Previous: Interoperable Global Variables, Up: Interoperability with C


7.1.4 Interoperable Subroutines and Functions

Subroutines and functions have to have the BIND(C) attribute to be compatible with C. The dummy argument declaration is relatively straightforward. However, one needs to be careful because C uses call-by-value by default while Fortran behaves usually similar to call-by-reference. Furthermore, strings and pointers are handled differently. Note that only explicit size and assumed-size arrays are supported but not assumed-shape or allocatable arrays.

To pass a variable by value, use the VALUE attribute. Thus the following C prototype

     int func(int i, int *j)

matches the Fortran declaration

       integer(c_int) function func(i,j)
         use iso_c_binding, only: c_int
         integer(c_int), VALUE :: i
         integer(c_int) :: j

Note that pointer arguments also frequently need the VALUE attribute.

Strings are handled quite differently in C and Fortran. In C a string is a NUL-terminated array of characters while in Fortran each string has a length associated with it and is thus not terminated (by e.g. NUL). For example, if one wants to use the following C function,

       #include <stdio.h>
       void print_C(char *string) /* equivalent: char string[]  */
       {
          printf("%s\n", string);
       }

to print “Hello World” from Fortran, one can call it using

       use iso_c_binding, only: C_CHAR, C_NULL_CHAR
       interface
         subroutine print_c(string) bind(C, name="print_C")
           use iso_c_binding, only: c_char
           character(kind=c_char) :: string(*)
         end subroutine print_c
       end interface
       call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)

As the example shows, one needs to ensure that the string is NUL terminated. Additionally, the dummy argument string of print_C is a length-one assumed-size array; using character(len=*) is not allowed. The example above uses c_char_"Hello World" to ensure the string literal has the right type; typically the default character kind and c_char are the same and thus "Hello World" is equivalent. However, the standard does not guarantee this.

The use of pointers is now illustrated using the C library function strncpy, whose prototype is

       char *strncpy(char *restrict s1, const char *restrict s2, size_t n);

The function strncpy copies at most n characters from string s2 to s1 and returns s1. In the following example, we ignore the return value:

       use iso_c_binding
       implicit none
       character(len=30) :: str,str2
       interface
         ! Ignore the return value of strncpy -> subroutine
         ! "restrict" is always assumed if we do not pass a pointer
         subroutine strncpy(dest, src, n) bind(C)
           import
           character(kind=c_char),  intent(out) :: dest(*)
           character(kind=c_char),  intent(in)  :: src(*)
           integer(c_size_t), value, intent(in) :: n
         end subroutine strncpy
       end interface
       str = repeat('X',30) ! Initialize whole string with 'X'
       call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
                    len(c_char_"Hello World",kind=c_size_t))
       print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
       end

C pointers are represented in Fortran via the special derived type type(c_ptr), with private components. Thus one needs to use intrinsic conversion procedures to convert from or to C pointers. For example,

       use iso_c_binding
       type(c_ptr) :: cptr1, cptr2
       integer, target :: array(7), scalar
       integer, pointer :: pa(:), ps
       cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
                               ! array is contiguous if required by the C
                               ! procedure
       cptr2 = c_loc(scalar)
       call c_f_pointer(cptr2, ps)
       call c_f_pointer(cptr2, pa, shape=[7])

When converting C to Fortran arrays, the one-dimensional SHAPE argument has to be passed. Note: A pointer argument void * matches TYPE(C_PTR), VALUE while TYPE(C_PTR) matches void **.

Procedure pointers are handled analogously to pointers; the C type is TYPE(C_FUNPTR) and the intrinsic conversion procedures are C_F_PROC_POINTER and C_FUNLOC.

The intrinsic procedures are described in Intrinsic Procedures.