libstdc++
regex_executor.tcc
Go to the documentation of this file.
1 // class template regex -*- C++ -*-
2 
3 // Copyright (C) 2013-2016 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /**
26  * @file bits/regex_executor.tcc
27  * This is an internal header file, included by other library headers.
28  * Do not attempt to use it directly. @headername{regex}
29  */
30 
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 namespace __detail
34 {
35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
36 
37  template<typename _BiIter, typename _Alloc, typename _TraitsT,
38  bool __dfs_mode>
39  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
40  _M_search()
41  {
42  if (_M_search_from_first())
43  return true;
44  if (_M_flags & regex_constants::match_continuous)
45  return false;
47  while (_M_begin != _M_end)
48  {
49  ++_M_begin;
50  if (_M_search_from_first())
51  return true;
52  }
53  return false;
54  }
55 
56  // The _M_main function operates in different modes, DFS mode or BFS mode,
57  // indicated by template parameter __dfs_mode, and dispatches to one of the
58  // _M_main_dispatch overloads.
59  //
60  // ------------------------------------------------------------
61  //
62  // DFS mode:
63  //
64  // It applies a Depth-First-Search (aka backtracking) on given NFA and input
65  // string.
66  // At the very beginning the executor stands in the start state, then it
67  // tries every possible state transition in current state recursively. Some
68  // state transitions consume input string, say, a single-char-matcher or a
69  // back-reference matcher; some don't, like assertion or other anchor nodes.
70  // When the input is exhausted and/or the current state is an accepting
71  // state, the whole executor returns true.
72  //
73  // TODO: This approach is exponentially slow for certain input.
74  // Try to compile the NFA to a DFA.
75  //
76  // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
77  // Space complexity: \theta(match_results.size() + match_length)
78  //
79  template<typename _BiIter, typename _Alloc, typename _TraitsT,
80  bool __dfs_mode>
81  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
82  _M_main_dispatch(_Match_mode __match_mode, __dfs)
83  {
84  _M_has_sol = false;
85  *_M_states._M_get_sol_pos() = _BiIter();
86  _M_cur_results = _M_results;
87  _M_dfs(__match_mode, _M_states._M_start);
88  return _M_has_sol;
89  }
90 
91  // ------------------------------------------------------------
92  //
93  // BFS mode:
94  //
95  // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
96  // explained this algorithm clearly.
97  //
98  // It first computes epsilon closure (states that can be achieved without
99  // consuming characters) for every state that's still matching,
100  // using the same DFS algorithm, but doesn't re-enter states (using
101  // _M_states._M_visited to check), nor follow _S_opcode_match.
102  //
103  // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
104  // as the start state.
105  //
106  // It significantly reduces potential duplicate states, so has a better
107  // upper bound; but it requires more overhead.
108  //
109  // Time complexity: \Omega(match_length * match_results.size())
110  // O(match_length * _M_nfa.size() * match_results.size())
111  // Space complexity: \Omega(_M_nfa.size() + match_results.size())
112  // O(_M_nfa.size() * match_results.size())
113  template<typename _BiIter, typename _Alloc, typename _TraitsT,
114  bool __dfs_mode>
115  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
116  _M_main_dispatch(_Match_mode __match_mode, __bfs)
117  {
118  _M_states._M_queue(_M_states._M_start, _M_results);
119  bool __ret = false;
120  while (1)
121  {
122  _M_has_sol = false;
123  if (_M_states._M_match_queue.empty())
124  break;
125  std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false);
126  auto __old_queue = std::move(_M_states._M_match_queue);
127  for (auto& __task : __old_queue)
128  {
129  _M_cur_results = std::move(__task.second);
130  _M_dfs(__match_mode, __task.first);
131  }
132  if (__match_mode == _Match_mode::_Prefix)
133  __ret |= _M_has_sol;
134  if (_M_current == _M_end)
135  break;
136  ++_M_current;
137  }
138  if (__match_mode == _Match_mode::_Exact)
139  __ret = _M_has_sol;
140  _M_states._M_match_queue.clear();
141  return __ret;
142  }
143 
144  // Return whether now match the given sub-NFA.
145  template<typename _BiIter, typename _Alloc, typename _TraitsT,
146  bool __dfs_mode>
147  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
148  _M_lookahead(_StateIdT __next)
149  {
150  // Backreferences may refer to captured content.
151  // We may want to make this faster by not copying,
152  // but let's not be clever prematurely.
153  _ResultsVec __what(_M_cur_results);
154  _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
155  __sub._M_states._M_start = __next;
156  if (__sub._M_search_from_first())
157  {
158  for (size_t __i = 0; __i < __what.size(); __i++)
159  if (__what[__i].matched)
160  _M_cur_results[__i] = __what[__i];
161  return true;
162  }
163  return false;
164  }
165 
166  // __rep_count records how many times (__rep_count.second)
167  // this node is visited under certain input iterator
168  // (__rep_count.first). This prevent the executor from entering
169  // infinite loop by refusing to continue when it's already been
170  // visited more than twice. It's `twice` instead of `once` because
171  // we need to spare one more time for potential group capture.
172  template<typename _BiIter, typename _Alloc, typename _TraitsT,
173  bool __dfs_mode>
174  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
175  _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
176  {
177  const auto& __state = _M_nfa[__i];
178  auto& __rep_count = _M_rep_count[__i];
179  if (__rep_count.second == 0 || __rep_count.first != _M_current)
180  {
181  auto __back = __rep_count;
182  __rep_count.first = _M_current;
183  __rep_count.second = 1;
184  _M_dfs(__match_mode, __state._M_alt);
185  __rep_count = __back;
186  }
187  else
188  {
189  if (__rep_count.second < 2)
190  {
191  __rep_count.second++;
192  _M_dfs(__match_mode, __state._M_alt);
193  __rep_count.second--;
194  }
195  }
196  };
197 
198  template<typename _BiIter, typename _Alloc, typename _TraitsT,
199  bool __dfs_mode>
200  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
201  _M_dfs(_Match_mode __match_mode, _StateIdT __i)
202  {
203  if (_M_states._M_visited(__i))
204  return;
205 
206  const auto& __state = _M_nfa[__i];
207  // Every change on _M_cur_results and _M_current will be rolled back after
208  // finishing the recursion step.
209  switch (__state._M_opcode())
210  {
211  // _M_alt branch is "match once more", while _M_next is "get me out
212  // of this quantifier". Executing _M_next first or _M_alt first don't
213  // mean the same thing, and we need to choose the correct order under
214  // given greedy mode.
215  case _S_opcode_repeat:
216  {
217  // Greedy.
218  if (!__state._M_neg)
219  {
220  _M_rep_once_more(__match_mode, __i);
221  // If it's DFS executor and already accepted, we're done.
222  if (!__dfs_mode || !_M_has_sol)
223  _M_dfs(__match_mode, __state._M_next);
224  }
225  else // Non-greedy mode
226  {
227  if (__dfs_mode)
228  {
229  // vice-versa.
230  _M_dfs(__match_mode, __state._M_next);
231  if (!_M_has_sol)
232  _M_rep_once_more(__match_mode, __i);
233  }
234  else
235  {
236  // DON'T attempt anything, because there's already another
237  // state with higher priority accepted. This state cannot
238  // be better by attempting its next node.
239  if (!_M_has_sol)
240  {
241  _M_dfs(__match_mode, __state._M_next);
242  // DON'T attempt anything if it's already accepted. An
243  // accepted state *must* be better than a solution that
244  // matches a non-greedy quantifier one more time.
245  if (!_M_has_sol)
246  _M_rep_once_more(__match_mode, __i);
247  }
248  }
249  }
250  }
251  break;
252  case _S_opcode_subexpr_begin:
253  {
254  auto& __res = _M_cur_results[__state._M_subexpr];
255  auto __back = __res.first;
256  __res.first = _M_current;
257  _M_dfs(__match_mode, __state._M_next);
258  __res.first = __back;
259  }
260  break;
261  case _S_opcode_subexpr_end:
262  {
263  auto& __res = _M_cur_results[__state._M_subexpr];
264  auto __back = __res;
265  __res.second = _M_current;
266  __res.matched = true;
267  _M_dfs(__match_mode, __state._M_next);
268  __res = __back;
269  }
270  break;
271  case _S_opcode_line_begin_assertion:
272  if (_M_at_begin())
273  _M_dfs(__match_mode, __state._M_next);
274  break;
275  case _S_opcode_line_end_assertion:
276  if (_M_at_end())
277  _M_dfs(__match_mode, __state._M_next);
278  break;
279  case _S_opcode_word_boundary:
280  if (_M_word_boundary() == !__state._M_neg)
281  _M_dfs(__match_mode, __state._M_next);
282  break;
283  // Here __state._M_alt offers a single start node for a sub-NFA.
284  // We recursively invoke our algorithm to match the sub-NFA.
285  case _S_opcode_subexpr_lookahead:
286  if (_M_lookahead(__state._M_alt) == !__state._M_neg)
287  _M_dfs(__match_mode, __state._M_next);
288  break;
289  case _S_opcode_match:
290  if (_M_current == _M_end)
291  break;
292  if (__dfs_mode)
293  {
294  if (__state._M_matches(*_M_current))
295  {
296  ++_M_current;
297  _M_dfs(__match_mode, __state._M_next);
298  --_M_current;
299  }
300  }
301  else
302  if (__state._M_matches(*_M_current))
303  _M_states._M_queue(__state._M_next, _M_cur_results);
304  break;
305  // First fetch the matched result from _M_cur_results as __submatch;
306  // then compare it with
307  // (_M_current, _M_current + (__submatch.second - __submatch.first)).
308  // If matched, keep going; else just return and try another state.
309  case _S_opcode_backref:
310  {
311  __glibcxx_assert(__dfs_mode);
312  auto& __submatch = _M_cur_results[__state._M_backref_index];
313  if (!__submatch.matched)
314  break;
315  auto __last = _M_current;
316  for (auto __tmp = __submatch.first;
317  __last != _M_end && __tmp != __submatch.second;
318  ++__tmp)
319  ++__last;
320  if (_M_re._M_automaton->_M_traits.transform(__submatch.first,
321  __submatch.second)
322  == _M_re._M_automaton->_M_traits.transform(_M_current, __last))
323  {
324  if (__last != _M_current)
325  {
326  auto __backup = _M_current;
327  _M_current = __last;
328  _M_dfs(__match_mode, __state._M_next);
329  _M_current = __backup;
330  }
331  else
332  _M_dfs(__match_mode, __state._M_next);
333  }
334  }
335  break;
336  case _S_opcode_accept:
337  if (__dfs_mode)
338  {
339  __glibcxx_assert(!_M_has_sol);
340  if (__match_mode == _Match_mode::_Exact)
341  _M_has_sol = _M_current == _M_end;
342  else
343  _M_has_sol = true;
344  if (_M_current == _M_begin
345  && (_M_flags & regex_constants::match_not_null))
346  _M_has_sol = false;
347  if (_M_has_sol)
348  {
349  if (_M_nfa._M_flags & regex_constants::ECMAScript)
350  _M_results = _M_cur_results;
351  else // POSIX
352  {
353  __glibcxx_assert(_M_states._M_get_sol_pos());
354  // Here's POSIX's logic: match the longest one. However
355  // we never know which one (lhs or rhs of "|") is longer
356  // unless we try both of them and compare the results.
357  // The member variable _M_sol_pos records the end
358  // position of the last successful match. It's better
359  // to be larger, because POSIX regex is always greedy.
360  // TODO: This could be slow.
361  if (*_M_states._M_get_sol_pos() == _BiIter()
362  || std::distance(_M_begin,
363  *_M_states._M_get_sol_pos())
364  < std::distance(_M_begin, _M_current))
365  {
366  *_M_states._M_get_sol_pos() = _M_current;
367  _M_results = _M_cur_results;
368  }
369  }
370  }
371  }
372  else
373  {
374  if (_M_current == _M_begin
375  && (_M_flags & regex_constants::match_not_null))
376  break;
377  if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
378  if (!_M_has_sol)
379  {
380  _M_has_sol = true;
381  _M_results = _M_cur_results;
382  }
383  }
384  break;
385  case _S_opcode_alternative:
386  if (_M_nfa._M_flags & regex_constants::ECMAScript)
387  {
388  // TODO: Fix BFS support. It is wrong.
389  _M_dfs(__match_mode, __state._M_alt);
390  // Pick lhs if it matches. Only try rhs if it doesn't.
391  if (!_M_has_sol)
392  _M_dfs(__match_mode, __state._M_next);
393  }
394  else
395  {
396  // Try both and compare the result.
397  // See "case _S_opcode_accept:" handling above.
398  _M_dfs(__match_mode, __state._M_alt);
399  auto __has_sol = _M_has_sol;
400  _M_has_sol = false;
401  _M_dfs(__match_mode, __state._M_next);
402  _M_has_sol |= __has_sol;
403  }
404  break;
405  default:
406  __glibcxx_assert(false);
407  }
408  }
409 
410  // Return whether now is at some word boundary.
411  template<typename _BiIter, typename _Alloc, typename _TraitsT,
412  bool __dfs_mode>
413  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
414  _M_word_boundary() const
415  {
416  bool __left_is_word = false;
417  if (_M_current != _M_begin
418  || (_M_flags & regex_constants::match_prev_avail))
419  {
420  auto __prev = _M_current;
421  if (_M_is_word(*std::prev(__prev)))
422  __left_is_word = true;
423  }
424  bool __right_is_word =
425  _M_current != _M_end && _M_is_word(*_M_current);
426 
427  if (__left_is_word == __right_is_word)
428  return false;
429  if (__left_is_word && !(_M_flags & regex_constants::match_not_eow))
430  return true;
431  if (__right_is_word && !(_M_flags & regex_constants::match_not_bow))
432  return true;
433  return false;
434  }
435 
436 _GLIBCXX_END_NAMESPACE_VERSION
437 } // namespace __detail
438 } // namespace
constexpr match_flag_type match_prev_avail
constexpr match_flag_type match_not_null
constexpr match_flag_type match_not_bow
constexpr syntax_option_type ECMAScript
constexpr match_flag_type match_not_eow
constexpr match_flag_type match_continuous
_OI fill_n(_OI __first, _Size __n, const _Tp &__value)
Fills the range [first,first+n) with copies of value.
Definition: stl_algobase.h:784
ISO C++ entities toplevel namespace is std.
iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.