simd<common_type_t<_U1, _U2>, _Abi>,
4750 typename = enable_if_t<conjunction_v<
4751 is_convertible<_U1, _Rp>, is_convertible<_U2, _Rp>,
4752 is_convertible<simd_mask, typename _Rp::mask_type>>>>
4753 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend _Rp
4754 operator?:(const simd_mask& __k, const _U1& __where_true,
4755 const _U2& __where_false)
4756 {
4757 _Rp __ret = __where_false;
4758 _Rp::_Impl::_S_masked_assign(
4759 __data(static_cast<typename _Rp::mask_type>(__k)), __data(__ret),
4760 __data(static_cast<_Rp>(__where_true)));
4761 return __ret;
4762 }
4763
4764 #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4765 template <typename _Kp, typename _Ak, typename _Up, typename _Au,
4766 typename = enable_if_t<
4767 conjunction_v<is_convertible<simd_mask<_Kp, _Ak>, simd_mask>,
4768 is_convertible<simd_mask<_Up, _Au>, simd_mask>>>>
4769 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4770 operator?:(const simd_mask<_Kp, _Ak>& __k, const simd_mask& __where_true,
4771 const simd_mask<_Up, _Au>& __where_false)
4772 {
4773 simd_mask __ret = __where_false;
4774 _Impl::_S_masked_assign(simd_mask(__k)._M_data, __ret._M_data,
4775 __where_true._M_data);
4776 return __ret;
4777 }
4778 #endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4779 #endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__
4780
4781 // }}}
4782 // _M_is_constprop {{{
4783 _GLIBCXX_SIMD_INTRINSIC constexpr bool
4784 _M_is_constprop() const
4785 {
4786 if constexpr (__is_scalar_abi<_Abi>())
4787 return __builtin_constant_p(_M_data);
4788 else
4789 return _M_data._M_is_constprop();
4790 }
4791
4792 // }}}
4793
4794 private:
4795 friend const auto& __data<_Tp, abi_type>(const simd_mask&);
4796 friend auto& __data<_Tp, abi_type>(simd_mask&);
4797 alignas(_Traits::_S_mask_align) _MemberType _M_data;
4798 };
4799
4800// }}}
4801
4802/// @cond undocumented
4803// __data(simd_mask) {{{
4804template <typename _Tp, typename _Ap>
4805 _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
4806 __data(const simd_mask<_Tp, _Ap>& __x)
4807 { return __x._M_data; }
4808
4809template <typename _Tp, typename _Ap>
4810 _GLIBCXX_SIMD_INTRINSIC constexpr auto&
4811 __data(simd_mask<_Tp, _Ap>& __x)
4812 { return __x._M_data; }
4813
4814// }}}
4815/// @endcond
4816
4817// simd_mask reductions [simd_mask.reductions] {{{
4818template <typename _Tp, typename _Abi>
4819 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4820 all_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4821 {
4822 if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4823 {
4824 for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4825 if (!__k[__i])
4826 return false;
4827 return true;
4828 }
4829 else
4830 return _Abi::_MaskImpl::_S_all_of(__k);
4831 }
4832
4833template <typename _Tp, typename _Abi>
4834 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4835 any_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4836 {
4837 if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4838 {
4839 for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4840 if (__k[__i])
4841 return true;
4842 return false;
4843 }
4844 else
4845 return _Abi::_MaskImpl::_S_any_of(__k);
4846 }
4847
4848template <typename _Tp, typename _Abi>
4849 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4850 none_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4851 {
4852 if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4853 {
4854 for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4855 if (__k[__i])
4856 return false;
4857 return true;
4858 }
4859 else
4860 return _Abi::_MaskImpl::_S_none_of(__k);
4861 }
4862
4863template <typename _Tp, typename _Abi>
4864 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4865 some_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4866 {
4867 if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4868 {
4869 for (size_t __i = 1; __i < simd_size_v<_Tp, _Abi>; ++__i)
4870 if (__k[__i] != __k[__i - 1])
4871 return true;
4872 return false;
4873 }
4874 else
4875 return _Abi::_MaskImpl::_S_some_of(__k);
4876 }
4877
4878template <typename _Tp, typename _Abi>
4879 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4880 popcount(const simd_mask<_Tp, _Abi>& __k) noexcept
4881 {
4882 if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4883 {
4884 const int __r = __call_with_subscripts<simd_size_v<_Tp, _Abi>>(
4885 __k, [](auto... __elements) { return ((__elements != 0) + ...); });
4886 if (__builtin_is_constant_evaluated() || __builtin_constant_p(__r))
4887 return __r;
4888 }
4889 return _Abi::_MaskImpl::_S_popcount(__k);
4890 }
4891
4892template <typename _Tp, typename _Abi>
4893 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4894 find_first_set(const simd_mask<_Tp, _Abi>& __k)
4895 {
4896 if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4897 {
4898 constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
4899 const size_t _Idx = __call_with_n_evaluations<_Np>(
4900 [](auto... __indexes) { return std::min({__indexes...}); },
4901 [&](auto __i) { return __k[__i] ? +__i : _Np; });
4902 if (_Idx >= _Np)
4903 __invoke_ub("find_first_set(empty mask) is UB");
4904 if (__builtin_constant_p(_Idx))
4905 return _Idx;
4906 }
4907 return _Abi::_MaskImpl::_S_find_first_set(__k);
4908 }
4909
4910template <typename _Tp, typename _Abi>
4911 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4912 find_last_set(const simd_mask<_Tp, _Abi>& __k)
4913 {
4914 if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4915 {
4916 constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
4917 const int _Idx = __call_with_n_evaluations<_Np>(
4918 [](auto... __indexes) { return std::max({__indexes...}); },
4919 [&](auto __i) { return __k[__i] ? int(__i) : -1; });
4920 if (_Idx < 0)
4921 __invoke_ub("find_first_set(empty mask) is UB");
4922 if (__builtin_constant_p(_Idx))
4923 return _Idx;
4924 }
4925 return _Abi::_MaskImpl::_S_find_last_set(__k);
4926 }
4927
4928_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4929all_of(_ExactBool __x) noexcept
4930{ return __x; }
4931
4932_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4933any_of(_ExactBool __x) noexcept
4934{ return __x; }
4935
4936_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4937none_of(_ExactBool __x) noexcept
4938{ return !__x; }
4939
4940_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4941some_of(_ExactBool) noexcept
4942{ return false; }
4943
4944_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4945popcount(_ExactBool __x) noexcept
4946{ return __x; }
4947
4948_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4949find_first_set(_ExactBool)
4950{ return 0; }
4951
4952_GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4953find_last_set(_ExactBool)
4954{ return 0; }
4955
4956// }}}
4957
4958/// @cond undocumented
4959// _SimdIntOperators{{{1
4960template <typename _V, typename _Tp, typename _Abi, bool>
4961 class _SimdIntOperators {};
4962
4963template <typename _V, typename _Tp, typename _Abi>
4964 class _SimdIntOperators<_V, _Tp, _Abi, true>
4965 {
4966 using _Impl = typename _SimdTraits<_Tp, _Abi>::_SimdImpl;
4967
4968 _GLIBCXX_SIMD_INTRINSIC const _V& __derived() const
4969 { return *static_cast<const _V*>(this); }
4970
4971 template <typename _Up>
4972 _GLIBCXX_SIMD_INTRINSIC static _GLIBCXX_SIMD_CONSTEXPR _V
4973 _S_make_derived(_Up&& __d)
4974 { return {__private_init, static_cast<_Up&&>(__d)}; }
4975
4976 public:
4977 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4978 _V&
4979 operator%=(_V& __lhs, const _V& __x)
4980 { return __lhs = __lhs % __x; }
4981
4982 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4983 _V&
4984 operator&=(_V& __lhs, const _V& __x)
4985 { return __lhs = __lhs & __x; }
4986
4987 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4988 _V&
4989 operator|=(_V& __lhs, const _V& __x)
4990 { return __lhs = __lhs | __x; }
4991
4992 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4993 _V&
4994 operator^=(_V& __lhs, const _V& __x)
4995 { return __lhs = __lhs ^ __x; }
4996
4997 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4998 _V&
4999 operator<<=(_V& __lhs, const _V& __x)
5000 { return __lhs = __lhs << __x; }
5001
5002 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5003 _V&
5004 operator>>=(_V& __lhs, const _V& __x)
5005 { return __lhs = __lhs >> __x; }
5006
5007 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5008 _V&
5009 operator<<=(_V& __lhs, int __x)
5010 { return __lhs = __lhs << __x; }
5011
5012 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5013 _V&
5014 operator>>=(_V& __lhs, int __x)
5015 { return __lhs = __lhs >> __x; }
5016
5017 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5018 _V
5019 operator%(const _V& __x, const _V& __y)
5020 {
5021 return _SimdIntOperators::_S_make_derived(
5022 _Impl::_S_modulus(__data(__x), __data(__y)));
5023 }
5024
5025 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5026 _V
5027 operator&(const _V& __x, const _V& __y)
5028 {
5029 return _SimdIntOperators::_S_make_derived(
5030 _Impl::_S_bit_and(__data(__x), __data(__y)));
5031 }
5032
5033 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5034 _V
5035 operator|(const _V& __x, const _V& __y)
5036 {
5037 return _SimdIntOperators::_S_make_derived(
5038 _Impl::_S_bit_or(__data(__x), __data(__y)));
5039 }
5040
5041 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5042 _V
5043 operator^(const _V& __x, const _V& __y)
5044 {
5045 return _SimdIntOperators::_S_make_derived(
5046 _Impl::_S_bit_xor(__data(__x), __data(__y)));
5047 }
5048
5049 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5050 _V
5051 operator<<(const _V& __x, const _V& __y)
5052 {
5053 return _SimdIntOperators::_S_make_derived(
5054 _Impl::_S_bit_shift_left(__data(__x), __data(__y)));
5055 }
5056
5057 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5058 _V
5059 operator>>(const _V& __x, const _V& __y)
5060 {
5061 return _SimdIntOperators::_S_make_derived(
5062 _Impl::_S_bit_shift_right(__data(__x), __data(__y)));
5063 }
5064
5065 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5066 _V
5067 operator<<(const _V& __x, int __y)
5068 {
5069 if (__y < 0)
5070 __invoke_ub("The behavior is undefined if the right operand of a "
5071 "shift operation is negative. [expr.shift]\nA shift by "
5072 "%d was requested",
5073 __y);
5074 if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__)
5075 __invoke_ub(
5076 "The behavior is undefined if the right operand of a "
5077 "shift operation is greater than or equal to the width of the "
5078 "promoted left operand. [expr.shift]\nA shift by %d was requested",
5079 __y);
5080 return _SimdIntOperators::_S_make_derived(
5081 _Impl::_S_bit_shift_left(__data(__x), __y));
5082 }
5083
5084 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5085 _V
5086 operator>>(const _V& __x, int __y)
5087 {
5088 if (__y < 0)
5089 __invoke_ub(
5090 "The behavior is undefined if the right operand of a shift "
5091 "operation is negative. [expr.shift]\nA shift by %d was requested",
5092 __y);
5093 if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__)
5094 __invoke_ub(
5095 "The behavior is undefined if the right operand of a shift "
5096 "operation is greater than or equal to the width of the promoted "
5097 "left operand. [expr.shift]\nA shift by %d was requested",
5098 __y);
5099 return _SimdIntOperators::_S_make_derived(
5100 _Impl::_S_bit_shift_right(__data(__x), __y));
5101 }
5102
5103 // unary operators (for integral _Tp)
5104 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
5105 _V
5106 operator~() const
5107 { return {__private_init, _Impl::_S_complement(__derived()._M_data)}; }
5108 };
5109
5110//}}}1
5111/// @endcond
5112
5113// simd {{{
5114template <typename _Tp, typename _Abi>
5115 class simd : public _SimdIntOperators<
5116 simd<_Tp, _Abi>, _Tp, _Abi,
5117 conjunction<is_integral<_Tp>,
5118 typename _SimdTraits<_Tp, _Abi>::_IsValid>::value>,
5119 public _SimdTraits<_Tp, _Abi>::_SimdBase
5120 {
5121 using _Traits = _SimdTraits<_Tp, _Abi>;
5122 using _MemberType = typename _Traits::_SimdMember;
5123 using _CastType = typename _Traits::_SimdCastType;
5124 static constexpr _Tp* _S_type_tag = nullptr;
5125 friend typename _Traits::_SimdBase;
5126
5127 public:
5128 using _Impl = typename _Traits::_SimdImpl;
5129 friend _Impl;
5130 friend _SimdIntOperators<simd, _Tp, _Abi, true>;
5131
5132 using value_type = _Tp;
5133 using reference = _SmartReference<_MemberType, _Impl, value_type>;
5134 using mask_type = simd_mask<_Tp, _Abi>;
5135 using abi_type = _Abi;
5136
5137 static constexpr size_t size()
5138 { return __size_or_zero_v<_Tp, _Abi>; }
5139
5140 _GLIBCXX_SIMD_CONSTEXPR simd() = default;
5141 _GLIBCXX_SIMD_CONSTEXPR simd(const simd&) = default;
5142 _GLIBCXX_SIMD_CONSTEXPR simd(simd&&) noexcept = default;
5143 _GLIBCXX_SIMD_CONSTEXPR simd& operator=(const simd&) = default;
5144 _GLIBCXX_SIMD_CONSTEXPR simd& operator=(simd&&) noexcept = default;
5145
5146 // implicit broadcast constructor
5147 template <typename _Up,
5148 typename = enable_if_t<!is_same_v<__remove_cvref_t<_Up>, bool>>>
5149 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
5150 simd(_ValuePreservingOrInt<_Up, value_type>&& __x)
5151 : _M_data(
5152 _Impl::_S_broadcast(static_cast<value_type>(static_cast<_Up&&>(__x))))
5153 {}
5154
5155 // implicit type conversion constructor (convert from fixed_size to
5156 // fixed_size)
5157 template <typename _Up>
5158 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
5159 simd(const simd<_Up, simd_abi::fixed_size<size()>>& __x,
5160 enable_if_t<
5161 conjunction<
5162 is_same<simd_abi::fixed_size<size()>, abi_type>,
5163 negation<__is_narrowing_conversion<_Up, value_type>>,
5164 __converts_to_higher_integer_rank<_Up, value_type>>::value,
5165 void*> = nullptr)
5166 : simd{static_cast<array<_Up, size()>>(__x).data(), vector_aligned} {}
5167
5168 // explicit type conversion constructor
5169#ifdef _GLIBCXX_SIMD_ENABLE_STATIC_CAST
5170 template <typename _Up, typename _A2,
5171 typename = decltype(static_simd_cast<simd>(
5172 declval<const simd<_Up, _A2>&>()))>
5173 _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
5174 simd(const simd<_Up, _A2>& __x)
5175 : simd(static_simd_cast<simd>(__x)) {}
5176#endif // _GLIBCXX_SIMD_ENABLE_STATIC_CAST
5177
5178 // generator constructor
5179 template <typename _Fp>
5180 _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
5181 simd(_Fp&& __gen, _ValuePreservingOrInt<decltype(declval<_Fp>()(
5182 declval<_SizeConstant<0>&>())),
5183 value_type>* = nullptr)
5184 : _M_data(_Impl::_S_generator(static_cast<_Fp&&>(__gen), _S_type_tag)) {}
5185
5186 // load constructor
5187 template <typename _Up, typename _Flags>
5188 _GLIBCXX_SIMD_ALWAYS_INLINE
5189 simd(const _Up* __mem, _Flags)
5190 : _M_data(
5191 _Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag))
5192 {}
5193
5194 // loads [simd.load]
5195 template <typename _Up, typename _Flags>
5196 _GLIBCXX_SIMD_ALWAYS_INLINE void
5197 copy_from(const _Vectorizable<_Up>* __mem, _Flags)
5198 {
5199 _M_data = static_cast<decltype(_M_data)>(
5200 _Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag));
5201 }
5202
5203 // stores [simd.store]
5204 template <typename _Up, typename _Flags>
5205 _GLIBCXX_SIMD_ALWAYS_INLINE void
5206 copy_to(_Vectorizable<_Up>* __mem, _Flags) const
5207 {
5208 _Impl::_S_store(_M_data, _Flags::template _S_apply<simd>(__mem),
5209 _S_type_tag);
5210 }
5211
5212 // scalar access
5213 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR reference
5214 operator[](size_t __i)
5215 { return {_M_data, int(__i)}; }
5216
5217 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR value_type
5218 operator[]([[maybe_unused]] size_t __i) const
5219 {
5220 if constexpr (__is_scalar_abi<_Abi>())
5221 {
5222 _GLIBCXX_DEBUG_ASSERT(__i == 0);
5223 return _M_data;
5224 }
5225 else
5226 return _M_data[__i];
5227 }
5228
5229 // increment and decrement:
5230 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd&
5231 operator++()
5232 {
5233 _Impl::_S_increment(_M_data);
5234 return *this;
5235 }
5236
5237 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5238 operator++(int)
5239 {
5240 simd __r = *this;
5241 _Impl::_S_increment(_M_data);
5242 return __r;
5243 }
5244
5245 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd&
5246 operator--()
5247 {
5248 _Impl::_S_decrement(_M_data);
5249 return *this;
5250 }
5251
5252 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5253 operator--(int)
5254 {
5255 simd __r = *this;
5256 _Impl::_S_decrement(_M_data);
5257 return __r;
5258 }
5259
5260 // unary operators (for any _Tp)
5261 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR mask_type
5262 operator!() const
5263 { return {__private_init, _Impl::_S_negate(_M_data)}; }
5264
5265 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5266 operator+() const
5267 { return *this; }
5268
5269 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5270 operator-() const
5271 { return {__private_init, _Impl::_S_unary_minus(_M_data)}; }
5272
5273 // access to internal representation (suggested extension)
5274 _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
5275 simd(_CastType __init) : _M_data(__init) {}
5276
5277 // compound assignment [simd.cassign]
5278 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5279 operator+=(simd& __lhs, const simd& __x)
5280 { return __lhs = __lhs + __x; }
5281
5282 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5283 operator-=(simd& __lhs, const simd& __x)
5284 { return __lhs = __lhs - __x; }
5285
5286 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5287 operator*=(simd& __lhs, const simd& __x)
5288 { return __lhs = __lhs * __x; }
5289
5290 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5291 operator/=(simd& __lhs, const simd& __x)
5292 { return __lhs = __lhs / __x; }
5293
5294 // binary operators [simd.binary]
5295 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5296 operator+(const simd& __x, const simd& __y)
5297 { return {__private_init, _Impl::_S_plus(__x._M_data, __y._M_data)}; }
5298
5299 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5300 operator-(const simd& __x, const simd& __y)
5301 { return {__private_init, _Impl::_S_minus(__x._M_data, __y._M_data)}; }
5302
5303 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5304 operator*(const simd& __x, const simd& __y)
5305 { return {__private_init, _Impl::_S_multiplies(__x._M_data, __y._M_data)}; }
5306
5307 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5308 operator/(const simd& __x, const simd& __y)
5309 { return {__private_init, _Impl::_S_divides(__x._M_data, __y._M_data)}; }
5310
5311 // compares [simd.comparison]
5312 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5313 operator==(const simd& __x, const simd& __y)
5314 { return simd::_S_make_mask(_Impl::_S_equal_to(__x._M_data, __y._M_data)); }
5315
5316 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5317 operator!=(const simd& __x, const simd& __y)
5318 {
5319 return simd::_S_make_mask(
5320 _Impl::_S_not_equal_to(__x._M_data, __y._M_data));
5321 }
5322
5323 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5324 operator<(const simd& __x, const simd& __y)
5325 { return simd::_S_make_mask(_Impl::_S_less(__x._M_data, __y._M_data)); }
5326
5327 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5328 operator<=(const simd& __x, const simd& __y)
5329 {
5330 return simd::_S_make_mask(_Impl::_S_less_equal(__x._M_data, __y._M_data));
5331 }
5332
5333 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5334 operator>(const simd& __x, const simd& __y)
5335 { return simd::_S_make_mask(_Impl::_S_less(__y._M_data, __x._M_data)); }
5336
5337 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5338 operator>=(const simd& __x, const simd& __y)
5339 {
5340 return simd::_S_make_mask(_Impl::_S_less_equal(__y._M_data, __x._M_data));
5341 }
5342
5343 // operator?: overloads (suggested extension) {{{
5344#ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__
5345 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5346 operator?:(const mask_type& __k, const simd& __where_true,
5347 const simd& __where_false)
5348 {
5349 auto __ret = __where_false;
5350 _Impl::_S_masked_assign(__data(__k), __data(__ret), __data(__where_true));
5351 return __ret;
5352 }
5353
5354#endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__
5355 // }}}
5356
5357 // "private" because of the first arguments's namespace
5358 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
5359 simd(_PrivateInit, const _MemberType& __init)
5360 : _M_data(__init) {}
5361
5362 // "private" because of the first arguments's namespace
5363 _GLIBCXX_SIMD_INTRINSIC
5364 simd(_BitsetInit, bitset<size()> __init) : _M_data()
5365 { where(mask_type(__bitset_init, __init), *this) = ~*this; }
5366
5367 _GLIBCXX_SIMD_INTRINSIC constexpr bool
5368 _M_is_constprop() const
5369 {
5370 if constexpr (__is_scalar_abi<_Abi>())
5371 return __builtin_constant_p(_M_data);
5372 else
5373 return _M_data._M_is_constprop();
5374 }
5375
5376 private:
5377 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR static mask_type
5378 _S_make_mask(typename mask_type::_MemberType __k)
5379 { return {__private_init, __k}; }
5380
5381 friend const auto& __data<value_type, abi_type>(const simd&);
5382 friend auto& __data<value_type, abi_type>(simd&);
5383 alignas(_Traits::_S_simd_align) _MemberType _M_data;
5384 };
5385
5386// }}}
5387/// @cond undocumented
5388// __data {{{
5389template <typename _Tp, typename _Ap>
5390 _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
5391 __data(const simd<_Tp, _Ap>& __x)
5392 { return __x._M_data; }
5393
5394template <typename _Tp, typename _Ap>
5395 _GLIBCXX_SIMD_INTRINSIC constexpr auto&
5396 __data(simd<_Tp, _Ap>& __x)
5397 { return __x._M_data; }
5398
5399// }}}
5400namespace __float_bitwise_operators { //{{{
5401template <typename _Tp, typename _Ap>
5402 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5403 operator^(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5404 {
5405 return {__private_init,
5406 _Ap::_SimdImpl::_S_bit_xor(__data(__a), __data(__b))};
5407 }
5408
5409template <typename _Tp, typename _Ap>
5410 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5411 operator|(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5412 {
5413 return {__private_init,
5414 _Ap::_SimdImpl::_S_bit_or(__data(__a), __data(__b))};
5415 }
5416
5417template <typename _Tp, typename _Ap>
5418 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5419 operator&(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5420 {
5421 return {__private_init,
5422 _Ap::_SimdImpl::_S_bit_and(__data(__a), __data(__b))};
5423 }
5424
5425template <typename _Tp, typename _Ap>
5426 _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
5427 enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Ap>>
5428 operator~(const simd<_Tp, _Ap>& __a)
5429 { return {__private_init, _Ap::_SimdImpl::_S_complement(__data(__a))}; }
5430} // namespace __float_bitwise_operators }}}
5431/// @endcond
5432
5433/// @}
5434_GLIBCXX_SIMD_END_NAMESPACE
5435
5436#endif // __cplusplus >= 201703L
5437#endif // _GLIBCXX_EXPERIMENTAL_SIMD_H
5438
5439// vim: foldmethod=marker foldmarker={{{,}}}
constexpr _If_is_unsigned_integer< _Tp, int > popcount(_Tp __x) noexcept
The number of bits set in x.
Definition: bit:426
constexpr duration< __common_rep_t< _Rep1, __disable_if_is_duration< _Rep2 > >, _Period > operator%(const duration< _Rep1, _Period > &__d, const _Rep2 &__s)
Definition: chrono.h:770
constexpr complex< _Tp > operator*(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x times y.
Definition: complex:392
constexpr complex< _Tp > operator-(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x minus y.
Definition: complex:362
constexpr complex< _Tp > operator+(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x plus y.
Definition: complex:332
constexpr complex< _Tp > operator/(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x divided by y.
Definition: complex:422
typename remove_reference< _Tp >::type remove_reference_t
Alias template for remove_reference.
Definition: type_traits:1664
typename make_unsigned< _Tp >::type make_unsigned_t
Alias template for make_unsigned.
Definition: type_traits:2003
void void_t
A metafunction that always yields void, used for detecting valid types.
Definition: type_traits:2630
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:82
typename conditional< _Cond, _Iftrue, _Iffalse >::type conditional_t
Alias template for conditional.
Definition: type_traits:2612
integral_constant< bool, false > false_type
The type used as a compile-time boolean with false value.
Definition: type_traits:85
typename enable_if< _Cond, _Tp >::type enable_if_t
Alias template for enable_if.
Definition: type_traits:2608
constexpr auto tuple_cat(_Tpls &&... __tpls) -> typename __tuple_cat_result< _Tpls... >::__type
tuple_cat
Definition: tuple:1730
auto declval() noexcept -> decltype(__declval< _Tp >(0))
Definition: type_traits:2387
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:104
constexpr const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:254
constexpr const _Tp & min(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:230
constexpr _Tp reduce(_InputIterator __first, _InputIterator __last, _Tp __init, _BinaryOperation __binary_op)
Calculate reduction of values in a range.
Definition: numeric:287
bitset< _Nb > operator&(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1438
bitset< _Nb > operator|(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1447
std::basic_istream< _CharT, _Traits > & operator>>(std::basic_istream< _CharT, _Traits > &__is, bitset< _Nb > &__x)
Global I/O operators for bitsets.
Definition: bitset:1475
std::basic_ostream< _CharT, _Traits > & operator<<(std::basic_ostream< _CharT, _Traits > &__os, const bitset< _Nb > &__x)
Global I/O operators for bitsets.
Definition: bitset:1543
bitset< _Nb > operator^(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1456