libstdc++
array
Go to the documentation of this file.
1 // <array> -*- C++ -*-
2 
3 // Copyright (C) 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file include/array
26  * This is a Standard C++ Library header.
27  */
28 
29 #ifndef _GLIBCXX_ARRAY
30 #define _GLIBCXX_ARRAY 1
31 
32 #pragma GCC system_header
33 
34 #ifndef __GXX_EXPERIMENTAL_CXX0X__
35 # include <bits/c++0x_warning.h>
36 #else
37 
38 #include <bits/stl_algobase.h>
39 #include <bits/range_access.h>
40 
41 namespace std _GLIBCXX_VISIBILITY(default)
42 {
43 _GLIBCXX_BEGIN_NAMESPACE_VERSION
44 
45  /**
46  * @brief A standard container for storing a fixed size sequence of elements.
47  *
48  * @ingroup sequences
49  *
50  * Meets the requirements of a <a href="tables.html#65">container</a>, a
51  * <a href="tables.html#66">reversible container</a>, and a
52  * <a href="tables.html#67">sequence</a>.
53  *
54  * Sets support random access iterators.
55  *
56  * @param Tp Type of element. Required to be a complete type.
57  * @param N Number of elements.
58  */
59  template<typename _Tp, std::size_t _Nm>
60  struct array
61  {
62  typedef _Tp value_type;
63  typedef _Tp* pointer;
64  typedef const _Tp* const_pointer;
65  typedef value_type& reference;
66  typedef const value_type& const_reference;
67  typedef value_type* iterator;
68  typedef const value_type* const_iterator;
69  typedef std::size_t size_type;
70  typedef std::ptrdiff_t difference_type;
73 
74  // Support for zero-sized arrays mandatory.
75  value_type _M_instance[_Nm ? _Nm : 1];
76 
77  // No explicit construct/copy/destroy for aggregate type.
78 
79  // DR 776.
80  void
81  fill(const value_type& __u)
82  { std::fill_n(begin(), size(), __u); }
83 
84  void
85  swap(array& __other)
86  { std::swap_ranges(begin(), end(), __other.begin()); }
87 
88  // Iterators.
89  iterator
90  begin()
91  { return iterator(std::__addressof(_M_instance[0])); }
92 
93  const_iterator
94  begin() const
95  { return const_iterator(std::__addressof(_M_instance[0])); }
96 
97  iterator
98  end()
99  { return iterator(std::__addressof(_M_instance[_Nm])); }
100 
101  const_iterator
102  end() const
103  { return const_iterator(std::__addressof(_M_instance[_Nm])); }
104 
106  rbegin()
107  { return reverse_iterator(end()); }
108 
110  rbegin() const
111  { return const_reverse_iterator(end()); }
112 
114  rend()
115  { return reverse_iterator(begin()); }
116 
118  rend() const
119  { return const_reverse_iterator(begin()); }
120 
121  const_iterator
122  cbegin() const
123  { return const_iterator(std::__addressof(_M_instance[0])); }
124 
125  const_iterator
126  cend() const
127  { return const_iterator(std::__addressof(_M_instance[_Nm])); }
128 
130  crbegin() const
131  { return const_reverse_iterator(end()); }
132 
134  crend() const
135  { return const_reverse_iterator(begin()); }
136 
137  // Capacity.
138  constexpr size_type
139  size() const { return _Nm; }
140 
141  constexpr size_type
142  max_size() const { return _Nm; }
143 
144  constexpr bool
145  empty() const { return size() == 0; }
146 
147  // Element access.
148  reference
149  operator[](size_type __n)
150  { return _M_instance[__n]; }
151 
152  const_reference
153  operator[](size_type __n) const
154  { return _M_instance[__n]; }
155 
156  reference
157  at(size_type __n)
158  {
159  if (__n >= _Nm)
160  std::__throw_out_of_range(__N("array::at"));
161  return _M_instance[__n];
162  }
163 
164  const_reference
165  at(size_type __n) const
166  {
167  if (__n >= _Nm)
168  std::__throw_out_of_range(__N("array::at"));
169  return _M_instance[__n];
170  }
171 
172  reference
173  front()
174  { return *begin(); }
175 
176  const_reference
177  front() const
178  { return *begin(); }
179 
180  reference
181  back()
182  { return _Nm ? *(end() - 1) : *end(); }
183 
184  const_reference
185  back() const
186  { return _Nm ? *(end() - 1) : *end(); }
187 
188  _Tp*
189  data()
190  { return std::__addressof(_M_instance[0]); }
191 
192  const _Tp*
193  data() const
194  { return std::__addressof(_M_instance[0]); }
195  };
196 
197  // Array comparisons.
198  template<typename _Tp, std::size_t _Nm>
199  inline bool
200  operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
201  { return std::equal(__one.begin(), __one.end(), __two.begin()); }
202 
203  template<typename _Tp, std::size_t _Nm>
204  inline bool
205  operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
206  { return !(__one == __two); }
207 
208  template<typename _Tp, std::size_t _Nm>
209  inline bool
210  operator<(const array<_Tp, _Nm>& __a, const array<_Tp, _Nm>& __b)
211  {
212  return std::lexicographical_compare(__a.begin(), __a.end(),
213  __b.begin(), __b.end());
214  }
215 
216  template<typename _Tp, std::size_t _Nm>
217  inline bool
218  operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
219  { return __two < __one; }
220 
221  template<typename _Tp, std::size_t _Nm>
222  inline bool
223  operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
224  { return !(__one > __two); }
225 
226  template<typename _Tp, std::size_t _Nm>
227  inline bool
228  operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
229  { return !(__one < __two); }
230 
231  // Specialized algorithms [6.2.2.2].
232  template<typename _Tp, std::size_t _Nm>
233  inline void
234  swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two)
235  { __one.swap(__two); }
236 
237  // Tuple interface to class template array [6.2.2.5].
238 
239  /// tuple_size
240  template<typename _Tp>
241  class tuple_size;
242 
243  /// tuple_element
244  template<std::size_t _Int, typename _Tp>
246 
247  template<typename _Tp, std::size_t _Nm>
248  struct tuple_size<array<_Tp, _Nm> >
249  { static const std::size_t value = _Nm; };
250 
251  template<typename _Tp, std::size_t _Nm>
252  const std::size_t
253  tuple_size<array<_Tp, _Nm> >::value;
254 
255  template<std::size_t _Int, typename _Tp, std::size_t _Nm>
256  struct tuple_element<_Int, array<_Tp, _Nm> >
257  { typedef _Tp type; };
258 
259  template<std::size_t _Int, typename _Tp, std::size_t _Nm>
260  inline _Tp&
261  get(array<_Tp, _Nm>& __arr)
262  { return __arr[_Int]; }
263 
264  template<std::size_t _Int, typename _Tp, std::size_t _Nm>
265  inline const _Tp&
266  get(const array<_Tp, _Nm>& __arr)
267  { return __arr[_Int]; }
268 
269 _GLIBCXX_END_NAMESPACE_VERSION
270 } // namespace
271 
272 #endif // __GXX_EXPERIMENTAL_CXX0X__
273 
274 #endif // _GLIBCXX_ARRAY