Next: Pragma Inline_Always, Previous: Pragma Import_Valued_Procedure, Up: Implementation Defined Pragmas
pragma Initialize_Scalars;
This pragma is similar to Normalize_Scalars
conceptually but has
two important differences. First, there is no requirement for the pragma
to be used uniformly in all units of a partition, in particular, it is fine
to use this just for some or all of the application units of a partition,
without needing to recompile the run-time library.
In the case where some units are compiled with the pragma, and some without, then a declaration of a variable where the type is defined in package Standard or is locally declared will always be subject to initialization, as will any declaration of a scalar variable. For composite variables, whether the variable is initialized may also depend on whether the package in which the type of the variable is declared is compiled with the pragma.
The other important difference is that there is control over the value used for initializing scalar objects. At bind time, you can select whether to initialize with invalid values (like Normalize_Scalars), or with high or low values, or with a specified bit pattern. See the users guide for binder options for specifying these cases.
This means that you can compile a program, and then without having to recompile the program, you can run it with different values being used for initializing otherwise uninitialized values, to test if your program behavior depends on the choice. Of course the behavior should not change, and if it does, then most likely you have an erroneous reference to an uninitialized value.
Note that pragma Initialize_Scalars
is particularly useful in
conjunction with the enhanced validity checking that is now provided
in GNAT, which checks for invalid values under more conditions.
Using this feature (see description of the -gnatV
flag in the
users guide) in conjunction with pragma Initialize_Scalars
provides a powerful new tool to assist in the detection of problems
caused by uninitialized variables.