libstdc++
future
Go to the documentation of this file.
1 // <future> -*- C++ -*-
2 
3 // Copyright (C) 2009-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file include/future
26  * This is a Standard C++ Library header.
27  */
28 
29 #ifndef _GLIBCXX_FUTURE
30 #define _GLIBCXX_FUTURE 1
31 
32 #pragma GCC system_header
33 
34 #if __cplusplus < 201103L
35 # include <bits/c++0x_warning.h>
36 #else
37 
38 #include <functional>
39 #include <mutex>
40 #include <thread>
41 #include <condition_variable>
42 #include <system_error>
43 #include <atomic>
44 #include <bits/atomic_futex.h>
45 #include <bits/functexcept.h>
46 #include <bits/unique_ptr.h>
47 #include <bits/shared_ptr.h>
48 #include <bits/uses_allocator.h>
49 #include <bits/allocated_ptr.h>
50 #include <ext/aligned_buffer.h>
51 
52 namespace std _GLIBCXX_VISIBILITY(default)
53 {
54 _GLIBCXX_BEGIN_NAMESPACE_VERSION
55 
56  /**
57  * @defgroup futures Futures
58  * @ingroup concurrency
59  *
60  * Classes for futures support.
61  * @{
62  */
63 
64  /// Error code for futures
65  enum class future_errc
66  {
67  future_already_retrieved = 1,
68  promise_already_satisfied,
69  no_state,
70  broken_promise
71  };
72 
73  /// Specialization.
74  template<>
75  struct is_error_code_enum<future_errc> : public true_type { };
76 
77  /// Points to a statically-allocated object derived from error_category.
78  const error_category&
79  future_category() noexcept;
80 
81  /// Overload for make_error_code.
82  inline error_code
83  make_error_code(future_errc __errc) noexcept
84  { return error_code(static_cast<int>(__errc), future_category()); }
85 
86  /// Overload for make_error_condition.
87  inline error_condition
88  make_error_condition(future_errc __errc) noexcept
89  { return error_condition(static_cast<int>(__errc), future_category()); }
90 
91  /**
92  * @brief Exception type thrown by futures.
93  * @ingroup exceptions
94  */
95  class future_error : public logic_error
96  {
97  error_code _M_code;
98 
99  public:
100  explicit future_error(error_code __ec)
101  : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
102  { }
103 
104  virtual ~future_error() noexcept;
105 
106  virtual const char*
107  what() const noexcept;
108 
109  const error_code&
110  code() const noexcept { return _M_code; }
111  };
112 
113  // Forward declarations.
114  template<typename _Res>
115  class future;
116 
117  template<typename _Res>
118  class shared_future;
119 
120  template<typename _Signature>
121  class packaged_task;
122 
123  template<typename _Res>
124  class promise;
125 
126  /// Launch code for futures
127  enum class launch
128  {
129  async = 1,
130  deferred = 2
131  };
132 
133  constexpr launch operator&(launch __x, launch __y)
134  {
135  return static_cast<launch>(
136  static_cast<int>(__x) & static_cast<int>(__y));
137  }
138 
139  constexpr launch operator|(launch __x, launch __y)
140  {
141  return static_cast<launch>(
142  static_cast<int>(__x) | static_cast<int>(__y));
143  }
144 
145  constexpr launch operator^(launch __x, launch __y)
146  {
147  return static_cast<launch>(
148  static_cast<int>(__x) ^ static_cast<int>(__y));
149  }
150 
151  constexpr launch operator~(launch __x)
152  { return static_cast<launch>(~static_cast<int>(__x)); }
153 
154  inline launch& operator&=(launch& __x, launch __y)
155  { return __x = __x & __y; }
156 
157  inline launch& operator|=(launch& __x, launch __y)
158  { return __x = __x | __y; }
159 
160  inline launch& operator^=(launch& __x, launch __y)
161  { return __x = __x ^ __y; }
162 
163  /// Status code for futures
164  enum class future_status
165  {
166  ready,
167  timeout,
168  deferred
169  };
170 
171  template<typename _Fn, typename... _Args>
172  future<typename result_of<_Fn(_Args...)>::type>
173  async(launch __policy, _Fn&& __fn, _Args&&... __args);
174 
175  template<typename _Fn, typename... _Args>
176  future<typename result_of<_Fn(_Args...)>::type>
177  async(_Fn&& __fn, _Args&&... __args);
178 
179 #if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) \
180  && (ATOMIC_INT_LOCK_FREE > 1)
181 
182  /// Base class and enclosing scope.
183  struct __future_base
184  {
185  /// Base class for results.
186  struct _Result_base
187  {
188  exception_ptr _M_error;
189 
190  _Result_base(const _Result_base&) = delete;
191  _Result_base& operator=(const _Result_base&) = delete;
192 
193  // _M_destroy() allows derived classes to control deallocation
194  virtual void _M_destroy() = 0;
195 
196  struct _Deleter
197  {
198  void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
199  };
200 
201  protected:
202  _Result_base();
203  virtual ~_Result_base();
204  };
205 
206  /// A unique_ptr for result objects.
207  template<typename _Res>
208  using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;
209 
210  /// A result object that has storage for an object of type _Res.
211  template<typename _Res>
212  struct _Result : _Result_base
213  {
214  private:
215  __gnu_cxx::__aligned_buffer<_Res> _M_storage;
216  bool _M_initialized;
217 
218  public:
219  typedef _Res result_type;
220 
221  _Result() noexcept : _M_initialized() { }
222 
223  ~_Result()
224  {
225  if (_M_initialized)
226  _M_value().~_Res();
227  }
228 
229  // Return lvalue, future will add const or rvalue-reference
230  _Res&
231  _M_value() noexcept { return *_M_storage._M_ptr(); }
232 
233  void
234  _M_set(const _Res& __res)
235  {
236  ::new (_M_storage._M_addr()) _Res(__res);
237  _M_initialized = true;
238  }
239 
240  void
241  _M_set(_Res&& __res)
242  {
243  ::new (_M_storage._M_addr()) _Res(std::move(__res));
244  _M_initialized = true;
245  }
246 
247  private:
248  void _M_destroy() { delete this; }
249  };
250 
251  /// A result object that uses an allocator.
252  template<typename _Res, typename _Alloc>
253  struct _Result_alloc final : _Result<_Res>, _Alloc
254  {
255  using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;
256 
257  explicit
258  _Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
259  { }
260 
261  private:
262  void _M_destroy()
263  {
264  __allocator_type __a(*this);
265  __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
266  this->~_Result_alloc();
267  }
268  };
269 
270  // Create a result object that uses an allocator.
271  template<typename _Res, typename _Allocator>
272  static _Ptr<_Result_alloc<_Res, _Allocator>>
273  _S_allocate_result(const _Allocator& __a)
274  {
275  using __result_type = _Result_alloc<_Res, _Allocator>;
276  typename __result_type::__allocator_type __a2(__a);
277  auto __guard = std::__allocate_guarded(__a2);
278  __result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
279  __guard = nullptr;
280  return _Ptr<__result_type>(__p);
281  }
282 
283  // Keep it simple for std::allocator.
284  template<typename _Res, typename _Tp>
285  static _Ptr<_Result<_Res>>
286  _S_allocate_result(const std::allocator<_Tp>& __a)
287  {
288  return _Ptr<_Result<_Res>>(new _Result<_Res>);
289  }
290 
291  // Base class for various types of shared state created by an
292  // asynchronous provider (such as a std::promise) and shared with one
293  // or more associated futures.
294  class _State_baseV2
295  {
296  typedef _Ptr<_Result_base> _Ptr_type;
297 
298  enum _Status : unsigned {
299  __not_ready,
300  __ready
301  };
302 
303  _Ptr_type _M_result;
304  __atomic_futex_unsigned<> _M_status;
305  atomic_flag _M_retrieved = ATOMIC_FLAG_INIT;
306  once_flag _M_once;
307 
308  public:
309  _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
310  { }
311  _State_baseV2(const _State_baseV2&) = delete;
312  _State_baseV2& operator=(const _State_baseV2&) = delete;
313  virtual ~_State_baseV2() = default;
314 
315  _Result_base&
316  wait()
317  {
318  // Run any deferred function or join any asynchronous thread:
319  _M_complete_async();
320  // Acquire MO makes sure this synchronizes with the thread that made
321  // the future ready.
322  _M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
323  return *_M_result;
324  }
325 
326  template<typename _Rep, typename _Period>
327  future_status
328  wait_for(const chrono::duration<_Rep, _Period>& __rel)
329  {
330  // First, check if the future has been made ready. Use acquire MO
331  // to synchronize with the thread that made it ready.
332  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
333  return future_status::ready;
334  if (_M_is_deferred_future())
335  return future_status::deferred;
336  if (_M_status._M_load_when_equal_for(_Status::__ready,
337  memory_order_acquire, __rel))
338  {
339  // _GLIBCXX_RESOLVE_LIB_DEFECTS
340  // 2100. timed waiting functions must also join
341  // This call is a no-op by default except on an async future,
342  // in which case the async thread is joined. It's also not a
343  // no-op for a deferred future, but such a future will never
344  // reach this point because it returns future_status::deferred
345  // instead of waiting for the future to become ready (see
346  // above). Async futures synchronize in this call, so we need
347  // no further synchronization here.
348  _M_complete_async();
349 
350  return future_status::ready;
351  }
352  return future_status::timeout;
353  }
354 
355  template<typename _Clock, typename _Duration>
356  future_status
357  wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
358  {
359  // First, check if the future has been made ready. Use acquire MO
360  // to synchronize with the thread that made it ready.
361  if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
362  return future_status::ready;
363  if (_M_is_deferred_future())
364  return future_status::deferred;
365  if (_M_status._M_load_when_equal_until(_Status::__ready,
366  memory_order_acquire, __abs))
367  {
368  // _GLIBCXX_RESOLVE_LIB_DEFECTS
369  // 2100. timed waiting functions must also join
370  // See wait_for(...) above.
371  _M_complete_async();
372 
373  return future_status::ready;
374  }
375  return future_status::timeout;
376  }
377 
378  // Provide a result to the shared state and make it ready.
379  // Calls at most once: _M_result = __res();
380  void
381  _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
382  {
383  bool __did_set = false;
384  // all calls to this function are serialized,
385  // side-effects of invoking __res only happen once
386  call_once(_M_once, &_State_baseV2::_M_do_set, this,
387  std::__addressof(__res), std::__addressof(__did_set));
388  if (__did_set)
389  // Use release MO to synchronize with observers of the ready state.
390  _M_status._M_store_notify_all(_Status::__ready,
391  memory_order_release);
392  else if (!__ignore_failure)
393  __throw_future_error(int(future_errc::promise_already_satisfied));
394  }
395 
396  // Provide a result to the shared state but delay making it ready
397  // until the calling thread exits.
398  // Calls at most once: _M_result = __res();
399  void
400  _M_set_delayed_result(function<_Ptr_type()> __res,
401  weak_ptr<_State_baseV2> __self)
402  {
403  bool __did_set = false;
404  unique_ptr<_Make_ready> __mr{new _Make_ready};
405  // all calls to this function are serialized,
406  // side-effects of invoking __res only happen once
407  call_once(_M_once, &_State_baseV2::_M_do_set, this,
408  std::__addressof(__res), std::__addressof(__did_set));
409  if (!__did_set)
410  __throw_future_error(int(future_errc::promise_already_satisfied));
411  __mr->_M_shared_state = std::move(__self);
412  __mr->_M_set();
413  __mr.release();
414  }
415 
416  // Abandon this shared state.
417  void
418  _M_break_promise(_Ptr_type __res)
419  {
420  if (static_cast<bool>(__res))
421  {
422  error_code __ec(make_error_code(future_errc::broken_promise));
423  __res->_M_error = make_exception_ptr(future_error(__ec));
424  // This function is only called when the last asynchronous result
425  // provider is abandoning this shared state, so noone can be
426  // trying to make the shared state ready at the same time, and
427  // we can access _M_result directly instead of through call_once.
428  _M_result.swap(__res);
429  // Use release MO to synchronize with observers of the ready state.
430  _M_status._M_store_notify_all(_Status::__ready,
431  memory_order_release);
432  }
433  }
434 
435  // Called when this object is first passed to a future.
436  void
437  _M_set_retrieved_flag()
438  {
439  if (_M_retrieved.test_and_set())
440  __throw_future_error(int(future_errc::future_already_retrieved));
441  }
442 
443  template<typename _Res, typename _Arg>
444  struct _Setter;
445 
446  // set lvalues
447  template<typename _Res, typename _Arg>
448  struct _Setter<_Res, _Arg&>
449  {
450  // check this is only used by promise<R>::set_value(const R&)
451  // or promise<R&>::set_value(R&)
452  static_assert(is_same<_Res, _Arg&>::value // promise<R&>
453  || is_same<const _Res, _Arg>::value, // promise<R>
454  "Invalid specialisation");
455 
456  // Used by std::promise to copy construct the result.
457  typename promise<_Res>::_Ptr_type operator()() const
458  {
459  _State_baseV2::_S_check(_M_promise->_M_future);
460  _M_promise->_M_storage->_M_set(*_M_arg);
461  return std::move(_M_promise->_M_storage);
462  }
463  promise<_Res>* _M_promise;
464  _Arg* _M_arg;
465  };
466 
467  // set rvalues
468  template<typename _Res>
469  struct _Setter<_Res, _Res&&>
470  {
471  // Used by std::promise to move construct the result.
472  typename promise<_Res>::_Ptr_type operator()() const
473  {
474  _State_baseV2::_S_check(_M_promise->_M_future);
475  _M_promise->_M_storage->_M_set(std::move(*_M_arg));
476  return std::move(_M_promise->_M_storage);
477  }
478  promise<_Res>* _M_promise;
479  _Res* _M_arg;
480  };
481 
482  struct __exception_ptr_tag { };
483 
484  // set exceptions
485  template<typename _Res>
486  struct _Setter<_Res, __exception_ptr_tag>
487  {
488  // Used by std::promise to store an exception as the result.
489  typename promise<_Res>::_Ptr_type operator()() const
490  {
491  _State_baseV2::_S_check(_M_promise->_M_future);
492  _M_promise->_M_storage->_M_error = *_M_ex;
493  return std::move(_M_promise->_M_storage);
494  }
495 
496  promise<_Res>* _M_promise;
497  exception_ptr* _M_ex;
498  };
499 
500  template<typename _Res, typename _Arg>
501  static _Setter<_Res, _Arg&&>
502  __setter(promise<_Res>* __prom, _Arg&& __arg)
503  {
504  return _Setter<_Res, _Arg&&>{ __prom, &__arg };
505  }
506 
507  template<typename _Res>
508  static _Setter<_Res, __exception_ptr_tag>
509  __setter(exception_ptr& __ex, promise<_Res>* __prom)
510  {
511  return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
512  }
513 
514  template<typename _Tp>
515  static void
516  _S_check(const shared_ptr<_Tp>& __p)
517  {
518  if (!static_cast<bool>(__p))
519  __throw_future_error((int)future_errc::no_state);
520  }
521 
522  private:
523  // The function invoked with std::call_once(_M_once, ...).
524  void
525  _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
526  {
527  _Ptr_type __res = (*__f)();
528  // Notify the caller that we did try to set; if we do not throw an
529  // exception, the caller will be aware that it did set (e.g., see
530  // _M_set_result).
531  *__did_set = true;
532  _M_result.swap(__res); // nothrow
533  }
534 
535  // Wait for completion of async function.
536  virtual void _M_complete_async() { }
537 
538  // Return true if state corresponds to a deferred function.
539  virtual bool _M_is_deferred_future() const { return false; }
540 
541  struct _Make_ready final : __at_thread_exit_elt
542  {
543  weak_ptr<_State_baseV2> _M_shared_state;
544  static void _S_run(void*);
545  void _M_set();
546  };
547  };
548 
549 #ifdef _GLIBCXX_ASYNC_ABI_COMPAT
550  class _State_base;
551  class _Async_state_common;
552 #else
553  using _State_base = _State_baseV2;
554  class _Async_state_commonV2;
555 #endif
556 
557  template<typename _BoundFn, typename = typename _BoundFn::result_type>
558  class _Deferred_state;
559 
560  template<typename _BoundFn, typename = typename _BoundFn::result_type>
561  class _Async_state_impl;
562 
563  template<typename _Signature>
564  class _Task_state_base;
565 
566  template<typename _Fn, typename _Alloc, typename _Signature>
567  class _Task_state;
568 
569  template<typename _BoundFn>
570  static std::shared_ptr<_State_base>
571  _S_make_deferred_state(_BoundFn&& __fn);
572 
573  template<typename _BoundFn>
574  static std::shared_ptr<_State_base>
575  _S_make_async_state(_BoundFn&& __fn);
576 
577  template<typename _Res_ptr, typename _Fn,
578  typename _Res = typename _Res_ptr::element_type::result_type>
579  struct _Task_setter;
580 
581  template<typename _Res_ptr, typename _BoundFn>
582  static _Task_setter<_Res_ptr, _BoundFn>
583  _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
584  {
585  return { std::__addressof(__ptr), std::__addressof(__call) };
586  }
587  };
588 
589  /// Partial specialization for reference types.
590  template<typename _Res>
591  struct __future_base::_Result<_Res&> : __future_base::_Result_base
592  {
593  typedef _Res& result_type;
594 
595  _Result() noexcept : _M_value_ptr() { }
596 
597  void
598  _M_set(_Res& __res) noexcept
599  { _M_value_ptr = std::addressof(__res); }
600 
601  _Res& _M_get() noexcept { return *_M_value_ptr; }
602 
603  private:
604  _Res* _M_value_ptr;
605 
606  void _M_destroy() { delete this; }
607  };
608 
609  /// Explicit specialization for void.
610  template<>
611  struct __future_base::_Result<void> : __future_base::_Result_base
612  {
613  typedef void result_type;
614 
615  private:
616  void _M_destroy() { delete this; }
617  };
618 
619 #ifndef _GLIBCXX_ASYNC_ABI_COMPAT
620 
621  // Allow _Setter objects to be stored locally in std::function
622  template<typename _Res, typename _Arg>
623  struct __is_location_invariant
624  <__future_base::_State_base::_Setter<_Res, _Arg>>
625  : true_type { };
626 
627  // Allow _Task_setter objects to be stored locally in std::function
628  template<typename _Res_ptr, typename _Fn, typename _Res>
629  struct __is_location_invariant
630  <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
631  : true_type { };
632 
633  /// Common implementation for future and shared_future.
634  template<typename _Res>
635  class __basic_future : public __future_base
636  {
637  protected:
638  typedef shared_ptr<_State_base> __state_type;
639  typedef __future_base::_Result<_Res>& __result_type;
640 
641  private:
642  __state_type _M_state;
643 
644  public:
645  // Disable copying.
646  __basic_future(const __basic_future&) = delete;
647  __basic_future& operator=(const __basic_future&) = delete;
648 
649  bool
650  valid() const noexcept { return static_cast<bool>(_M_state); }
651 
652  void
653  wait() const
654  {
655  _State_base::_S_check(_M_state);
656  _M_state->wait();
657  }
658 
659  template<typename _Rep, typename _Period>
660  future_status
661  wait_for(const chrono::duration<_Rep, _Period>& __rel) const
662  {
663  _State_base::_S_check(_M_state);
664  return _M_state->wait_for(__rel);
665  }
666 
667  template<typename _Clock, typename _Duration>
668  future_status
669  wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
670  {
671  _State_base::_S_check(_M_state);
672  return _M_state->wait_until(__abs);
673  }
674 
675  protected:
676  /// Wait for the state to be ready and rethrow any stored exception
677  __result_type
678  _M_get_result() const
679  {
680  _State_base::_S_check(_M_state);
681  _Result_base& __res = _M_state->wait();
682  if (!(__res._M_error == 0))
683  rethrow_exception(__res._M_error);
684  return static_cast<__result_type>(__res);
685  }
686 
687  void _M_swap(__basic_future& __that) noexcept
688  {
689  _M_state.swap(__that._M_state);
690  }
691 
692  // Construction of a future by promise::get_future()
693  explicit
694  __basic_future(const __state_type& __state) : _M_state(__state)
695  {
696  _State_base::_S_check(_M_state);
697  _M_state->_M_set_retrieved_flag();
698  }
699 
700  // Copy construction from a shared_future
701  explicit
702  __basic_future(const shared_future<_Res>&) noexcept;
703 
704  // Move construction from a shared_future
705  explicit
706  __basic_future(shared_future<_Res>&&) noexcept;
707 
708  // Move construction from a future
709  explicit
710  __basic_future(future<_Res>&&) noexcept;
711 
712  constexpr __basic_future() noexcept : _M_state() { }
713 
714  struct _Reset
715  {
716  explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
717  ~_Reset() { _M_fut._M_state.reset(); }
718  __basic_future& _M_fut;
719  };
720  };
721 
722 
723  /// Primary template for future.
724  template<typename _Res>
725  class future : public __basic_future<_Res>
726  {
727  friend class promise<_Res>;
728  template<typename> friend class packaged_task;
729  template<typename _Fn, typename... _Args>
730  friend future<typename result_of<_Fn(_Args...)>::type>
731  async(launch, _Fn&&, _Args&&...);
732 
733  typedef __basic_future<_Res> _Base_type;
734  typedef typename _Base_type::__state_type __state_type;
735 
736  explicit
737  future(const __state_type& __state) : _Base_type(__state) { }
738 
739  public:
740  constexpr future() noexcept : _Base_type() { }
741 
742  /// Move constructor
743  future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
744 
745  // Disable copying
746  future(const future&) = delete;
747  future& operator=(const future&) = delete;
748 
749  future& operator=(future&& __fut) noexcept
750  {
751  future(std::move(__fut))._M_swap(*this);
752  return *this;
753  }
754 
755  /// Retrieving the value
756  _Res
757  get()
758  {
759  typename _Base_type::_Reset __reset(*this);
760  return std::move(this->_M_get_result()._M_value());
761  }
762 
763  shared_future<_Res> share();
764  };
765 
766  /// Partial specialization for future<R&>
767  template<typename _Res>
768  class future<_Res&> : public __basic_future<_Res&>
769  {
770  friend class promise<_Res&>;
771  template<typename> friend class packaged_task;
772  template<typename _Fn, typename... _Args>
773  friend future<typename result_of<_Fn(_Args...)>::type>
774  async(launch, _Fn&&, _Args&&...);
775 
776  typedef __basic_future<_Res&> _Base_type;
777  typedef typename _Base_type::__state_type __state_type;
778 
779  explicit
780  future(const __state_type& __state) : _Base_type(__state) { }
781 
782  public:
783  constexpr future() noexcept : _Base_type() { }
784 
785  /// Move constructor
786  future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
787 
788  // Disable copying
789  future(const future&) = delete;
790  future& operator=(const future&) = delete;
791 
792  future& operator=(future&& __fut) noexcept
793  {
794  future(std::move(__fut))._M_swap(*this);
795  return *this;
796  }
797 
798  /// Retrieving the value
799  _Res&
800  get()
801  {
802  typename _Base_type::_Reset __reset(*this);
803  return this->_M_get_result()._M_get();
804  }
805 
806  shared_future<_Res&> share();
807  };
808 
809  /// Explicit specialization for future<void>
810  template<>
811  class future<void> : public __basic_future<void>
812  {
813  friend class promise<void>;
814  template<typename> friend class packaged_task;
815  template<typename _Fn, typename... _Args>
816  friend future<typename result_of<_Fn(_Args...)>::type>
817  async(launch, _Fn&&, _Args&&...);
818 
819  typedef __basic_future<void> _Base_type;
820  typedef typename _Base_type::__state_type __state_type;
821 
822  explicit
823  future(const __state_type& __state) : _Base_type(__state) { }
824 
825  public:
826  constexpr future() noexcept : _Base_type() { }
827 
828  /// Move constructor
829  future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
830 
831  // Disable copying
832  future(const future&) = delete;
833  future& operator=(const future&) = delete;
834 
835  future& operator=(future&& __fut) noexcept
836  {
837  future(std::move(__fut))._M_swap(*this);
838  return *this;
839  }
840 
841  /// Retrieving the value
842  void
843  get()
844  {
845  typename _Base_type::_Reset __reset(*this);
846  this->_M_get_result();
847  }
848 
849  shared_future<void> share();
850  };
851 
852 
853  /// Primary template for shared_future.
854  template<typename _Res>
855  class shared_future : public __basic_future<_Res>
856  {
857  typedef __basic_future<_Res> _Base_type;
858 
859  public:
860  constexpr shared_future() noexcept : _Base_type() { }
861 
862  /// Copy constructor
863  shared_future(const shared_future& __sf) : _Base_type(__sf) { }
864 
865  /// Construct from a future rvalue
866  shared_future(future<_Res>&& __uf) noexcept
867  : _Base_type(std::move(__uf))
868  { }
869 
870  /// Construct from a shared_future rvalue
871  shared_future(shared_future&& __sf) noexcept
872  : _Base_type(std::move(__sf))
873  { }
874 
875  shared_future& operator=(const shared_future& __sf)
876  {
877  shared_future(__sf)._M_swap(*this);
878  return *this;
879  }
880 
881  shared_future& operator=(shared_future&& __sf) noexcept
882  {
883  shared_future(std::move(__sf))._M_swap(*this);
884  return *this;
885  }
886 
887  /// Retrieving the value
888  const _Res&
889  get() const { return this->_M_get_result()._M_value(); }
890  };
891 
892  /// Partial specialization for shared_future<R&>
893  template<typename _Res>
894  class shared_future<_Res&> : public __basic_future<_Res&>
895  {
896  typedef __basic_future<_Res&> _Base_type;
897 
898  public:
899  constexpr shared_future() noexcept : _Base_type() { }
900 
901  /// Copy constructor
902  shared_future(const shared_future& __sf) : _Base_type(__sf) { }
903 
904  /// Construct from a future rvalue
905  shared_future(future<_Res&>&& __uf) noexcept
906  : _Base_type(std::move(__uf))
907  { }
908 
909  /// Construct from a shared_future rvalue
910  shared_future(shared_future&& __sf) noexcept
911  : _Base_type(std::move(__sf))
912  { }
913 
914  shared_future& operator=(const shared_future& __sf)
915  {
916  shared_future(__sf)._M_swap(*this);
917  return *this;
918  }
919 
920  shared_future& operator=(shared_future&& __sf) noexcept
921  {
922  shared_future(std::move(__sf))._M_swap(*this);
923  return *this;
924  }
925 
926  /// Retrieving the value
927  _Res&
928  get() const { return this->_M_get_result()._M_get(); }
929  };
930 
931  /// Explicit specialization for shared_future<void>
932  template<>
933  class shared_future<void> : public __basic_future<void>
934  {
935  typedef __basic_future<void> _Base_type;
936 
937  public:
938  constexpr shared_future() noexcept : _Base_type() { }
939 
940  /// Copy constructor
941  shared_future(const shared_future& __sf) : _Base_type(__sf) { }
942 
943  /// Construct from a future rvalue
944  shared_future(future<void>&& __uf) noexcept
945  : _Base_type(std::move(__uf))
946  { }
947 
948  /// Construct from a shared_future rvalue
949  shared_future(shared_future&& __sf) noexcept
950  : _Base_type(std::move(__sf))
951  { }
952 
953  shared_future& operator=(const shared_future& __sf)
954  {
955  shared_future(__sf)._M_swap(*this);
956  return *this;
957  }
958 
959  shared_future& operator=(shared_future&& __sf) noexcept
960  {
961  shared_future(std::move(__sf))._M_swap(*this);
962  return *this;
963  }
964 
965  // Retrieving the value
966  void
967  get() const { this->_M_get_result(); }
968  };
969 
970  // Now we can define the protected __basic_future constructors.
971  template<typename _Res>
972  inline __basic_future<_Res>::
973  __basic_future(const shared_future<_Res>& __sf) noexcept
974  : _M_state(__sf._M_state)
975  { }
976 
977  template<typename _Res>
978  inline __basic_future<_Res>::
979  __basic_future(shared_future<_Res>&& __sf) noexcept
980  : _M_state(std::move(__sf._M_state))
981  { }
982 
983  template<typename _Res>
984  inline __basic_future<_Res>::
985  __basic_future(future<_Res>&& __uf) noexcept
986  : _M_state(std::move(__uf._M_state))
987  { }
988 
989  template<typename _Res>
990  inline shared_future<_Res>
991  future<_Res>::share()
992  { return shared_future<_Res>(std::move(*this)); }
993 
994  template<typename _Res>
995  inline shared_future<_Res&>
996  future<_Res&>::share()
997  { return shared_future<_Res&>(std::move(*this)); }
998 
999  inline shared_future<void>
1000  future<void>::share()
1001  { return shared_future<void>(std::move(*this)); }
1002 
1003  /// Primary template for promise
1004  template<typename _Res>
1005  class promise
1006  {
1007  typedef __future_base::_State_base _State;
1008  typedef __future_base::_Result<_Res> _Res_type;
1009  typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1010  template<typename, typename> friend class _State::_Setter;
1011 
1012  shared_ptr<_State> _M_future;
1013  _Ptr_type _M_storage;
1014 
1015  public:
1016  promise()
1017  : _M_future(std::make_shared<_State>()),
1018  _M_storage(new _Res_type())
1019  { }
1020 
1021  promise(promise&& __rhs) noexcept
1022  : _M_future(std::move(__rhs._M_future)),
1023  _M_storage(std::move(__rhs._M_storage))
1024  { }
1025 
1026  template<typename _Allocator>
1027  promise(allocator_arg_t, const _Allocator& __a)
1028  : _M_future(std::allocate_shared<_State>(__a)),
1029  _M_storage(__future_base::_S_allocate_result<_Res>(__a))
1030  { }
1031 
1032  template<typename _Allocator>
1033  promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1034  : _M_future(std::move(__rhs._M_future)),
1035  _M_storage(std::move(__rhs._M_storage))
1036  { }
1037 
1038  promise(const promise&) = delete;
1039 
1040  ~promise()
1041  {
1042  if (static_cast<bool>(_M_future) && !_M_future.unique())
1043  _M_future->_M_break_promise(std::move(_M_storage));
1044  }
1045 
1046  // Assignment
1047  promise&
1048  operator=(promise&& __rhs) noexcept
1049  {
1050  promise(std::move(__rhs)).swap(*this);
1051  return *this;
1052  }
1053 
1054  promise& operator=(const promise&) = delete;
1055 
1056  void
1057  swap(promise& __rhs) noexcept
1058  {
1059  _M_future.swap(__rhs._M_future);
1060  _M_storage.swap(__rhs._M_storage);
1061  }
1062 
1063  // Retrieving the result
1064  future<_Res>
1065  get_future()
1066  { return future<_Res>(_M_future); }
1067 
1068  // Setting the result
1069  void
1070  set_value(const _Res& __r)
1071  { _M_future->_M_set_result(_State::__setter(this, __r)); }
1072 
1073  void
1074  set_value(_Res&& __r)
1075  { _M_future->_M_set_result(_State::__setter(this, std::move(__r))); }
1076 
1077  void
1078  set_exception(exception_ptr __p)
1079  { _M_future->_M_set_result(_State::__setter(__p, this)); }
1080 
1081  void
1082  set_value_at_thread_exit(const _Res& __r)
1083  {
1084  _M_future->_M_set_delayed_result(_State::__setter(this, __r),
1085  _M_future);
1086  }
1087 
1088  void
1089  set_value_at_thread_exit(_Res&& __r)
1090  {
1091  _M_future->_M_set_delayed_result(
1092  _State::__setter(this, std::move(__r)), _M_future);
1093  }
1094 
1095  void
1096  set_exception_at_thread_exit(exception_ptr __p)
1097  {
1098  _M_future->_M_set_delayed_result(_State::__setter(__p, this),
1099  _M_future);
1100  }
1101  };
1102 
1103  template<typename _Res>
1104  inline void
1105  swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
1106  { __x.swap(__y); }
1107 
1108  template<typename _Res, typename _Alloc>
1109  struct uses_allocator<promise<_Res>, _Alloc>
1110  : public true_type { };
1111 
1112 
1113  /// Partial specialization for promise<R&>
1114  template<typename _Res>
1115  class promise<_Res&>
1116  {
1117  typedef __future_base::_State_base _State;
1118  typedef __future_base::_Result<_Res&> _Res_type;
1119  typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1120  template<typename, typename> friend class _State::_Setter;
1121 
1122  shared_ptr<_State> _M_future;
1123  _Ptr_type _M_storage;
1124 
1125  public:
1126  promise()
1127  : _M_future(std::make_shared<_State>()),
1128  _M_storage(new _Res_type())
1129  { }
1130 
1131  promise(promise&& __rhs) noexcept
1132  : _M_future(std::move(__rhs._M_future)),
1133  _M_storage(std::move(__rhs._M_storage))
1134  { }
1135 
1136  template<typename _Allocator>
1137  promise(allocator_arg_t, const _Allocator& __a)
1138  : _M_future(std::allocate_shared<_State>(__a)),
1139  _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
1140  { }
1141 
1142  template<typename _Allocator>
1143  promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1144  : _M_future(std::move(__rhs._M_future)),
1145  _M_storage(std::move(__rhs._M_storage))
1146  { }
1147 
1148  promise(const promise&) = delete;
1149 
1150  ~promise()
1151  {
1152  if (static_cast<bool>(_M_future) && !_M_future.unique())
1153  _M_future->_M_break_promise(std::move(_M_storage));
1154  }
1155 
1156  // Assignment
1157  promise&
1158  operator=(promise&& __rhs) noexcept
1159  {
1160  promise(std::move(__rhs)).swap(*this);
1161  return *this;
1162  }
1163 
1164  promise& operator=(const promise&) = delete;
1165 
1166  void
1167  swap(promise& __rhs) noexcept
1168  {
1169  _M_future.swap(__rhs._M_future);
1170  _M_storage.swap(__rhs._M_storage);
1171  }
1172 
1173  // Retrieving the result
1174  future<_Res&>
1175  get_future()
1176  { return future<_Res&>(_M_future); }
1177 
1178  // Setting the result
1179  void
1180  set_value(_Res& __r)
1181  { _M_future->_M_set_result(_State::__setter(this, __r)); }
1182 
1183  void
1184  set_exception(exception_ptr __p)
1185  { _M_future->_M_set_result(_State::__setter(__p, this)); }
1186 
1187  void
1188  set_value_at_thread_exit(_Res& __r)
1189  {
1190  _M_future->_M_set_delayed_result(_State::__setter(this, __r),
1191  _M_future);
1192  }
1193 
1194  void
1195  set_exception_at_thread_exit(exception_ptr __p)
1196  {
1197  _M_future->_M_set_delayed_result(_State::__setter(__p, this),
1198  _M_future);
1199  }
1200  };
1201 
1202  /// Explicit specialization for promise<void>
1203  template<>
1204  class promise<void>
1205  {
1206  typedef __future_base::_State_base _State;
1207  typedef __future_base::_Result<void> _Res_type;
1208  typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1209  template<typename, typename> friend class _State::_Setter;
1210 
1211  shared_ptr<_State> _M_future;
1212  _Ptr_type _M_storage;
1213 
1214  public:
1215  promise()
1216  : _M_future(std::make_shared<_State>()),
1217  _M_storage(new _Res_type())
1218  { }
1219 
1220  promise(promise&& __rhs) noexcept
1221  : _M_future(std::move(__rhs._M_future)),
1222  _M_storage(std::move(__rhs._M_storage))
1223  { }
1224 
1225  template<typename _Allocator>
1226  promise(allocator_arg_t, const _Allocator& __a)
1227  : _M_future(std::allocate_shared<_State>(__a)),
1228  _M_storage(__future_base::_S_allocate_result<void>(__a))
1229  { }
1230 
1231  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1232  // 2095. missing constructors needed for uses-allocator construction
1233  template<typename _Allocator>
1234  promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1235  : _M_future(std::move(__rhs._M_future)),
1236  _M_storage(std::move(__rhs._M_storage))
1237  { }
1238 
1239  promise(const promise&) = delete;
1240 
1241  ~promise()
1242  {
1243  if (static_cast<bool>(_M_future) && !_M_future.unique())
1244  _M_future->_M_break_promise(std::move(_M_storage));
1245  }
1246 
1247  // Assignment
1248  promise&
1249  operator=(promise&& __rhs) noexcept
1250  {
1251  promise(std::move(__rhs)).swap(*this);
1252  return *this;
1253  }
1254 
1255  promise& operator=(const promise&) = delete;
1256 
1257  void
1258  swap(promise& __rhs) noexcept
1259  {
1260  _M_future.swap(__rhs._M_future);
1261  _M_storage.swap(__rhs._M_storage);
1262  }
1263 
1264  // Retrieving the result
1265  future<void>
1266  get_future()
1267  { return future<void>(_M_future); }
1268 
1269  // Setting the result
1270  void set_value();
1271 
1272  void
1273  set_exception(exception_ptr __p)
1274  { _M_future->_M_set_result(_State::__setter(__p, this)); }
1275 
1276  void
1277  set_value_at_thread_exit();
1278 
1279  void
1280  set_exception_at_thread_exit(exception_ptr __p)
1281  {
1282  _M_future->_M_set_delayed_result(_State::__setter(__p, this),
1283  _M_future);
1284  }
1285  };
1286 
1287  // set void
1288  template<>
1289  struct __future_base::_State_base::_Setter<void, void>
1290  {
1291  promise<void>::_Ptr_type operator()() const
1292  {
1293  _State_base::_S_check(_M_promise->_M_future);
1294  return std::move(_M_promise->_M_storage);
1295  }
1296 
1297  promise<void>* _M_promise;
1298  };
1299 
1300  inline void
1301  promise<void>::set_value()
1302  { _M_future->_M_set_result(_State::_Setter<void, void>{ this }); }
1303 
1304  inline void
1305  promise<void>::set_value_at_thread_exit()
1306  {
1307  _M_future->_M_set_delayed_result(_State::_Setter<void, void>{this},
1308  _M_future);
1309  }
1310 
1311  template<typename _Ptr_type, typename _Fn, typename _Res>
1312  struct __future_base::_Task_setter
1313  {
1314  // Invoke the function and provide the result to the caller.
1315  _Ptr_type operator()() const
1316  {
1317  __try
1318  {
1319  (*_M_result)->_M_set((*_M_fn)());
1320  }
1321  __catch(const __cxxabiv1::__forced_unwind&)
1322  {
1323  __throw_exception_again; // will cause broken_promise
1324  }
1325  __catch(...)
1326  {
1327  (*_M_result)->_M_error = current_exception();
1328  }
1329  return std::move(*_M_result);
1330  }
1331  _Ptr_type* _M_result;
1332  _Fn* _M_fn;
1333  };
1334 
1335  template<typename _Ptr_type, typename _Fn>
1336  struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
1337  {
1338  _Ptr_type operator()() const
1339  {
1340  __try
1341  {
1342  (*_M_fn)();
1343  }
1344  __catch(const __cxxabiv1::__forced_unwind&)
1345  {
1346  __throw_exception_again; // will cause broken_promise
1347  }
1348  __catch(...)
1349  {
1350  (*_M_result)->_M_error = current_exception();
1351  }
1352  return std::move(*_M_result);
1353  }
1354  _Ptr_type* _M_result;
1355  _Fn* _M_fn;
1356  };
1357 
1358  // Holds storage for a packaged_task's result.
1359  template<typename _Res, typename... _Args>
1360  struct __future_base::_Task_state_base<_Res(_Args...)>
1361  : __future_base::_State_base
1362  {
1363  typedef _Res _Res_type;
1364 
1365  template<typename _Alloc>
1366  _Task_state_base(const _Alloc& __a)
1367  : _M_result(_S_allocate_result<_Res>(__a))
1368  { }
1369 
1370  // Invoke the stored task and make the state ready.
1371  virtual void
1372  _M_run(_Args&&... __args) = 0;
1373 
1374  // Invoke the stored task and make the state ready at thread exit.
1375  virtual void
1376  _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;
1377 
1378  virtual shared_ptr<_Task_state_base>
1379  _M_reset() = 0;
1380 
1381  typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1382  _Ptr_type _M_result;
1383  };
1384 
1385  // Holds a packaged_task's stored task.
1386  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1387  struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
1388  : __future_base::_Task_state_base<_Res(_Args...)>
1389  {
1390  template<typename _Fn2>
1391  _Task_state(_Fn2&& __fn, const _Alloc& __a)
1392  : _Task_state_base<_Res(_Args...)>(__a),
1393  _M_impl(std::forward<_Fn2>(__fn), __a)
1394  { }
1395 
1396  private:
1397  virtual void
1398  _M_run(_Args&&... __args)
1399  {
1400  // bound arguments decay so wrap lvalue references
1401  auto __boundfn = std::__bind_simple(std::ref(_M_impl._M_fn),
1402  _S_maybe_wrap_ref(std::forward<_Args>(__args))...);
1403  this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
1404  }
1405 
1406  virtual void
1407  _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
1408  {
1409  // bound arguments decay so wrap lvalue references
1410  auto __boundfn = std::__bind_simple(std::ref(_M_impl._M_fn),
1411  _S_maybe_wrap_ref(std::forward<_Args>(__args))...);
1412  this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
1413  std::move(__self));
1414  }
1415 
1416  virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
1417  _M_reset();
1418 
1419  template<typename _Tp>
1420  static reference_wrapper<_Tp>
1421  _S_maybe_wrap_ref(_Tp& __t)
1422  { return std::ref(__t); }
1423 
1424  template<typename _Tp>
1425  static
1426  typename enable_if<!is_lvalue_reference<_Tp>::value, _Tp>::type&&
1427  _S_maybe_wrap_ref(_Tp&& __t)
1428  { return std::forward<_Tp>(__t); }
1429 
1430  struct _Impl : _Alloc
1431  {
1432  template<typename _Fn2>
1433  _Impl(_Fn2&& __fn, const _Alloc& __a)
1434  : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
1435  _Fn _M_fn;
1436  } _M_impl;
1437  };
1438 
1439  template<typename _Signature, typename _Fn, typename _Alloc>
1440  static shared_ptr<__future_base::_Task_state_base<_Signature>>
1441  __create_task_state(_Fn&& __fn, const _Alloc& __a)
1442  {
1443  typedef typename decay<_Fn>::type _Fn2;
1444  typedef __future_base::_Task_state<_Fn2, _Alloc, _Signature> _State;
1445  return std::allocate_shared<_State>(__a, std::forward<_Fn>(__fn), __a);
1446  }
1447 
1448  template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1449  shared_ptr<__future_base::_Task_state_base<_Res(_Args...)>>
1450  __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)>::_M_reset()
1451  {
1452  return __create_task_state<_Res(_Args...)>(std::move(_M_impl._M_fn),
1453  static_cast<_Alloc&>(_M_impl));
1454  }
1455 
1456  template<typename _Task, typename _Fn, bool
1457  = is_same<_Task, typename decay<_Fn>::type>::value>
1458  struct __constrain_pkgdtask
1459  { typedef void __type; };
1460 
1461  template<typename _Task, typename _Fn>
1462  struct __constrain_pkgdtask<_Task, _Fn, true>
1463  { };
1464 
1465  /// packaged_task
1466  template<typename _Res, typename... _ArgTypes>
1467  class packaged_task<_Res(_ArgTypes...)>
1468  {
1469  typedef __future_base::_Task_state_base<_Res(_ArgTypes...)> _State_type;
1470  shared_ptr<_State_type> _M_state;
1471 
1472  public:
1473  // Construction and destruction
1474  packaged_task() noexcept { }
1475 
1476  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1477  // 2095. missing constructors needed for uses-allocator construction
1478  template<typename _Allocator>
1479  packaged_task(allocator_arg_t, const _Allocator& __a) noexcept
1480  { }
1481 
1482  template<typename _Fn, typename = typename
1483  __constrain_pkgdtask<packaged_task, _Fn>::__type>
1484  explicit
1485  packaged_task(_Fn&& __fn)
1486  : packaged_task(allocator_arg, std::allocator<int>(),
1487  std::forward<_Fn>(__fn))
1488  { }
1489 
1490  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1491  // 2097. packaged_task constructors should be constrained
1492  template<typename _Fn, typename _Alloc, typename = typename
1493  __constrain_pkgdtask<packaged_task, _Fn>::__type>
1494  explicit
1495  packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
1496  : _M_state(__create_task_state<_Res(_ArgTypes...)>(
1497  std::forward<_Fn>(__fn), __a))
1498  { }
1499 
1500  ~packaged_task()
1501  {
1502  if (static_cast<bool>(_M_state) && !_M_state.unique())
1503  _M_state->_M_break_promise(std::move(_M_state->_M_result));
1504  }
1505 
1506  // No copy
1507  packaged_task(const packaged_task&) = delete;
1508  packaged_task& operator=(const packaged_task&) = delete;
1509 
1510  template<typename _Allocator>
1511  packaged_task(allocator_arg_t, const _Allocator&,
1512  const packaged_task&) = delete;
1513 
1514  // Move support
1515  packaged_task(packaged_task&& __other) noexcept
1516  { this->swap(__other); }
1517 
1518  template<typename _Allocator>
1519  packaged_task(allocator_arg_t, const _Allocator&,
1520  packaged_task&& __other) noexcept
1521  { this->swap(__other); }
1522 
1523  packaged_task& operator=(packaged_task&& __other) noexcept
1524  {
1525  packaged_task(std::move(__other)).swap(*this);
1526  return *this;
1527  }
1528 
1529  void
1530  swap(packaged_task& __other) noexcept
1531  { _M_state.swap(__other._M_state); }
1532 
1533  bool
1534  valid() const noexcept
1535  { return static_cast<bool>(_M_state); }
1536 
1537  // Result retrieval
1538  future<_Res>
1539  get_future()
1540  { return future<_Res>(_M_state); }
1541 
1542  // Execution
1543  void
1544  operator()(_ArgTypes... __args)
1545  {
1546  __future_base::_State_base::_S_check(_M_state);
1547  _M_state->_M_run(std::forward<_ArgTypes>(__args)...);
1548  }
1549 
1550  void
1551  make_ready_at_thread_exit(_ArgTypes... __args)
1552  {
1553  __future_base::_State_base::_S_check(_M_state);
1554  _M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
1555  }
1556 
1557  void
1558  reset()
1559  {
1560  __future_base::_State_base::_S_check(_M_state);
1561  packaged_task __tmp;
1562  __tmp._M_state = _M_state;
1563  _M_state = _M_state->_M_reset();
1564  }
1565  };
1566 
1567  /// swap
1568  template<typename _Res, typename... _ArgTypes>
1569  inline void
1570  swap(packaged_task<_Res(_ArgTypes...)>& __x,
1571  packaged_task<_Res(_ArgTypes...)>& __y) noexcept
1572  { __x.swap(__y); }
1573 
1574  template<typename _Res, typename _Alloc>
1575  struct uses_allocator<packaged_task<_Res>, _Alloc>
1576  : public true_type { };
1577 
1578 
1579  // Shared state created by std::async().
1580  // Holds a deferred function and storage for its result.
1581  template<typename _BoundFn, typename _Res>
1582  class __future_base::_Deferred_state final
1583  : public __future_base::_State_base
1584  {
1585  public:
1586  explicit
1587  _Deferred_state(_BoundFn&& __fn)
1588  : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1589  { }
1590 
1591  private:
1592  typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1593  _Ptr_type _M_result;
1594  _BoundFn _M_fn;
1595 
1596  // Run the deferred function.
1597  virtual void
1598  _M_complete_async()
1599  {
1600  // Multiple threads can call a waiting function on the future and
1601  // reach this point at the same time. The call_once in _M_set_result
1602  // ensures only the first one run the deferred function, stores the
1603  // result in _M_result, swaps that with the base _M_result and makes
1604  // the state ready. Tell _M_set_result to ignore failure so all later
1605  // calls do nothing.
1606  _M_set_result(_S_task_setter(_M_result, _M_fn), true);
1607  }
1608 
1609  // Caller should check whether the state is ready first, because this
1610  // function will return true even after the deferred function has run.
1611  virtual bool _M_is_deferred_future() const { return true; }
1612  };
1613 
1614  // Common functionality hoisted out of the _Async_state_impl template.
1615  class __future_base::_Async_state_commonV2
1616  : public __future_base::_State_base
1617  {
1618  protected:
1619  ~_Async_state_commonV2() = default;
1620 
1621  // Make waiting functions block until the thread completes, as if joined.
1622  //
1623  // This function is used by wait() to satisfy the first requirement below
1624  // and by wait_for() / wait_until() to satisfy the second.
1625  //
1626  // [futures.async]:
1627  //
1628  // — a call to a waiting function on an asynchronous return object that
1629  // shares the shared state created by this async call shall block until
1630  // the associated thread has completed, as if joined, or else time out.
1631  //
1632  // — the associated thread completion synchronizes with the return from
1633  // the first function that successfully detects the ready status of the
1634  // shared state or with the return from the last function that releases
1635  // the shared state, whichever happens first.
1636  virtual void _M_complete_async() { _M_join(); }
1637 
1638  void _M_join() { std::call_once(_M_once, &thread::join, ref(_M_thread)); }
1639 
1640  thread _M_thread;
1641  once_flag _M_once;
1642  };
1643 
1644  // Shared state created by std::async().
1645  // Starts a new thread that runs a function and makes the shared state ready.
1646  template<typename _BoundFn, typename _Res>
1647  class __future_base::_Async_state_impl final
1648  : public __future_base::_Async_state_commonV2
1649  {
1650  public:
1651  explicit
1652  _Async_state_impl(_BoundFn&& __fn)
1653  : _M_result(new _Result<_Res>()), _M_fn(std::move(__fn))
1654  {
1655  _M_thread = std::thread{ [this] {
1656  __try
1657  {
1658  _M_set_result(_S_task_setter(_M_result, _M_fn));
1659  }
1660  __catch (const __cxxabiv1::__forced_unwind&)
1661  {
1662  // make the shared state ready on thread cancellation
1663  if (static_cast<bool>(_M_result))
1664  this->_M_break_promise(std::move(_M_result));
1665  __throw_exception_again;
1666  }
1667  } };
1668  }
1669 
1670  // Must not destroy _M_result and _M_fn until the thread finishes.
1671  // Call join() directly rather than through _M_join() because no other
1672  // thread can be referring to this state if it is being destroyed.
1673  ~_Async_state_impl() { if (_M_thread.joinable()) _M_thread.join(); }
1674 
1675  private:
1676  typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1677  _Ptr_type _M_result;
1678  _BoundFn _M_fn;
1679  };
1680 
1681  template<typename _BoundFn>
1682  inline std::shared_ptr<__future_base::_State_base>
1683  __future_base::_S_make_deferred_state(_BoundFn&& __fn)
1684  {
1685  typedef typename remove_reference<_BoundFn>::type __fn_type;
1686  typedef _Deferred_state<__fn_type> __state_type;
1687  return std::make_shared<__state_type>(std::move(__fn));
1688  }
1689 
1690  template<typename _BoundFn>
1691  inline std::shared_ptr<__future_base::_State_base>
1692  __future_base::_S_make_async_state(_BoundFn&& __fn)
1693  {
1694  typedef typename remove_reference<_BoundFn>::type __fn_type;
1695  typedef _Async_state_impl<__fn_type> __state_type;
1696  return std::make_shared<__state_type>(std::move(__fn));
1697  }
1698 
1699 
1700  /// async
1701  template<typename _Fn, typename... _Args>
1702  future<typename result_of<_Fn(_Args...)>::type>
1703  async(launch __policy, _Fn&& __fn, _Args&&... __args)
1704  {
1705  typedef typename result_of<_Fn(_Args...)>::type result_type;
1706  std::shared_ptr<__future_base::_State_base> __state;
1707  if ((__policy & (launch::async|launch::deferred)) == launch::async)
1708  {
1709  __state = __future_base::_S_make_async_state(std::__bind_simple(
1710  std::forward<_Fn>(__fn), std::forward<_Args>(__args)...));
1711  }
1712  else
1713  {
1714  __state = __future_base::_S_make_deferred_state(std::__bind_simple(
1715  std::forward<_Fn>(__fn), std::forward<_Args>(__args)...));
1716  }
1717  return future<result_type>(__state);
1718  }
1719 
1720  /// async, potential overload
1721  template<typename _Fn, typename... _Args>
1722  inline future<typename result_of<_Fn(_Args...)>::type>
1723  async(_Fn&& __fn, _Args&&... __args)
1724  {
1725  return async(launch::async|launch::deferred, std::forward<_Fn>(__fn),
1726  std::forward<_Args>(__args)...);
1727  }
1728 
1729 #endif // _GLIBCXX_ASYNC_ABI_COMPAT
1730 #endif // _GLIBCXX_HAS_GTHREADS && _GLIBCXX_USE_C99_STDINT_TR1
1731  // && ATOMIC_INT_LOCK_FREE
1732 
1733  // @} group futures
1734 _GLIBCXX_END_NAMESPACE_VERSION
1735 } // namespace
1736 
1737 #endif // C++11
1738 
1739 #endif // _GLIBCXX_FUTURE