Previous: Conditional Expressions, Up: Operands
Except when they appear in the condition operand of a
GIMPLE_COND
, logical `and' and `or' operators are simplified
as follows: a = b && c
becomes
T1 = (bool)b; if (T1 == true) T1 = (bool)c; a = T1;
Note that T1
in this example cannot be an expression temporary,
because it has two different assignments.
All gimple operands are of type tree
. But only certain
types of trees are allowed to be used as operand tuples. Basic
validation is controlled by the function
get_gimple_rhs_class
, which given a tree code, returns an
enum
with the following values of type enum
gimple_rhs_class
GIMPLE_INVALID_RHS
The tree cannot be used as a GIMPLE operand.
GIMPLE_TERNARY_RHS
The tree is a valid GIMPLE ternary operation.
GIMPLE_BINARY_RHS
The tree is a valid GIMPLE binary operation.
GIMPLE_UNARY_RHS
The tree is a valid GIMPLE unary operation.
GIMPLE_SINGLE_RHS
The tree is a single object, that cannot be split into simpler
operands (for instance, SSA_NAME
, VAR_DECL
, COMPONENT_REF
, etc).
This operand class also acts as an escape hatch for tree nodes
that may be flattened out into the operand vector, but would need
more than two slots on the RHS. For instance, a COND_EXPR
expression of the form (a op b) ? x : y
could be flattened
out on the operand vector using 4 slots, but it would also
require additional processing to distinguish c = a op b
from c = a op b ? x : y
. Something similar occurs with
ASSERT_EXPR
. In time, these special case tree
expressions should be flattened into the operand vector.
For tree nodes in the categories GIMPLE_TERNARY_RHS
,
GIMPLE_BINARY_RHS
and GIMPLE_UNARY_RHS
, they cannot be
stored inside tuples directly. They first need to be flattened and
separated into individual components. For instance, given the GENERIC
expression
a = b + c
its tree representation is:
MODIFY_EXPR <VAR_DECL <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>
In this case, the GIMPLE form for this statement is logically
identical to its GENERIC form but in GIMPLE, the PLUS_EXPR
on the RHS of the assignment is not represented as a tree,
instead the two operands are taken out of the PLUS_EXPR
sub-tree
and flattened into the GIMPLE tuple as follows:
GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>
The operand vector is stored at the bottom of the three tuple structures that accept operands. This means, that depending on the code of a given statement, its operand vector will be at different offsets from the base of the structure. To access tuple operands use the following accessors
Returns the number of operands in statement G.
Returns a pointer into the operand vector for statement
G
. This is computed using an internal table calledgimple_ops_offset_
[]. This table is indexed by the gimple code ofG
.When the compiler is built, this table is filled-in using the sizes of the structures used by each statement code defined in gimple.def. Since the operand vector is at the bottom of the structure, for a gimple code
C
the offset is computed as sizeof (struct-ofC
) - sizeof (tree).This mechanism adds one memory indirection to every access when using
gimple_op
(), if this becomes a bottleneck, a pass can choose to memoize the result fromgimple_ops
() and use that to access the operands.
When adding a new operand to a gimple statement, the operand will
be validated according to what each tuple accepts in its operand
vector. These predicates are called by the
gimple_
name_set_...()
. Each tuple will use one of the
following predicates (Note, this list is not exhaustive):
Returns true if t is a "GIMPLE value", which are all the non-addressable stack variables (variables for which
is_gimple_reg
returns true) and constants (expressions for whichis_gimple_min_invariant
returns true).
Returns true if t is a symbol or memory reference whose address can be taken.
Similar to
is_gimple_val
but it also accepts hard registers.
Return true if t is a valid expression to use as the function called by a
GIMPLE_CALL
.
Return true if t is a valid expression to use as first operand of a
MEM_REF
expression.
Return true if t is a valid minimal invariant. This is different from constants, in that the specific value of t may not be known at compile time, but it is known that it doesn't change (e.g., the address of a function local variable).
Return true if t is an interprocedural invariant. This means that t is a valid invariant in all functions (e.g. it can be an address of a global variable but not of a local one).
Return true if t is an
ADDR_EXPR
that does not change once the program is running (and which is valid in all functions).