
GNAT Reference Manual
GNAT Reference Manual , January 13, 2017
AdaCore
Copyright c© 2008-2017, Free Software Foundation

i

Table of Contents

1 About This Guide . 2
1.1 What This Reference Manual Contains . 2
1.2 Conventions . 3
1.3 Related Information . 3

2 Implementation Defined Pragmas 5
2.1 Pragma Abort Defer . 5
2.2 Pragma Abstract State . 5
2.3 Pragma Ada 83 . 6
2.4 Pragma Ada 95 . 6
2.5 Pragma Ada 05 . 7
2.6 Pragma Ada 2005 . 7
2.7 Pragma Ada 12 . 7
2.8 Pragma Ada 2012 . 7
2.9 Pragma Allow Integer Address . 8
2.10 Pragma Annotate . 8
2.11 Pragma Assert . 9
2.12 Pragma Assert And Cut . 10
2.13 Pragma Assertion Policy . 10
2.14 Pragma Assume . 11
2.15 Pragma Assume No Invalid Values . 12
2.16 Pragma Async Readers . 12
2.17 Pragma Async Writers . 13
2.18 Pragma Attribute Definition . 13
2.19 Pragma C Pass By Copy . 13
2.20 Pragma Check . 14
2.21 Pragma Check Float Overflow . 14
2.22 Pragma Check Name . 15
2.23 Pragma Check Policy . 15
2.24 Pragma Comment . 16
2.25 Pragma Common Object . 16
2.26 Pragma Compile Time Error . 17
2.27 Pragma Compile Time Warning . 17
2.28 Pragma Compiler Unit . 17
2.29 Pragma Compiler Unit Warning . 18
2.30 Pragma Complete Representation . 18
2.31 Pragma Complex Representation . 18
2.32 Pragma Component Alignment . 18
2.33 Pragma Constant After Elaboration . 19
2.34 Pragma Contract Cases . 20
2.35 Pragma Convention Identifier . 21
2.36 Pragma CPP Class . 21
2.37 Pragma CPP Constructor . 21

ii

2.38 Pragma CPP Virtual . 22
2.39 Pragma CPP Vtable . 22
2.40 Pragma CPU . 22
2.41 Pragma Default Initial Condition . 23
2.42 Pragma Debug . 23
2.43 Pragma Debug Policy . 23
2.44 Pragma Default Scalar Storage Order . 23
2.45 Pragma Default Storage Pool . 24
2.46 Pragma Depends . 25
2.47 Pragma Detect Blocking . 25
2.48 Pragma Disable Atomic Synchronization . 25
2.49 Pragma Dispatching Domain . 26
2.50 Pragma Effective Reads . 26
2.51 Pragma Effective Writes . 26
2.52 Pragma Elaboration Checks . 26
2.53 Pragma Eliminate . 26
2.54 Pragma Enable Atomic Synchronization . 28
2.55 Pragma Export Function . 28
2.56 Pragma Export Object . 29
2.57 Pragma Export Procedure . 29
2.58 Pragma Export Value . 30
2.59 Pragma Export Valued Procedure . 30
2.60 Pragma Extend System . 31
2.61 Pragma Extensions Allowed . 32
2.62 Pragma Extensions Visible . 32
2.63 Pragma External . 32
2.64 Pragma External Name Casing . 33
2.65 Pragma Fast Math . 34
2.66 Pragma Favor Top Level . 34
2.67 Pragma Finalize Storage Only . 34
2.68 Pragma Float Representation . 35
2.69 Pragma Ghost . 35
2.70 Pragma Global . 35
2.71 Pragma Ident . 35
2.72 Pragma Ignore Pragma . 36
2.73 Pragma Implementation Defined . 36
2.74 Pragma Implemented . 36
2.75 Pragma Implicit Packing . 37
2.76 Pragma Import Function . 38
2.77 Pragma Import Object . 39
2.78 Pragma Import Procedure . 39
2.79 Pragma Import Valued Procedure . 40
2.80 Pragma Independent . 41
2.81 Pragma Independent Components . 41
2.82 Pragma Initial Condition . 41
2.83 Pragma Initialize Scalars . 41
2.84 Pragma Initializes . 42
2.85 Pragma Inline Always . 42

iii

2.86 Pragma Inline Generic . 43
2.87 Pragma Interface . 43
2.88 Pragma Interface Name . 43
2.89 Pragma Interrupt Handler . 43
2.90 Pragma Interrupt State . 44
2.91 Pragma Invariant . 45
2.92 Pragma Keep Names . 45
2.93 Pragma License . 46
2.94 Pragma Link With . 47
2.95 Pragma Linker Alias . 47
2.96 Pragma Linker Constructor . 48
2.97 Pragma Linker Destructor . 48
2.98 Pragma Linker Section . 48
2.99 Pragma Lock Free . 49
2.100 Pragma Loop Invariant . 49
2.101 Pragma Loop Optimize . 50
2.102 Pragma Loop Variant . 51
2.103 Pragma Machine Attribute . 51
2.104 Pragma Main . 52
2.105 Pragma Main Storage . 52
2.106 Pragma Max Queue Length . 52
2.107 Pragma No Body . 52
2.108 Pragma No Elaboration Code All . 53
2.109 Pragma No Inline . 53
2.110 Pragma No Return . 53
2.111 Pragma No Run Time . 53
2.112 Pragma No Strict Aliasing . 54
2.113 Pragma No Tagged Streams . 54
2.114 Pragma Normalize Scalars . 54
2.115 Pragma Obsolescent . 55
2.116 Pragma Optimize Alignment . 57
2.117 Pragma Ordered . 58
2.118 Pragma Overflow Mode . 59
2.119 Pragma Overriding Renamings . 60
2.120 Pragma Partition Elaboration Policy . 60
2.121 Pragma Part Of . 60
2.122 Pragma Passive . 61
2.123 Pragma Persistent BSS . 61
2.124 Pragma Polling . 61
2.125 Pragma Post . 62
2.126 Pragma Postcondition . 62
2.127 Pragma Post Class . 64
2.128 Pragma Rename Pragma . 65
2.129 Pragma Pre . 65
2.130 Pragma Precondition . 65
2.131 Pragma Predicate . 66
2.132 Pragma Predicate Failure . 67
2.133 Pragma Preelaborable Initialization . 67

iv

2.134 Pragma Prefix Exception Messages . 67
2.135 Pragma Pre Class . 68
2.136 Pragma Priority Specific Dispatching . 68
2.137 Pragma Profile . 68
2.138 Pragma Profile Warnings . 71
2.139 Pragma Propagate Exceptions . 71
2.140 Pragma Provide Shift Operators . 71
2.141 Pragma Psect Object . 71
2.142 Pragma Pure Function . 72
2.143 Pragma Rational . 73
2.144 Pragma Ravenscar . 73
2.145 Pragma Refined Depends . 73
2.146 Pragma Refined Global . 74
2.147 Pragma Refined Post . 74
2.148 Pragma Refined State . 74
2.149 Pragma Relative Deadline . 74
2.150 Pragma Remote Access Type . 75
2.151 Pragma Restricted Run Time . 75
2.152 Pragma Restriction Warnings . 75
2.153 Pragma Reviewable . 76
2.154 Pragma Secondary Stack Size . 77
2.155 Pragma Share Generic . 77
2.156 Pragma Shared . 77
2.157 Pragma Short Circuit And Or . 77
2.158 Pragma Short Descriptors . 78
2.159 Pragma Simple Storage Pool Type . 78
2.160 Pragma Source File Name . 79
2.161 Pragma Source File Name Project . 80
2.162 Pragma Source Reference . 80
2.163 Pragma SPARK Mode . 81
2.164 Pragma Static Elaboration Desired . 82
2.165 Pragma Stream Convert . 82
2.166 Pragma Style Checks . 83
2.167 Pragma Subtitle . 84
2.168 Pragma Suppress . 84
2.169 Pragma Suppress All . 85
2.170 Pragma Suppress Debug Info . 85
2.171 Pragma Suppress Exception Locations . 85
2.172 Pragma Suppress Initialization . 86
2.173 Pragma Task Name . 86
2.174 Pragma Task Storage . 87
2.175 Pragma Test Case . 87
2.176 Pragma Thread Local Storage . 88
2.177 Pragma Time Slice . 88
2.178 Pragma Title . 88
2.179 Pragma Type Invariant . 89
2.180 Pragma Type Invariant Class . 89
2.181 Pragma Unchecked Union . 89

v

2.182 Pragma Unevaluated Use Of Old . 90
2.183 Pragma Unimplemented Unit . 90
2.184 Pragma Universal Aliasing . 90
2.185 Pragma Universal Data . 91
2.186 Pragma Unmodified . 91
2.187 Pragma Unreferenced . 91
2.188 Pragma Unreferenced Objects . 92
2.189 Pragma Unreserve All Interrupts . 92
2.190 Pragma Unsuppress . 93
2.191 Pragma Use VADS Size . 93
2.192 Pragma Unused . 94
2.193 Pragma Validity Checks . 94
2.194 Pragma Volatile . 95
2.195 Pragma Volatile Full Access . 95
2.196 Pragma Volatile Function . 95
2.197 Pragma Warning As Error . 95
2.198 Pragma Warnings . 97
2.199 Pragma Weak External . 99
2.200 Pragma Wide Character Encoding . 100

3 Implementation Defined Aspects 101
3.1 Aspect Abstract State . 101
3.2 Annotate . 101
3.3 Aspect Async Readers . 102
3.4 Aspect Async Writers . 102
3.5 Aspect Constant After Elaboration . 102
3.6 Aspect Contract Cases . 102
3.7 Aspect Depends . 102
3.8 Aspect Default Initial Condition . 102
3.9 Aspect Dimension . 102
3.10 Aspect Dimension System . 103
3.11 Aspect Disable Controlled . 103
3.12 Aspect Effective Reads . 104
3.13 Aspect Effective Writes . 104
3.14 Aspect Extensions Visible . 104
3.15 Aspect Favor Top Level . 104
3.16 Aspect Ghost . 104
3.17 Aspect Global . 104
3.18 Aspect Initial Condition . 104
3.19 Aspect Initializes . 104
3.20 Aspect Inline Always . 104
3.21 Aspect Invariant . 104
3.22 Aspect Invariant’Class . 104
3.23 Aspect Iterable . 105
3.24 Aspect Linker Section . 105
3.25 Aspect Lock Free . 105
3.26 Aspect Max Queue Length . 105
3.27 Aspect No Elaboration Code All . 105

vi

3.28 Aspect No Tagged Streams . 106
3.29 Aspect Object Size . 106
3.30 Aspect Obsolescent . 106
3.31 Aspect Part Of . 106
3.32 Aspect Persistent BSS . 106
3.33 Aspect Predicate . 106
3.34 Aspect Pure Function . 106
3.35 Aspect Refined Depends . 106
3.36 Aspect Refined Global . 106
3.37 Aspect Refined Post . 106
3.38 Aspect Refined State . 106
3.39 Aspect Remote Access Type . 106
3.40 Aspect Secondary Stack Size . 107
3.41 Aspect Scalar Storage Order . 107
3.42 Aspect Shared . 107
3.43 Aspect Simple Storage Pool . 107
3.44 Aspect Simple Storage Pool Type . 107
3.45 Aspect SPARK Mode . 107
3.46 Aspect Suppress Debug Info . 107
3.47 Aspect Suppress Initialization . 107
3.48 Aspect Test Case . 107
3.49 Aspect Thread Local Storage . 107
3.50 Aspect Universal Aliasing . 107
3.51 Aspect Universal Data . 107
3.52 Aspect Unmodified . 107
3.53 Aspect Unreferenced . 108
3.54 Aspect Unreferenced Objects . 108
3.55 Aspect Value Size . 108
3.56 Aspect Volatile Full Access . 108
3.57 Aspect Volatile Function . 108
3.58 Aspect Warnings . 108

4 Implementation Defined Attributes 109
4.1 Attribute Abort Signal . 109
4.2 Attribute Address Size . 109
4.3 Attribute Asm Input . 109
4.4 Attribute Asm Output . 109
4.5 Attribute Atomic Always Lock Free . 110
4.6 Attribute Bit . 110
4.7 Attribute Bit Position . 110
4.8 Attribute Code Address . 110
4.9 Attribute Compiler Version . 111
4.10 Attribute Constrained . 111
4.11 Attribute Default Bit Order . 111
4.12 Attribute Default Scalar Storage Order . 111
4.13 Attribute Deref . 111
4.14 Attribute Descriptor Size . 111
4.15 Attribute Elaborated . 112

vii

4.16 Attribute Elab Body . 112
4.17 Attribute Elab Spec . 112
4.18 Attribute Elab Subp Body . 112
4.19 Attribute Emax . 112
4.20 Attribute Enabled . 112
4.21 Attribute Enum Rep . 113
4.22 Attribute Enum Val . 113
4.23 Attribute Epsilon . 113
4.24 Attribute Fast Math . 113
4.25 Attribute Finalization Size . 114
4.26 Attribute Fixed Value . 114
4.27 Attribute From Any . 114
4.28 Attribute Has Access Values . 114
4.29 Attribute Has Discriminants . 114
4.30 Attribute Img . 114
4.31 Attribute Integer Value . 115
4.32 Attribute Invalid Value . 115
4.33 Attribute Iterable . 115
4.34 Attribute Large . 115
4.35 Attribute Library Level . 115
4.36 Attribute Lock Free . 116
4.37 Attribute Loop Entry . 116
4.38 Attribute Machine Size . 116
4.39 Attribute Mantissa . 116
4.40 Attribute Maximum Alignment . 116
4.41 Attribute Mechanism Code . 116
4.42 Attribute Null Parameter . 117
4.43 Attribute Object Size . 117
4.44 Attribute Old . 118
4.45 Attribute Passed By Reference . 118
4.46 Attribute Pool Address . 118
4.47 Attribute Range Length . 118
4.48 Attribute Restriction Set . 119
4.49 Attribute Result . 119
4.50 Attribute Safe Emax . 120
4.51 Attribute Safe Large . 120
4.52 Attribute Safe Small . 120
4.53 Attribute Scalar Storage Order . 120
4.54 Attribute Simple Storage Pool . 122
4.55 Attribute Small . 122
4.56 Attribute Storage Unit . 122
4.57 Attribute Stub Type . 123
4.58 Attribute System Allocator Alignment . 123
4.59 Attribute Target Name . 123
4.60 Attribute To Address . 123
4.61 Attribute To Any . 123
4.62 Attribute Type Class . 123
4.63 Attribute Type Key . 124

viii

4.64 Attribute TypeCode . 124
4.65 Attribute Unconstrained Array . 124
4.66 Attribute Universal Literal String . 124
4.67 Attribute Unrestricted Access . 125
4.68 Attribute Update . 128
4.69 Attribute Valid Scalars . 129
4.70 Attribute VADS Size . 129
4.71 Attribute Value Size . 129
4.72 Attribute Wchar T Size . 129
4.73 Attribute Word Size . 130

5 Standard and Implementation Defined
Restrictions . 131

5.1 Partition-Wide Restrictions . 131
5.1.1 Immediate Reclamation . 131
5.1.2 Max Asynchronous Select Nesting . 131
5.1.3 Max Entry Queue Length . 131
5.1.4 Max Protected Entries . 131
5.1.5 Max Select Alternatives . 131
5.1.6 Max Storage At Blocking . 132
5.1.7 Max Task Entries . 132
5.1.8 Max Tasks . 132
5.1.9 No Abort Statements . 132
5.1.10 No Access Parameter Allocators . 132
5.1.11 No Access Subprograms . 132
5.1.12 No Allocators . 132
5.1.13 No Anonymous Allocators . 132
5.1.14 No Asynchronous Control . 132
5.1.15 No Calendar . 132
5.1.16 No Coextensions . 132
5.1.17 No Default Initialization . 133
5.1.18 No Delay . 133
5.1.19 No Dependence . 133
5.1.20 No Direct Boolean Operators . 133
5.1.21 No Dispatch . 133
5.1.22 No Dispatching Calls . 133
5.1.23 No Dynamic Attachment . 134
5.1.24 No Dynamic Priorities . 134
5.1.25 No Entry Calls In Elaboration Code 134
5.1.26 No Enumeration Maps . 135
5.1.27 No Exception Handlers . 135
5.1.28 No Exception Propagation . 135
5.1.29 No Exception Registration . 135
5.1.30 No Exceptions . 135
5.1.31 No Finalization . 135
5.1.32 No Fixed Point . 136
5.1.33 No Floating Point . 136
5.1.34 No Implicit Conditionals . 136

ix

5.1.35 No Implicit Dynamic Code . 136
5.1.36 No Implicit Heap Allocations . 136
5.1.37 No Implicit Protected Object Allocations 137
5.1.38 No Implicit Task Allocations . 137
5.1.39 No Initialize Scalars . 137
5.1.40 No IO . 137
5.1.41 No Local Allocators . 137
5.1.42 No Local Protected Objects . 137
5.1.43 No Local Timing Events . 137
5.1.44 No Long Long Integers . 137
5.1.45 No Multiple Elaboration . 137
5.1.46 No Nested Finalization . 137
5.1.47 No Protected Type Allocators . 138
5.1.48 No Protected Types . 138
5.1.49 No Recursion . 138
5.1.50 No Reentrancy . 138
5.1.51 No Relative Delay . 138
5.1.52 No Requeue Statements . 138
5.1.53 No Secondary Stack . 138
5.1.54 No Select Statements . 138
5.1.55 No Specific Termination Handlers . 138
5.1.56 No Specification of Aspect . 138
5.1.57 No Standard Allocators After Elaboration 139
5.1.58 No Standard Storage Pools . 139
5.1.59 No Stream Optimizations . 139
5.1.60 No Streams . 139
5.1.61 No Task Allocators . 139
5.1.62 No Task At Interrupt Priority . 139
5.1.63 No Task Attributes Package . 139
5.1.64 No Task Hierarchy . 139
5.1.65 No Task Termination . 140
5.1.66 No Tasking . 140
5.1.67 No Terminate Alternatives . 140
5.1.68 No Unchecked Access . 140
5.1.69 No Unchecked Conversion . 140
5.1.70 No Unchecked Deallocation . 140
5.1.71 No Use Of Entity . 140
5.1.72 Pure Barriers . 140
5.1.73 Simple Barriers . 141
5.1.74 Static Priorities . 141
5.1.75 Static Storage Size . 141

5.2 Program Unit Level Restrictions . 141
5.2.1 No Elaboration Code . 141
5.2.2 No Dynamic Sized Objects . 142
5.2.3 No Entry Queue . 142
5.2.4 No Implementation Aspect Specifications 142
5.2.5 No Implementation Attributes . 142
5.2.6 No Implementation Identifiers . 142

x

5.2.7 No Implementation Pragmas . 143
5.2.8 No Implementation Restrictions . 143
5.2.9 No Implementation Units . 143
5.2.10 No Implicit Aliasing . 143
5.2.11 No Implicit Loops . 143
5.2.12 No Obsolescent Features . 143
5.2.13 No Wide Characters . 143
5.2.14 SPARK 05 . 143

6 Implementation Advice . 148
6.1 RM 1.1.3(20): Error Detection . 148
6.2 RM 1.1.3(31): Child Units . 148
6.3 RM 1.1.5(12): Bounded Errors . 148
6.4 RM 2.8(16): Pragmas . 148
6.5 RM 2.8(17-19): Pragmas . 149
6.6 RM 3.5.2(5): Alternative Character Sets . 149
6.7 RM 3.5.4(28): Integer Types . 150
6.8 RM 3.5.4(29): Integer Types . 150
6.9 RM 3.5.5(8): Enumeration Values . 150
6.10 RM 3.5.7(17): Float Types . 150
6.11 RM 3.6.2(11): Multidimensional Arrays . 151
6.12 RM 9.6(30-31): Duration’Small . 151
6.13 RM 10.2.1(12): Consistent Representation 151
6.14 RM 11.4.1(19): Exception Information . 151
6.15 RM 11.5(28): Suppression of Checks . 152
6.16 RM 13.1 (21-24): Representation Clauses . 152
6.17 RM 13.2(6-8): Packed Types . 152
6.18 RM 13.3(14-19): Address Clauses . 153
6.19 RM 13.3(29-35): Alignment Clauses . 153
6.20 RM 13.3(42-43): Size Clauses . 154
6.21 RM 13.3(50-56): Size Clauses . 154
6.22 RM 13.3(71-73): Component Size Clauses 155
6.23 RM 13.4(9-10): Enumeration Representation Clauses 155
6.24 RM 13.5.1(17-22): Record Representation Clauses 155
6.25 RM 13.5.2(5): Storage Place Attributes . 156
6.26 RM 13.5.3(7-8): Bit Ordering . 156
6.27 RM 13.7(37): Address as Private . 156
6.28 RM 13.7.1(16): Address Operations . 156
6.29 RM 13.9(14-17): Unchecked Conversion . 156
6.30 RM 13.11(23-25): Implicit Heap Usage . 157
6.31 RM 13.11.2(17): Unchecked Deallocation . 157
6.32 RM 13.13.2(17): Stream Oriented Attributes 157
6.33 RM A.1(52): Names of Predefined Numeric Types 158
6.34 RM A.3.2(49): Ada.Characters.Handling . 158
6.35 RM A.4.4(106): Bounded-Length String Handling 158
6.36 RM A.5.2(46-47): Random Number Generation 158
6.37 RM A.10.7(23): Get Immediate . 159
6.38 RM B.1(39-41): Pragma Export . 159

xi

6.39 RM B.2(12-13): Package Interfaces . 159
6.40 RM B.3(63-71): Interfacing with C . 160
6.41 RM B.4(95-98): Interfacing with COBOL 161
6.42 RM B.5(22-26): Interfacing with Fortran . 161
6.43 RM C.1(3-5): Access to Machine Operations 162
6.44 RM C.1(10-16): Access to Machine Operations 162
6.45 RM C.3(28): Interrupt Support . 163
6.46 RM C.3.1(20-21): Protected Procedure Handlers 163
6.47 RM C.3.2(25): Package Interrupts . 163
6.48 RM C.4(14): Pre-elaboration Requirements 163
6.49 RM C.5(8): Pragma Discard Names . 163
6.50 RM C.7.2(30): The Package Task Attributes 163
6.51 RM D.3(17): Locking Policies . 164
6.52 RM D.4(16): Entry Queuing Policies . 164
6.53 RM D.6(9-10): Preemptive Abort . 164
6.54 RM D.7(21): Tasking Restrictions . 164
6.55 RM D.8(47-49): Monotonic Time . 164
6.56 RM E.5(28-29): Partition Communication Subsystem 165
6.57 RM F(7): COBOL Support . 165
6.58 RM F.1(2): Decimal Radix Support . 165
6.59 RM G: Numerics . 165
6.60 RM G.1.1(56-58): Complex Types . 165
6.61 RM G.1.2(49): Complex Elementary Functions 166
6.62 RM G.2.4(19): Accuracy Requirements . 167
6.63 RM G.2.6(15): Complex Arithmetic Accuracy 167
6.64 RM H.6(15/2): Pragma Partition Elaboration Policy 167

7 Implementation Defined Characteristics . . . 168

8 Intrinsic Subprograms . 185
8.1 Intrinsic Operators . 185
8.2 Compilation Date . 185
8.3 Compilation Time . 185
8.4 Enclosing Entity . 186
8.5 Exception Information . 186
8.6 Exception Message . 186
8.7 Exception Name . 186
8.8 File . 186
8.9 Line . 186
8.10 Shifts and Rotates . 186
8.11 Source Location . 187

xii

9 Representation Clauses and Pragmas 188
9.1 Alignment Clauses . 188
9.2 Size Clauses . 189
9.3 Storage Size Clauses . 190
9.4 Size of Variant Record Objects . 191
9.5 Biased Representation . 193
9.6 Value Size and Object Size Clauses . 193
9.7 Component Size Clauses . 196
9.8 Bit Order Clauses . 197
9.9 Effect of Bit Order on Byte Ordering . 198
9.10 Pragma Pack for Arrays . 202
9.11 Pragma Pack for Records . 204
9.12 Record Representation Clauses . 205
9.13 Handling of Records with Holes . 206
9.14 Enumeration Clauses . 207
9.15 Address Clauses . 208
9.16 Use of Address Clauses for Memory-Mapped I/O 212
9.17 Effect of Convention on Representation . 213
9.18 Conventions and Anonymous Access Types 214
9.19 Determining the Representations chosen by GNAT 215

10 Standard Library Routines 219

11 The Implementation of Standard I/O 230
11.1 Standard I/O Packages . 230
11.2 FORM Strings . 231
11.3 Direct IO . 231
11.4 Sequential IO . 231
11.5 Text IO . 232

11.5.1 Stream Pointer Positioning . 233
11.5.2 Reading and Writing Non-Regular Files 233
11.5.3 Get Immediate . 234
11.5.4 Treating Text IO Files as Streams . 234
11.5.5 Text IO Extensions . 234
11.5.6 Text IO Facilities for Unbounded Strings 234

11.6 Wide Text IO . 235
11.6.1 Stream Pointer Positioning . 237
11.6.2 Reading and Writing Non-Regular Files 237

11.7 Wide Wide Text IO . 238
11.7.1 Stream Pointer Positioning . 239
11.7.2 Reading and Writing Non-Regular Files 239

11.8 Stream IO . 239
11.9 Text Translation . 240
11.10 Shared Files . 240
11.11 Filenames encoding . 241
11.12 File content encoding . 241
11.13 Open Modes . 242

xiii

11.14 Operations on C Streams . 242
11.15 Interfacing to C Streams . 245

12 The GNAT Library . 248
12.1 Ada.Characters.Latin 9 (a-chlat9.ads) . 248
12.2 Ada.Characters.Wide Latin 1 (a-cwila1.ads) 248
12.3 Ada.Characters.Wide Latin 9 (a-cwila1.ads) 248
12.4 Ada.Characters.Wide Wide Latin 1 (a-chzla1.ads) 249
12.5 Ada.Characters.Wide Wide Latin 9 (a-chzla9.ads) 249
12.6 Ada.Containers.Formal Doubly Linked Lists (a-cfdlli.ads)

. 249
12.7 Ada.Containers.Formal Hashed Maps (a-cfhama.ads) 249
12.8 Ada.Containers.Formal Hashed Sets (a-cfhase.ads) 249
12.9 Ada.Containers.Formal Ordered Maps (a-cforma.ads) 250
12.10 Ada.Containers.Formal Ordered Sets (a-cforse.ads) 250
12.11 Ada.Containers.Formal Vectors (a-cofove.ads) 250
12.12 Ada.Containers.Formal Indefinite Vectors (a-cfinve.ads)

. 250
12.13 Ada.Containers.Bounded Holders (a-coboho.ads) 250
12.14 Ada.Command Line.Environment (a-colien.ads) 251
12.15 Ada.Command Line.Remove (a-colire.ads) 251
12.16 Ada.Command Line.Response File (a-clrefi.ads) 251
12.17 Ada.Direct IO.C Streams (a-diocst.ads) 251
12.18 Ada.Exceptions.Is Null Occurrence (a-einuoc.ads) 251
12.19 Ada.Exceptions.Last Chance Handler (a-elchha.ads) 251
12.20 Ada.Exceptions.Traceback (a-exctra.ads) 251
12.21 Ada.Sequential IO.C Streams (a-siocst.ads) 251
12.22 Ada.Streams.Stream IO.C Streams (a-ssicst.ads) 251
12.23 Ada.Strings.Unbounded.Text IO (a-suteio.ads) 252
12.24 Ada.Strings.Wide Unbounded.Wide Text IO (a-swuwti.ads)

. 252
12.25 Ada.Strings.Wide Wide Unbounded.Wide Wide Text IO

(a-szuzti.ads) . 252
12.26 Ada.Text IO.C Streams (a-tiocst.ads) 252
12.27 Ada.Text IO.Reset Standard Files (a-tirsfi.ads) 252
12.28 Ada.Wide Characters.Unicode (a-wichun.ads) 252
12.29 Ada.Wide Text IO.C Streams (a-wtcstr.ads) 252
12.30 Ada.Wide Text IO.Reset Standard Files (a-wrstfi.ads) . . 252
12.31 Ada.Wide Wide Characters.Unicode (a-zchuni.ads) 253
12.32 Ada.Wide Wide Text IO.C Streams (a-ztcstr.ads) 253
12.33 Ada.Wide Wide Text IO.Reset Standard Files (a-zrstfi.ads)

. 253
12.34 GNAT.Altivec (g-altive.ads) . 253
12.35 GNAT.Altivec.Conversions (g-altcon.ads) 253
12.36 GNAT.Altivec.Vector Operations (g-alveop.ads) 253
12.37 GNAT.Altivec.Vector Types (g-alvety.ads) 253
12.38 GNAT.Altivec.Vector Views (g-alvevi.ads) 253
12.39 GNAT.Array Split (g-arrspl.ads) . 253

xiv

12.40 GNAT.AWK (g-awk.ads) . 254
12.41 GNAT.Bind Environment (g-binenv.ads) 254
12.42 GNAT.Bounded Buffers (g-boubuf.ads) 254
12.43 GNAT.Bounded Mailboxes (g-boumai.ads) 254
12.44 GNAT.Bubble Sort (g-bubsor.ads) . 254
12.45 GNAT.Bubble Sort A (g-busora.ads) . 254
12.46 GNAT.Bubble Sort G (g-busorg.ads) . 254
12.47 GNAT.Byte Order Mark (g-byorma.ads) 254
12.48 GNAT.Byte Swapping (g-bytswa.ads) . 254
12.49 GNAT.Calendar (g-calend.ads) . 255
12.50 GNAT.Calendar.Time IO (g-catiio.ads) 255
12.51 GNAT.CRC32 (g-crc32.ads) . 255
12.52 GNAT.Case Util (g-casuti.ads) . 255
12.53 GNAT.CGI (g-cgi.ads) . 255
12.54 GNAT.CGI.Cookie (g-cgicoo.ads) . 255
12.55 GNAT.CGI.Debug (g-cgideb.ads) . 255
12.56 GNAT.Command Line (g-comlin.ads) . 255
12.57 GNAT.Compiler Version (g-comver.ads) 255
12.58 GNAT.Ctrl C (g-ctrl_c.ads) . 256
12.59 GNAT.Current Exception (g-curexc.ads) 256
12.60 GNAT.Debug Pools (g-debpoo.ads) . 256
12.61 GNAT.Debug Utilities (g-debuti.ads) . 256
12.62 GNAT.Decode String (g-decstr.ads) . 256
12.63 GNAT.Decode UTF8 String (g-deutst.ads) 256
12.64 GNAT.Directory Operations (g-dirope.ads) 256
12.65 GNAT.Directory Operations.Iteration (g-diopit.ads) 256
12.66 GNAT.Dynamic HTables (g-dynhta.ads) 256
12.67 GNAT.Dynamic Tables (g-dyntab.ads) 257
12.68 GNAT.Encode String (g-encstr.ads) . 257
12.69 GNAT.Encode UTF8 String (g-enutst.ads) 257
12.70 GNAT.Exception Actions (g-excact.ads) 257
12.71 GNAT.Exception Traces (g-exctra.ads) 257
12.72 GNAT.Exceptions (g-expect.ads) . 257
12.73 GNAT.Expect (g-expect.ads) . 257
12.74 GNAT.Expect.TTY (g-exptty.ads) . 257
12.75 GNAT.Float Control (g-flocon.ads) . 258
12.76 GNAT.Formatted String (g-forstr.ads) 258
12.77 GNAT.Heap Sort (g-heasor.ads) . 258
12.78 GNAT.Heap Sort A (g-hesora.ads) . 258
12.79 GNAT.Heap Sort G (g-hesorg.ads) . 258
12.80 GNAT.HTable (g-htable.ads) . 258
12.81 GNAT.IO (g-io.ads) . 258
12.82 GNAT.IO Aux (g-io_aux.ads) . 258
12.83 GNAT.Lock Files (g-locfil.ads) . 259
12.84 GNAT.MBBS Discrete Random (g-mbdira.ads) 259
12.85 GNAT.MBBS Float Random (g-mbflra.ads) 259
12.86 GNAT.MD5 (g-md5.ads) . 259
12.87 GNAT.Memory Dump (g-memdum.ads) . 259

xv

12.88 GNAT.Most Recent Exception (g-moreex.ads) 259
12.89 GNAT.OS Lib (g-os_lib.ads) . 259
12.90 GNAT.Perfect Hash Generators (g-pehage.ads) 259
12.91 GNAT.Random Numbers (g-rannum.ads) 259
12.92 GNAT.Regexp (g-regexp.ads) . 260
12.93 GNAT.Registry (g-regist.ads) . 260
12.94 GNAT.Regpat (g-regpat.ads) . 260
12.95 GNAT.Rewrite Data (g-rewdat.ads) . 260
12.96 GNAT.Secondary Stack Info (g-sestin.ads) 260
12.97 GNAT.Semaphores (g-semaph.ads) . 260
12.98 GNAT.Serial Communications (g-sercom.ads) 260
12.99 GNAT.SHA1 (g-sha1.ads) . 260
12.100 GNAT.SHA224 (g-sha224.ads) . 260
12.101 GNAT.SHA256 (g-sha256.ads) . 261
12.102 GNAT.SHA384 (g-sha384.ads) . 261
12.103 GNAT.SHA512 (g-sha512.ads) . 261
12.104 GNAT.Signals (g-signal.ads) . 261
12.105 GNAT.Sockets (g-socket.ads) . 261
12.106 GNAT.Source Info (g-souinf.ads) . 261
12.107 GNAT.Spelling Checker (g-speche.ads) 261
12.108 GNAT.Spelling Checker Generic (g-spchge.ads) 261
12.109 GNAT.Spitbol.Patterns (g-spipat.ads) 261
12.110 GNAT.Spitbol (g-spitbo.ads) . 262
12.111 GNAT.Spitbol.Table Boolean (g-sptabo.ads) 262
12.112 GNAT.Spitbol.Table Integer (g-sptain.ads) 262
12.113 GNAT.Spitbol.Table VString (g-sptavs.ads) 262
12.114 GNAT.SSE (g-sse.ads) . 262
12.115 GNAT.SSE.Vector Types (g-ssvety.ads) 262
12.116 GNAT.String Hash (g-strhas.ads) . 262
12.117 GNAT.Strings (g-string.ads) . 262
12.118 GNAT.String Split (g-strspl.ads) . 262
12.119 GNAT.Table (g-table.ads) . 262
12.120 GNAT.Task Lock (g-tasloc.ads) . 263
12.121 GNAT.Time Stamp (g-timsta.ads) . 263
12.122 GNAT.Threads (g-thread.ads) . 263
12.123 GNAT.Traceback (g-traceb.ads) . 263
12.124 GNAT.Traceback.Symbolic (g-trasym.ads) 263
12.125 GNAT.UTF 32 (g-table.ads) . 263
12.126 GNAT.Wide Spelling Checker (g-u3spch.ads) 263
12.127 GNAT.Wide Spelling Checker (g-wispch.ads) 263
12.128 GNAT.Wide String Split (g-wistsp.ads) 264
12.129 GNAT.Wide Wide Spelling Checker (g-zspche.ads) 264
12.130 GNAT.Wide Wide String Split (g-zistsp.ads) 264
12.131 Interfaces.C.Extensions (i-cexten.ads) 264
12.132 Interfaces.C.Streams (i-cstrea.ads) . 264
12.133 Interfaces.Packed Decimal (i-pacdec.ads) 264
12.134 Interfaces.VxWorks (i-vxwork.ads) . 264
12.135 Interfaces.VxWorks.Int Connection (i-vxinco.ads) 264

xvi

12.136 Interfaces.VxWorks.IO (i-vxwoio.ads) 264
12.137 System.Address Image (s-addima.ads) 264
12.138 System.Assertions (s-assert.ads) . 265
12.139 System.Atomic Counters (s-atocou.ads) 265
12.140 System.Memory (s-memory.ads) . 265
12.141 System.Multiprocessors (s-multip.ads) 265
12.142 System.Multiprocessors.Dispatching Domains (s-mudido.ads)

. 265
12.143 System.Partition Interface (s-parint.ads) 265
12.144 System.Pool Global (s-pooglo.ads) . 265
12.145 System.Pool Local (s-pooloc.ads) . 265
12.146 System.Restrictions (s-restri.ads) . 266
12.147 System.Rident (s-rident.ads) . 266
12.148 System.Strings.Stream Ops (s-ststop.ads) 266
12.149 System.Unsigned Types (s-unstyp.ads) 266
12.150 System.Wch Cnv (s-wchcnv.ads) . 266
12.151 System.Wch Con (s-wchcon.ads) . 266

13 Interfacing to Other Languages 267
13.1 Interfacing to C . 267
13.2 Interfacing to C++ . 268
13.3 Interfacing to COBOL . 268
13.4 Interfacing to Fortran . 269
13.5 Interfacing to non-GNAT Ada code . 269

14 Specialized Needs Annexes 270

15 Implementation of Specific Ada Features
. 271

15.1 Machine Code Insertions . 271
15.2 GNAT Implementation of Tasking . 273

15.2.1 Mapping Ada Tasks onto the Underlying Kernel Threads
. 273

15.2.2 Ensuring Compliance with the Real-Time Annex 274
15.3 GNAT Implementation of Shared Passive Packages 274
15.4 Code Generation for Array Aggregates . 276

15.4.1 Static constant aggregates with static bounds 276
15.4.2 Constant aggregates with unconstrained nominal types . . 276
15.4.3 Aggregates with static bounds . 277
15.4.4 Aggregates with nonstatic bounds . 277
15.4.5 Aggregates in assignment statements 277

15.5 The Size of Discriminated Records with Default Discriminants
. 278

15.6 Strict Conformance to the Ada Reference Manual 279

16 Implementation of Ada 2012 Features 280

xvii

17 Obsolescent Features . 297
17.1 pragma No Run Time . 297
17.2 pragma Ravenscar . 297
17.3 pragma Restricted Run Time . 297
17.4 pragma Task Info . 297
17.5 package System.Task Info (s-tasinf.ads) 297

18 Compatibility and Porting Guide 298
18.1 Writing Portable Fixed-Point Declarations 298
18.2 Compatibility with Ada 83 . 299

18.2.1 Legal Ada 83 programs that are illegal in Ada 95 299
18.2.2 More deterministic semantics . 301
18.2.3 Changed semantics . 301
18.2.4 Other language compatibility issues . 301

18.3 Compatibility between Ada 95 and Ada 2005 302
18.4 Implementation-dependent characteristics 303

18.4.1 Implementation-defined pragmas . 303
18.4.2 Implementation-defined attributes . 303
18.4.3 Libraries . 303
18.4.4 Elaboration order . 303
18.4.5 Target-specific aspects . 304

18.5 Compatibility with Other Ada Systems . 304
18.6 Representation Clauses . 305
18.7 Compatibility with HP Ada 83 . 306

19 GNU Free Documentation License 307

Index . 314

1

GNAT, The GNU Ada Development Environment
GCC version 7.1.0
AdaCore
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-Cover Texts being "GNAT
Reference Manual", and with no Back-Cover Texts. A copy of the license is included in the
section entitled [GNU Free Documentation License], page 306.

Chapter 1: About This Guide 2

1 About This Guide

This manual contains useful information in writing programs using the GNAT compiler. It
includes information on implementation dependent characteristics of GNAT, including all
the information required by Annex M of the Ada language standard.
GNAT implements Ada 95, Ada 2005 and Ada 2012, and it may also be invoked in Ada
83 compatibility mode. By default, GNAT assumes Ada 2012, but you can override with a
compiler switch to explicitly specify the language version. (Please refer to the GNAT User’s
Guide for details on these switches.) Throughout this manual, references to ’Ada’ without
a year suffix apply to all the Ada versions of the language.
Ada is designed to be highly portable. In general, a program will have the same effect
even when compiled by different compilers on different platforms. However, since Ada is
designed to be used in a wide variety of applications, it also contains a number of system
dependent features to be used in interfacing to the external world.
Note: Any program that makes use of implementation-dependent features may be non-
portable. You should follow good programming practice and isolate and clearly document
any sections of your program that make use of these features in a non-portable manner.

1.1 What This Reference Manual Contains

This reference manual contains the following chapters:
* [Implementation Defined Pragmas], page 4, lists GNAT implementation-dependent

pragmas, which can be used to extend and enhance the functionality of the compiler.
* [Implementation Defined Attributes], page 108, lists GNAT implementation-dependent

attributes, which can be used to extend and enhance the functionality of the compiler.
* [Standard and Implementation Defined Restrictions], page 130, lists GNAT

implementation-dependent restrictions, which can be used to extend and enhance the
functionality of the compiler.

* [Implementation Advice], page 147, provides information on generally desirable be-
havior which are not requirements that all compilers must follow since it cannot be
provided on all systems, or which may be undesirable on some systems.

* [Implementation Defined Characteristics], page 167, provides a guide to minimizing
implementation dependent features.

* [Intrinsic Subprograms], page 184, describes the intrinsic subprograms implemented by
GNAT, and how they can be imported into user application programs.

* [Representation Clauses and Pragmas], page 187, describes in detail the way that
GNAT represents data, and in particular the exact set of representation clauses and
pragmas that is accepted.

* [Standard Library Routines], page 218, provides a listing of packages and a brief de-
scription of the functionality that is provided by Ada’s extensive set of standard library
routines as implemented by GNAT.

* [The Implementation of Standard I/O], page 229, details how the GNAT implementa-
tion of the input-output facilities.

* [The GNAT Library], page 247, is a catalog of packages that complement the Ada
predefined library.

Chapter 1: About This Guide 3

* [Interfacing to Other Languages], page 266, describes how programs written in Ada
using GNAT can be interfaced to other programming languages.

* [Specialized Needs Annexes], page 269, describes the GNAT implementation of all of
the specialized needs annexes.

* [Implementation of Specific Ada Features], page 270, discusses issues related to GNAT’s
implementation of machine code insertions, tasking, and several other features.

* [Implementation of Ada 2012 Features], page 279, describes the status of the GNAT
implementation of the Ada 2012 language standard.

* [Obsolescent Features], page 296 documents implementation dependent features, in-
cluding pragmas and attributes, which are considered obsolescent, since there are other
preferred ways of achieving the same results. These obsolescent forms are retained for
backwards compatibility.

* [Compatibility and Porting Guide], page 297 presents some guidelines for developing
portable Ada code, describes the compatibility issues that may arise between GNAT
and other Ada compilation systems (including those for Ada 83), and shows how GNAT
can expedite porting applications developed in other Ada environments.

* [GNU Free Documentation License], page 306 contains the license for this document.

This reference manual assumes a basic familiarity with the Ada 95 language, as described
in the International Standard ANSI/ISO/IEC-8652:1995. It does not require knowledge of
the new features introduced by Ada 2005 or Ada 2012. All three reference manuals are
included in the GNAT documentation package.

1.2 Conventions

Following are examples of the typographical and graphic conventions used in this guide:

* Functions, utility program names, standard names, and classes.

* Option flags

* File names

* Variables

* Emphasis

* [optional information or parameters]

* Examples are described by text

and then shown this way.

* Commands that are entered by the user are shown as preceded by a prompt string
comprising the $ character followed by a space.

1.3 Related Information

See the following documents for further information on GNAT:

* GNAT User’s Guide for Native Platforms, which provides information on how to use
the GNAT development environment.

* Ada 95 Reference Manual, the Ada 95 programming language standard.

Chapter 1: About This Guide 4

* Ada 95 Annotated Reference Manual, which is an annotated version of the Ada 95
standard. The annotations describe detailed aspects of the design decision, and in
particular contain useful sections on Ada 83 compatibility.

* Ada 2005 Reference Manual, the Ada 2005 programming language standard.
* Ada 2005 Annotated Reference Manual, which is an annotated version of the Ada 2005

standard. The annotations describe detailed aspects of the design decision.
* Ada 2012 Reference Manual, the Ada 2012 programming language standard.
* DEC Ada, Technical Overview and Comparison on DIGITAL Platforms, which contains

specific information on compatibility between GNAT and DEC Ada 83 systems.
* DEC Ada, Language Reference Manual, part number AA-PYZAB-TK, which describes

in detail the pragmas and attributes provided by the DEC Ada 83 compiler system.

Chapter 2: Implementation Defined Pragmas 5

2 Implementation Defined Pragmas

Ada defines a set of pragmas that can be used to supply additional information to the
compiler. These language defined pragmas are implemented in GNAT and work as described
in the Ada Reference Manual.

In addition, Ada allows implementations to define additional pragmas whose meaning is
defined by the implementation. GNAT provides a number of these implementation-defined
pragmas, which can be used to extend and enhance the functionality of the compiler. This
section of the GNAT Reference Manual describes these additional pragmas.

Note that any program using these pragmas might not be portable to other compilers (al-
though GNAT implements this set of pragmas on all platforms). Therefore if portability
to other compilers is an important consideration, the use of these pragmas should be mini-
mized.

2.1 Pragma Abort Defer

Syntax:

pragma Abort_Defer;

This pragma must appear at the start of the statement sequence of a handled sequence of
statements (right after the begin). It has the effect of deferring aborts for the sequence of
statements (but not for the declarations or handlers, if any, associated with this statement
sequence).

2.2 Pragma Abstract State

Syntax:

pragma Abstract_State (ABSTRACT_STATE_LIST);

ABSTRACT_STATE_LIST ::=
null

| STATE_NAME_WITH_OPTIONS
| (STATE_NAME_WITH_OPTIONS {, STATE_NAME_WITH_OPTIONS})

STATE_NAME_WITH_OPTIONS ::=
STATE_NAME

| (STATE_NAME with OPTION_LIST)

OPTION_LIST ::= OPTION {, OPTION}

OPTION ::=
SIMPLE_OPTION

| NAME_VALUE_OPTION

SIMPLE_OPTION ::= Ghost | Synchronous

NAME_VALUE_OPTION ::=

Chapter 2: Implementation Defined Pragmas 6

Part_Of => ABSTRACT_STATE
| External [=> EXTERNAL_PROPERTY_LIST]

EXTERNAL_PROPERTY_LIST ::=
EXTERNAL_PROPERTY

| (EXTERNAL_PROPERTY {, EXTERNAL_PROPERTY})

EXTERNAL_PROPERTY ::=
Async_Readers [=> boolean_EXPRESSION]

| Async_Writers [=> boolean_EXPRESSION]
| Effective_Reads [=> boolean_EXPRESSION]
| Effective_Writes [=> boolean_EXPRESSION]
others => boolean_EXPRESSION

STATE_NAME ::= defining_identifier

ABSTRACT_STATE ::= name

For the semantics of this pragma, see the entry for aspect Abstract State in the SPARK
2014 Reference Manual, section 7.1.4.

2.3 Pragma Ada 83

Syntax:

pragma Ada_83;

A configuration pragma that establishes Ada 83 mode for the unit to which it applies,
regardless of the mode set by the command line switches. In Ada 83 mode, GNAT attempts
to be as compatible with the syntax and semantics of Ada 83, as defined in the original
Ada 83 Reference Manual as possible. In particular, the keywords added by Ada 95 and
Ada 2005 are not recognized, optional package bodies are allowed, and generics may name
types with unknown discriminants without using the (<>) notation. In addition, some but
not all of the additional restrictions of Ada 83 are enforced.

Ada 83 mode is intended for two purposes. Firstly, it allows existing Ada 83 code to be
compiled and adapted to GNAT with less effort. Secondly, it aids in keeping code backwards
compatible with Ada 83. However, there is no guarantee that code that is processed correctly
by GNAT in Ada 83 mode will in fact compile and execute with an Ada 83 compiler, since
GNAT does not enforce all the additional checks required by Ada 83.

2.4 Pragma Ada 95

Syntax:

pragma Ada_95;

A configuration pragma that establishes Ada 95 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that itself uses Ada 95
features, but which is intended to be usable from either Ada 83 or Ada 95 programs.

Chapter 2: Implementation Defined Pragmas 7

2.5 Pragma Ada 05

Syntax:
pragma Ada_05;
pragma Ada_05 (local_NAME);

A configuration pragma that establishes Ada 2005 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This pragma is useful when
writing a reusable component that itself uses Ada 2005 features, but which is intended to
be usable from either Ada 83 or Ada 95 programs.
The one argument form (which is not a configuration pragma) is used for managing the
transition from Ada 95 to Ada 2005 in the run-time library. If an entity is marked as
Ada 2005 only, then referencing the entity in Ada 83 or Ada 95 mode will generate a
warning. In addition, in Ada 83 or Ada 95 mode, a preference rule is established which
does not choose such an entity unless it is unambiguously specified. This avoids extra
subprograms marked this way from generating ambiguities in otherwise legal pre-Ada 2005
programs. The one argument form is intended for exclusive use in the GNAT run-time
library.

2.6 Pragma Ada 2005

Syntax:
pragma Ada_2005;

This configuration pragma is a synonym for pragma Ada 05 and has the same syntax and
effect.

2.7 Pragma Ada 12

Syntax:
pragma Ada_12;
pragma Ada_12 (local_NAME);

A configuration pragma that establishes Ada 2012 mode for the unit to which it applies,
regardless of the mode set by the command line switches. This mode is set automatically
for the Ada and System packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component that itself uses Ada 2012
features, but which is intended to be usable from Ada 83, Ada 95, or Ada 2005 programs.
The one argument form, which is not a configuration pragma, is used for managing the
transition from Ada 2005 to Ada 2012 in the run-time library. If an entity is marked
as Ada 2012 only, then referencing the entity in any pre-Ada 2012 mode will generate a
warning. In addition, in any pre-Ada 2012 mode, a preference rule is established which
does not choose such an entity unless it is unambiguously specified. This avoids extra
subprograms marked this way from generating ambiguities in otherwise legal pre-Ada 2012
programs. The one argument form is intended for exclusive use in the GNAT run-time
library.

2.8 Pragma Ada 2012

Syntax:

Chapter 2: Implementation Defined Pragmas 8

pragma Ada_2012;

This configuration pragma is a synonym for pragma Ada 12 and has the same syntax and
effect.

2.9 Pragma Allow Integer Address

Syntax:
pragma Allow_Integer_Address;

In almost all versions of GNAT, System.Address is a private type in accordance with the
implementation advice in the RM. This means that integer values, in particular integer lit-
erals, are not allowed as address values. If the configuration pragma Allow Integer Address
is given, then integer expressions may be used anywhere a value of type System.Address
is required. The effect is to introduce an implicit unchecked conversion from the integer
value to type System.Address. The reverse case of using an address where an integer type
is required is handled analogously. The following example compiles without errors:

pragma Allow_Integer_Address;
with System; use System;
package AddrAsInt is

X : Integer;
Y : Integer;
for X’Address use 16#1240#;
for Y use at 16#3230#;
m : Address := 16#4000#;
n : constant Address := 4000;
p : constant Address := Address (X + Y);
v : Integer := y’Address;
w : constant Integer := Integer (Y’Address);
type R is new integer;
RR : R := 1000;
Z : Integer;
for Z’Address use RR;

end AddrAsInt;

Note that pragma Allow Integer Address is ignored if System.Address is not a private type.
In implementations of GNAT where System.Address is a visible integer type, this pragma
serves no purpose but is ignored rather than rejected to allow common sets of sources to be
used in the two situations.

2.10 Pragma Annotate

Syntax:
pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}] [, entity => local_NAME]);

ARG ::= NAME | EXPRESSION

This pragma is used to annotate programs. identifier identifies the type of annotation.
GNAT verifies that it is an identifier, but does not otherwise analyze it. The second optional
identifier is also left unanalyzed, and by convention is used to control the action of the

Chapter 2: Implementation Defined Pragmas 9

tool to which the annotation is addressed. The remaining arg arguments can be either
string literals or more generally expressions. String literals are assumed to be either of
type Standard.String or else Wide String or Wide Wide String depending on the character
literals they contain. All other kinds of arguments are analyzed as expressions, and must
be unambiguous. The last argument if present must have the identifier Entity and GNAT
verifies that a local name is given.
The analyzed pragma is retained in the tree, but not otherwise processed by any part of
the GNAT compiler, except to generate corresponding note lines in the generated ALI file.
For the format of these note lines, see the compiler source file lib-writ.ads. This pragma is
intended for use by external tools, including ASIS. The use of pragma Annotate does not
affect the compilation process in any way. This pragma may be used as a configuration
pragma.

2.11 Pragma Assert

Syntax:
pragma Assert (

boolean_EXPRESSION
[, string_EXPRESSION]);

The effect of this pragma depends on whether the corresponding command line switch is
set to activate assertions. The pragma expands into code equivalent to the following:

if assertions-enabled then
if not boolean_EXPRESSION then

System.Assertions.Raise_Assert_Failure
(string_EXPRESSION);

end if;
end if;

The string argument, if given, is the message that will be associated with the exception
occurrence if the exception is raised. If no second argument is given, the default message is
file:nnn, where file is the name of the source file containing the assert, and nnn is the line
number of the assert.
Note that, as with the if statement to which it is equivalent, the type of the expression is
either Standard.Boolean, or any type derived from this standard type.
Assert checks can be either checked or ignored. By default they are ignored. They will
be checked if either the command line switch -gnata is used, or if an Assertion Policy or
Check Policy pragma is used to enable Assert Checks.
If assertions are ignored, then there is no run-time effect (and in particular, any side effects
from the expression will not occur at run time). (The expression is still analyzed at compile
time, and may cause types to be frozen if they are mentioned here for the first time).
If assertions are checked, then the given expression is tested, and if it is False then Sys-
tem.Assertions.Raise Assert Failure is called which results in the raising of Assert Failure
with the given message.
You should generally avoid side effects in the expression arguments of this pragma, because
these side effects will turn on and off with the setting of the assertions mode, resulting in
assertions that have an effect on the program. However, the expressions are analyzed for

Chapter 2: Implementation Defined Pragmas 10

semantic correctness whether or not assertions are enabled, so turning assertions on and off
cannot affect the legality of a program.

Note that the implementation defined policy DISABLE, given in a pragma Assertion Policy,
can be used to suppress this semantic analysis.

Note: this is a standard language-defined pragma in versions of Ada from 2005 on.
In GNAT, it is implemented in all versions of Ada, and the DISABLE policy is an
implementation-defined addition.

2.12 Pragma Assert And Cut

Syntax:

pragma Assert_And_Cut (
boolean_EXPRESSION
[, string_EXPRESSION]);

The effect of this pragma is identical to that of pragma Assert, except that in an Asser-
tion Policy pragma, the identifier Assert And Cut is used to control whether it is ignored
or checked (or disabled).

The intention is that this be used within a subprogram when the given test expresion sums
up all the work done so far in the subprogram, so that the rest of the subprogram can be
verified (informally or formally) using only the entry preconditions, and the expression in
this pragma. This allows dividing up a subprogram into sections for the purposes of testing
or formal verification. The pragma also serves as useful documentation.

2.13 Pragma Assertion Policy

Syntax:

pragma Assertion_Policy (CHECK | DISABLE | IGNORE);

pragma Assertion_Policy (
ASSERTION_KIND => POLICY_IDENTIFIER

{, ASSERTION_KIND => POLICY_IDENTIFIER});

ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND

RM_ASSERTION_KIND ::= Assert |
Static_Predicate |
Dynamic_Predicate |
Pre |
Pre’Class |
Post |
Post’Class |
Type_Invariant |
Type_Invariant’Class

ID_ASSERTION_KIND ::= Assertions |
Assert_And_Cut |

Chapter 2: Implementation Defined Pragmas 11

Assume |
Contract_Cases |
Debug |
Invariant |
Invariant’Class |
Loop_Invariant |
Loop_Variant |
Postcondition |
Precondition |
Predicate |
Refined_Post |
Statement_Assertions

POLICY_IDENTIFIER ::= Check | Disable | Ignore | Suppressible

This is a standard Ada 2012 pragma that is available as an implementation-defined pragma
in earlier versions of Ada. The assertion kinds RM ASSERTION KIND are those defined in
the Ada standard. The assertion kinds ID ASSERTION KIND are implementation defined
additions recognized by the GNAT compiler.

The pragma applies in both cases to pragmas and aspects with matching names, e.g. Pre
applies to the Pre aspect, and Precondition applies to both the Precondition pragma and
the aspect Precondition. Note that the identifiers for pragmas Pre Class and Post Class are
Pre’Class and Post’Class (not Pre Class and Post Class), since these pragmas are intended
to be identical to the corresponding aspects).

If the policy is CHECK, then assertions are enabled, i.e. the corresponding pragma or aspect
is activated. If the policy is IGNORE, then assertions are ignored, i.e. the corresponding
pragma or aspect is deactivated. This pragma overrides the effect of the -gnata switch on
the command line. If the policy is SUPPRESSIBLE, then assertions are enabled by default,
however, if the -gnatp switch is specified all assertions are ignored.

The implementation defined policy DISABLE is like IGNORE except that it completely
disables semantic checking of the corresponding pragma or aspect. This is useful when the
pragma or aspect argument references subprograms in a with’ed package which is replaced
by a dummy package for the final build.

The implementation defined assertion kind Assertions applies to all assertion kinds. The
form with no assertion kind given implies this choice, so it applies to all assertion kinds
(RM defined, and implementation defined).

The implementation defined assertion kind Statement Assertions applies to Assert, As-
sert And Cut, Assume, Loop Invariant, and Loop Variant.

2.14 Pragma Assume

Syntax:

pragma Assume (
boolean_EXPRESSION
[, string_EXPRESSION]);

Chapter 2: Implementation Defined Pragmas 12

The effect of this pragma is identical to that of pragma Assert, except that in an Asser-
tion Policy pragma, the identifier Assume is used to control whether it is ignored or checked
(or disabled).
The intention is that this be used for assumptions about the external environment. So
you cannot expect to verify formally or informally that the condition is met, this must be
established by examining things outside the program itself. For example, we may have code
that depends on the size of Long Long Integer being at least 64. So we could write:

pragma Assume (Long_Long_Integer’Size >= 64);

This assumption cannot be proved from the program itself, but it acts as a useful run-time
check that the assumption is met, and documents the need to ensure that it is met by
reference to information outside the program.

2.15 Pragma Assume No Invalid Values

Syntax:
pragma Assume_No_Invalid_Values (On | Off);

This is a configuration pragma that controls the assumptions made by the compiler about
the occurrence of invalid representations (invalid values) in the code.
The default behavior (corresponding to an Off argument for this pragma), is to assume that
values may in general be invalid unless the compiler can prove they are valid. Consider the
following example:

V1 : Integer range 1 .. 10;
V2 : Integer range 11 .. 20;
...
for J in V2 .. V1 loop

...
end loop;

if V1 and V2 have valid values, then the loop is known at compile time not to execute since
the lower bound must be greater than the upper bound. However in default mode, no such
assumption is made, and the loop may execute. If Assume No Invalid Values (On) is given,
the compiler will assume that any occurrence of a variable other than in an explicit ’Valid
test always has a valid value, and the loop above will be optimized away.
The use of Assume No Invalid Values (On) is appropriate if you know your code is free of
uninitialized variables and other possible sources of invalid representations, and may result
in more efficient code. A program that accesses an invalid representation with this pragma
in effect is erroneous, so no guarantees can be made about its behavior.
It is peculiar though permissible to use this pragma in conjunction with validity checking
(-gnatVa). In such cases, accessing invalid values will generally give an exception, though
formally the program is erroneous so there are no guarantees that this will always be the
case, and it is recommended that these two options not be used together.

2.16 Pragma Async Readers

Syntax:
pragma Asynch_Readers [(boolean_EXPRESSION)];

Chapter 2: Implementation Defined Pragmas 13

For the semantics of this pragma, see the entry for aspect Async Readers in the SPARK
2014 Reference Manual, section 7.1.2.

2.17 Pragma Async Writers

Syntax:

pragma Asynch_Writers [(boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Async Writers in the SPARK
2014 Reference Manual, section 7.1.2.

2.18 Pragma Attribute Definition

Syntax:

pragma Attribute_Definition
([Attribute =>] ATTRIBUTE_DESIGNATOR,
[Entity =>] LOCAL_NAME,
[Expression =>] EXPRESSION | NAME);

If Attribute is a known attribute name, this pragma is equivalent to the attribute definition
clause:

for Entity’Attribute use Expression;

If Attribute is not a recognized attribute name, the pragma is ignored, and a warning is
emitted. This allows source code to be written that takes advantage of some new attribute,
while remaining compilable with earlier compilers.

2.19 Pragma C Pass By Copy

Syntax:

pragma C_Pass_By_Copy
([Max_Size =>] static_integer_EXPRESSION);

Normally the default mechanism for passing C convention records to C convention subpro-
grams is to pass them by reference, as suggested by RM B.3(69). Use the configuration
pragma C Pass By Copy to change this default, by requiring that record formal parameters
be passed by copy if all of the following conditions are met:

* The size of the record type does not exceed the value specified for Max Size.

* The record type has Convention C.

* The formal parameter has this record type, and the subprogram has a foreign (non-Ada)
convention.

If these conditions are met the argument is passed by copy; i.e., in a manner consistent with
what C expects if the corresponding formal in the C prototype is a struct (rather than a
pointer to a struct).

You can also pass records by copy by specifying the convention C Pass By Copy for the
record type, or by using the extended Import and Export pragmas, which allow specification
of passing mechanisms on a parameter by parameter basis.

Chapter 2: Implementation Defined Pragmas 14

2.20 Pragma Check

Syntax:
pragma Check (

[Name =>] CHECK_KIND,
[Check =>] Boolean_EXPRESSION

[, [Message =>] string_EXPRESSION]);

CHECK_KIND ::= IDENTIFIER |
Pre’Class |
Post’Class |
Type_Invariant’Class |
Invariant’Class

This pragma is similar to the predefined pragma Assert except that an extra identifier
argument is present. In conjunction with pragma Check Policy, this can be used to define
groups of assertions that can be independently controlled. The identifier Assertion is special,
it refers to the normal set of pragma Assert statements.
Checks introduced by this pragma are normally deactivated by default. They can be acti-
vated either by the command line option -gnata, which turns on all checks, or individually
controlled using pragma Check Policy.
The identifiers Assertions and Statement Assertions are not permitted as check kinds,
since this would cause confusion with the use of these identifiers in Assertion Policy and
Check Policy pragmas, where they are used to refer to sets of assertions.

2.21 Pragma Check Float Overflow

Syntax:
pragma Check_Float_Overflow;

In Ada, the predefined floating-point types (Short Float, Float, Long Float,
Long Long Float) are defined to be unconstrained. This means that even though each has
a well-defined base range, an operation that delivers a result outside this base range is not
required to raise an exception. This implementation permission accommodates the notion
of infinities in IEEE floating-point, and corresponds to the efficient execution mode on
most machines. GNAT will not raise overflow exceptions on these machines; instead it will
generate infinities and NaN’s as defined in the IEEE standard.
Generating infinities, although efficient, is not always desirable. Often the preferable ap-
proach is to check for overflow, even at the (perhaps considerable) expense of run-time
performance. This can be accomplished by defining your own constrained floating-point
subtypes – i.e., by supplying explicit range constraints – and indeed such a subtype can
have the same base range as its base type. For example:

subtype My_Float is Float range Float’Range;

Here My Float has the same range as Float but is constrained, so operations on My Float
values will be checked for overflow against this range.
This style will achieve the desired goal, but it is often more convenient to be able to
simply use the standard predefined floating-point types as long as overflow checking could
be guaranteed. The Check Float Overflow configuration pragma achieves this effect. If

Chapter 2: Implementation Defined Pragmas 15

a unit is compiled subject to this configuration pragma, then all operations on predefined
floating-point types including operations on base types of these floating-point types will be
treated as though those types were constrained, and overflow checks will be generated. The
Constraint Error exception is raised if the result is out of range.

This mode can also be set by use of the compiler switch -gnateF.

2.22 Pragma Check Name

Syntax:

pragma Check_Name (check_name_IDENTIFIER);

This is a configuration pragma that defines a new implementation defined check name
(unless IDENTIFIER matches one of the predefined check names, in which case the pragma
has no effect). Check names are global to a partition, so if two or more configuration
pragmas are present in a partition mentioning the same name, only one new check name is
introduced.

An implementation defined check name introduced with this pragma may be used in
only three contexts: pragma Suppress, pragma Unsuppress, and as the prefix of a
Check Name’Enabled attribute reference. For any of these three cases, the check name
must be visible. A check name is visible if it is in the configuration pragmas applying to
the current unit, or if it appears at the start of any unit that is part of the dependency set
of the current unit (e.g., units that are mentioned in with clauses).

Check names introduced by this pragma are subject to control by compiler switches (in
particular -gnatp) in the usual manner.

2.23 Pragma Check Policy

Syntax:

pragma Check_Policy
([Name =>] CHECK_KIND,
[Policy =>] POLICY_IDENTIFIER);

pragma Check_Policy (
CHECK_KIND => POLICY_IDENTIFIER

{, CHECK_KIND => POLICY_IDENTIFIER});

ASSERTION_KIND ::= RM_ASSERTION_KIND | ID_ASSERTION_KIND

CHECK_KIND ::= IDENTIFIER |
Pre’Class |
Post’Class |
Type_Invariant’Class |
Invariant’Class

The identifiers Name and Policy are not allowed as CHECK_KIND values. This
avoids confusion between the two possible syntax forms for this pragma.

Chapter 2: Implementation Defined Pragmas 16

POLICY_IDENTIFIER ::= ON | OFF | CHECK | DISABLE | IGNORE

This pragma is used to set the checking policy for assertions (specified by aspects or prag-
mas), the Debug pragma, or additional checks to be checked using the Check pragma. It
may appear either as a configuration pragma, or within a declarative part of package. In
the latter case, it applies from the point where it appears to the end of the declarative
region (like pragma Suppress).
The Check Policy pragma is similar to the predefined Assertion Policy pragma, and if the
check kind corresponds to one of the assertion kinds that are allowed by Assertion Policy,
then the effect is identical.
If the first argument is Debug, then the policy applies to Debug pragmas, disabling their
effect if the policy is OFF, DISABLE, or IGNORE, and allowing them to execute with
normal semantics if the policy is ON or CHECK. In addition if the policy is DISABLE, then
the procedure call in Debug pragmas will be totally ignored and not analyzed semantically.
Finally the first argument may be some other identifier than the above possibilities, in which
case it controls a set of named assertions that can be checked using pragma Check. For
example, if the pragma:

pragma Check_Policy (Critical_Error, OFF);

is given, then subsequent Check pragmas whose first argument is also Critical Error will
be disabled.
The check policy is OFF to turn off corresponding checks, and ON to turn on corresponding
checks. The default for a set of checks for which no Check Policy is given is OFF unless
the compiler switch -gnata is given, which turns on all checks by default.
The check policy settings CHECK and IGNORE are recognized as synonyms for ON and
OFF. These synonyms are provided for compatibility with the standard Assertion Policy
pragma. The check policy setting DISABLE causes the second argument of a corresponding
Check pragma to be completely ignored and not analyzed.

2.24 Pragma Comment

Syntax:
pragma Comment (static_string_EXPRESSION);

This is almost identical in effect to pragma Ident. It allows the placement of a comment
into the object file and hence into the executable file if the operating system permits such
usage. The difference is that Comment, unlike Ident, has no limitations on placement of the
pragma (it can be placed anywhere in the main source unit), and if more than one pragma
is used, all comments are retained.

2.25 Pragma Common Object

Syntax:
pragma Common_Object (

[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

Chapter 2: Implementation Defined Pragmas 17

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string_EXPRESSION

This pragma enables the shared use of variables stored in overlaid linker areas corresponding
to the use of COMMON in Fortran. The single object LOCAL NAME is assigned to the
area designated by the External argument. You may define a record to correspond to a
series of fields. The Size argument is syntax checked in GNAT, but otherwise ignored.

Common Object is not supported on all platforms. If no support is available, then the code
generator will issue a message indicating that the necessary attribute for implementation
of this pragma is not available.

2.26 Pragma Compile Time Error

Syntax:

pragma Compile_Time_Error
(boolean_EXPRESSION, static_string_EXPRESSION);

This pragma can be used to generate additional compile time error messages. It is partic-
ularly useful in generics, where errors can be issued for specific problematic instantiations.
The first parameter is a boolean expression. The pragma is effective only if the value of this
expression is known at compile time, and has the value True. The set of expressions whose
values are known at compile time includes all static boolean expressions, and also other
values which the compiler can determine at compile time (e.g., the size of a record type set
by an explicit size representation clause, or the value of a variable which was initialized to
a constant and is known not to have been modified). If these conditions are met, an error
message is generated using the value given as the second argument. This string value may
contain embedded ASCII.LF characters to break the message into multiple lines.

2.27 Pragma Compile Time Warning

Syntax:

pragma Compile_Time_Warning
(boolean_EXPRESSION, static_string_EXPRESSION);

Same as pragma Compile Time Error, except a warning is issued instead of an error mes-
sage. Note that if this pragma is used in a package that is with’ed by a client, the client
will get the warning even though it is issued by a with’ed package (normally warnings in
with’ed units are suppressed, but this is a special exception to that rule).

One typical use is within a generic where compile time known characteristics of formal
parameters are tested, and warnings given appropriately. Another use with a first param-
eter of True is to warn a client about use of a package, for example that it is not fully
implemented.

2.28 Pragma Compiler Unit

Syntax:

pragma Compiler_Unit;

Chapter 2: Implementation Defined Pragmas 18

This pragma is obsolete. It is equivalent to Compiler Unit Warning. It is retained so
that old versions of the GNAT run-time that use this pragma can be compiled with newer
versions of the compiler.

2.29 Pragma Compiler Unit Warning

Syntax:
pragma Compiler_Unit_Warning;

This pragma is intended only for internal use in the GNAT run-time library. It indicates
that the unit is used as part of the compiler build. The effect is to generate warnings for
the use of constructs (for example, conditional expressions) that would cause trouble when
bootstrapping using an older version of GNAT. For the exact list of restrictions, see the
compiler sources and references to Check Compiler Unit.

2.30 Pragma Complete Representation

Syntax:
pragma Complete_Representation;

This pragma must appear immediately within a record representation clause. Typical place-
ments are before the first component clause or after the last component clause. The effect is
to give an error message if any component is missing a component clause. This pragma may
be used to ensure that a record representation clause is complete, and that this invariant is
maintained if fields are added to the record in the future.

2.31 Pragma Complex Representation

Syntax:
pragma Complex_Representation

([Entity =>] LOCAL_NAME);

The Entity argument must be the name of a record type which has two fields of the same
floating-point type. The effect of this pragma is to force gcc to use the special internal
complex representation form for this record, which may be more efficient. Note that this
may result in the code for this type not conforming to standard ABI (application binary
interface) requirements for the handling of record types. For example, in some environments,
there is a requirement for passing records by pointer, and the use of this pragma may result
in passing this type in floating-point registers.

2.32 Pragma Component Alignment

Syntax:
pragma Component_Alignment (

[Form =>] ALIGNMENT_CHOICE
[, [Name =>] type_LOCAL_NAME]);

ALIGNMENT_CHOICE ::=
Component_Size

| Component_Size_4

Chapter 2: Implementation Defined Pragmas 19

| Storage_Unit
| Default

Specifies the alignment of components in array or record types. The meaning of the Form
argument is as follows:

Component Size
Aligns scalar components and subcomponents of the array or record type on
boundaries appropriate to their inherent size (naturally aligned). For example,
1-byte components are aligned on byte boundaries, 2-byte integer components
are aligned on 2-byte boundaries, 4-byte integer components are aligned on 4-
byte boundaries and so on. These alignment rules correspond to the normal
rules for C compilers on all machines except the VAX.

Component Size 4
Naturally aligns components with a size of four or fewer bytes. Components
that are larger than 4 bytes are placed on the next 4-byte boundary.

Storage Unit
Specifies that array or record components are byte aligned, i.e., aligned on
boundaries determined by the value of the constant System.Storage Unit.

Default

Specifies that array or record components are aligned on default boundaries,
appropriate to the underlying hardware or operating system or both. The
Default choice is the same as Component Size (natural alignment).

If the Name parameter is present, type LOCAL NAME must refer to a local record or array
type, and the specified alignment choice applies to the specified type. The use of Compo-
nent Alignment together with a pragma Pack causes the Component Alignment pragma to
be ignored. The use of Component Alignment together with a record representation clause
is only effective for fields not specified by the representation clause.

If the Name parameter is absent, the pragma can be used as either a configuration pragma,
in which case it applies to one or more units in accordance with the normal rules for
configuration pragmas, or it can be used within a declarative part, in which case it applies
to types that are declared within this declarative part, or within any nested scope within
this declarative part. In either case it specifies the alignment to be applied to any record
or array type which has otherwise standard representation.

If the alignment for a record or array type is not specified (using pragma Pack, pragma
Component Alignment, or a record rep clause), the GNAT uses the default alignment as
described previously.

2.33 Pragma Constant After Elaboration

Syntax:

pragma Constant_After_Elaboration [(boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Constant After Elaboration in
the SPARK 2014 Reference Manual, section 3.3.1.

Chapter 2: Implementation Defined Pragmas 20

2.34 Pragma Contract Cases

Syntax:
pragma Contract_Cases ((CONTRACT_CASE {, CONTRACT_CASE));

CONTRACT_CASE ::= CASE_GUARD => CONSEQUENCE

CASE_GUARD ::= boolean_EXPRESSION | others

CONSEQUENCE ::= boolean_EXPRESSION

The Contract Cases pragma allows defining fine-grain specifications that can complement
or replace the contract given by a precondition and a postcondition. Additionally, the
Contract Cases pragma can be used by testing and formal verification tools. The compiler
checks its validity and, depending on the assertion policy at the point of declaration of the
pragma, it may insert a check in the executable. For code generation, the contract cases

pragma Contract_Cases (
Cond1 => Pred1,
Cond2 => Pred2);

are equivalent to
C1 : constant Boolean := Cond1; -- evaluated at subprogram entry
C2 : constant Boolean := Cond2; -- evaluated at subprogram entry
pragma Precondition ((C1 and not C2) or (C2 and not C1));
pragma Postcondition (if C1 then Pred1);
pragma Postcondition (if C2 then Pred2);

The precondition ensures that one and only one of the conditions is satisfied on entry to
the subprogram. The postcondition ensures that for the condition that was True on entry,
the corrresponding consequence is True on exit. Other consequence expressions are not
evaluated.
A precondition P and postcondition Q can also be expressed as contract cases:

pragma Contract_Cases (P => Q);

The placement and visibility rules for Contract Cases pragmas are identical to those de-
scribed for preconditions and postconditions.
The compiler checks that boolean expressions given in conditions and consequences are valid,
where the rules for conditions are the same as the rule for an expression in Precondition
and the rules for consequences are the same as the rule for an expression in Postcondition.
In particular, attributes ’Old and ’Result can only be used within consequence expressions.
The condition for the last contract case may be others, to denote any case not captured by
the previous cases. The following is an example of use within a package spec:

package Math_Functions is
...
function Sqrt (Arg : Float) return Float;
pragma Contract_Cases ((Arg in 0 .. 99) => Sqrt’Result < 10,

Arg >= 100 => Sqrt’Result >= 10,
others => Sqrt’Result = 0);

...

Chapter 2: Implementation Defined Pragmas 21

end Math_Functions;

The meaning of contract cases is that only one case should apply at each call, as determined
by the corresponding condition evaluating to True, and that the consequence for this case
should hold when the subprogram returns.

2.35 Pragma Convention Identifier

Syntax:
pragma Convention_Identifier (

[Name =>] IDENTIFIER,
[Convention =>] convention_IDENTIFIER);

This pragma provides a mechanism for supplying synonyms for existing convention identi-
fiers. The Name identifier can subsequently be used as a synonym for the given convention
in other pragmas (including for example pragma Import or another Convention Identifier
pragma). As an example of the use of this, suppose you had legacy code which used For-
tran77 as the identifier for Fortran. Then the pragma:

pragma Convention_Identifier (Fortran77, Fortran);

would allow the use of the convention identifier Fortran77 in subsequent code, avoiding the
need to modify the sources. As another example, you could use this to parameterize con-
vention requirements according to systems. Suppose you needed to use Stdcall on windows
systems, and C on some other system, then you could define a convention identifier Library
and use a single Convention Identifier pragma to specify which convention would be used
system-wide.

2.36 Pragma CPP Class

Syntax:
pragma CPP_Class ([Entity =>] LOCAL_NAME);

The argument denotes an entity in the current declarative region that is declared as a record
type. It indicates that the type corresponds to an externally declared C++ class type, and
is to be laid out the same way that C++ would lay out the type. If the C++ class has virtual
primitives then the record must be declared as a tagged record type.
Types for which CPP Class is specified do not have assignment or equality operators defined
(such operations can be imported or declared as subprograms as required). Initialization
is allowed only by constructor functions (see pragma CPP Constructor). Such types are
implicitly limited if not explicitly declared as limited or derived from a limited type, and
an error is issued in that case.
See [Interfacing to C++], page 268 for related information.
Note: Pragma CPP Class is currently obsolete. It is supported for backward compatibility
but its functionality is available using pragma Import with Convention = CPP.

2.37 Pragma CPP Constructor

Syntax:
pragma CPP_Constructor ([Entity =>] LOCAL_NAME

[, [External_Name =>] static_string_EXPRESSION]

Chapter 2: Implementation Defined Pragmas 22

[, [Link_Name =>] static_string_EXPRESSION]);

This pragma identifies an imported function (imported in the usual way with pragma Im-
port) as corresponding to a C++ constructor. If External Name and Link Name are not
specified then the Entity argument is a name that must have been previously mentioned
in a pragma Import with Convention = CPP. Such name must be of one of the following
forms:

* function Fname return T‘

* function Fname return T’Class

* function Fname (...) return T‘

* function Fname (...) return T’Class

where T is a limited record type imported from C++ with pragma Import and Convention
= CPP.

The first two forms import the default constructor, used when an object of type T is created
on the Ada side with no explicit constructor. The latter two forms cover all the non-default
constructors of the type. See the GNAT User’s Guide for details.

If no constructors are imported, it is impossible to create any objects on the Ada side and
the type is implicitly declared abstract.

Pragma CPP Constructor is intended primarily for automatic generation using an auto-
matic binding generator tool (such as the -fdump-ada-spec GCC switch). See [Interfacing
to C++], page 268 for more related information.

Note: The use of functions returning class-wide types for constructors is currently obsolete.
They are supported for backward compatibility. The use of functions returning the type T
leave the Ada sources more clear because the imported C++ constructors always return an
object of type T; that is, they never return an object whose type is a descendant of type T.

2.38 Pragma CPP Virtual

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is completely ignored. It is retained for compatibility purposes. It
used to be required to ensure compoatibility with C++, but is no longer required for that
purpose because GNAT generates the same object layout as the G++ compiler by default.

See [Interfacing to C++], page 268 for related information.

2.39 Pragma CPP Vtable

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is completely ignored. It used to be required to ensure compatibility
with C++, but is no longer required for that purpose because GNAT generates the same
object layout as the G++ compiler by default.

See [Interfacing to C++], page 268 for related information.

2.40 Pragma CPU

Syntax:

Chapter 2: Implementation Defined Pragmas 23

pragma CPU (EXPRESSION);

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.41 Pragma Default Initial Condition

Syntax:
pragma Default_Initial_Condition [(null | boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Default Initial Condition in the
SPARK 2014 Reference Manual, section 7.3.3.

2.42 Pragma Debug

Syntax:
pragma Debug ([CONDITION,]PROCEDURE_CALL_WITHOUT_SEMICOLON);

PROCEDURE_CALL_WITHOUT_SEMICOLON ::=
PROCEDURE_NAME

| PROCEDURE_PREFIX ACTUAL_PARAMETER_PART

The procedure call argument has the syntactic form of an expression, meeting the syntactic
requirements for pragmas.
If debug pragmas are not enabled or if the condition is present and evaluates to False,
this pragma has no effect. If debug pragmas are enabled, the semantics of the pragma is
exactly equivalent to the procedure call statement corresponding to the argument with a
terminating semicolon. Pragmas are permitted in sequences of declarations, so you can
use pragma Debug to intersperse calls to debug procedures in the middle of declarations.
Debug pragmas can be enabled either by use of the command line switch -gnata or by use
of the pragma Check Policy with a first argument of Debug.

2.43 Pragma Debug Policy

Syntax:
pragma Debug_Policy (CHECK | DISABLE | IGNORE | ON | OFF);

This pragma is equivalent to a corresponding Check Policy pragma with a first argument
of Debug. It is retained for historical compatibility reasons.

2.44 Pragma Default Scalar Storage Order

Syntax:
pragma Default_Scalar_Storage_Order (High_Order_First | Low_Order_First);

Normally if no explicit Scalar Storage Order is given for a record type or array type, then
the scalar storage order defaults to the ordinary default for the target. But this default
may be overridden using this pragma. The pragma may appear as a configuration pragma,
or locally within a package spec or declarative part. In the latter case, it applies to all
subsequent types declared within that package spec or declarative part.
The following example shows the use of this pragma:

Chapter 2: Implementation Defined Pragmas 24

pragma Default_Scalar_Storage_Order (High_Order_First);
with System; use System;
package DSSO1 is

type H1 is record
a : Integer;

end record;

type L2 is record
a : Integer;

end record;
for L2’Scalar_Storage_Order use Low_Order_First;

type L2a is new L2;

package Inner is
type H3 is record

a : Integer;
end record;

pragma Default_Scalar_Storage_Order (Low_Order_First);

type L4 is record
a : Integer;

end record;
end Inner;

type H4a is new Inner.L4;

type H5 is record
a : Integer;

end record;
end DSSO1;

In this example record types L.. have Low Order First scalar storage order, and record
types H.. have High Order First. Note that in the case of H4a, the order is not inherited
from the parent type. Only an explicitly set Scalar Storage Order gets inherited on type
derivation.
If this pragma is used as a configuration pragma which appears within a configuration
pragma file (as opposed to appearing explicitly at the start of a single unit), then the
binder will require that all units in a partition be compiled in a similar manner, other than
run-time units, which are not affected by this pragma. Note that the use of this form is
discouraged because it may significantly degrade the run-time performance of the software,
instead the default scalar storage order ought to be changed only on a local basis.

2.45 Pragma Default Storage Pool

Syntax:
pragma Default_Storage_Pool (storage_pool_NAME | null);

Chapter 2: Implementation Defined Pragmas 25

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.46 Pragma Depends

Syntax:

pragma Depends (DEPENDENCY_RELATION);

DEPENDENCY_RELATION ::=
null

| (DEPENDENCY_CLAUSE {, DEPENDENCY_CLAUSE})

DEPENDENCY_CLAUSE ::=
OUTPUT_LIST =>[+] INPUT_LIST

| NULL_DEPENDENCY_CLAUSE

NULL_DEPENDENCY_CLAUSE ::= null => INPUT_LIST

OUTPUT_LIST ::= OUTPUT | (OUTPUT {, OUTPUT})

INPUT_LIST ::= null | INPUT | (INPUT {, INPUT})

OUTPUT ::= NAME | FUNCTION_RESULT
INPUT ::= NAME

where FUNCTION_RESULT is a function Result attribute_reference

For the semantics of this pragma, see the entry for aspect Depends in the SPARK 2014
Reference Manual, section 6.1.5.

2.47 Pragma Detect Blocking

Syntax:

pragma Detect_Blocking;

This is a standard pragma in Ada 2005, that is available in all earlier versions of Ada as an
implementation-defined pragma.

This is a configuration pragma that forces the detection of potentially blocking operations
within a protected operation, and to raise Program Error if that happens.

2.48 Pragma Disable Atomic Synchronization

Syntax:

pragma Disable_Atomic_Synchronization [(Entity)];

Ada requires that accesses (reads or writes) of an atomic variable be regarded as synchro-
nization points in the case of multiple tasks. Particularly in the case of multi-processors
this may require special handling, e.g. the generation of memory barriers. This capability
may be turned off using this pragma in cases where it is known not to be required.

Chapter 2: Implementation Defined Pragmas 26

The placement and scope rules for this pragma are the same as those for pragma Suppress.
In particular it can be used as a configuration pragma, or in a declaration sequence where
it applies till the end of the scope. If an Entity argument is present, the action applies only
to that entity.

2.49 Pragma Dispatching Domain

Syntax:

pragma Dispatching_Domain (EXPRESSION);

This pragma is standard in Ada 2012, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.50 Pragma Effective Reads

Syntax:

pragma Effective_Reads [(boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Effective Reads in the SPARK
2014 Reference Manual, section 7.1.2.

2.51 Pragma Effective Writes

Syntax:

pragma Effective_Writes [(boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Effective Writes in the SPARK
2014 Reference Manual, section 7.1.2.

2.52 Pragma Elaboration Checks

Syntax:

pragma Elaboration_Checks (Dynamic | Static);

This is a configuration pragma that provides control over the elaboration model used by
the compilation affected by the pragma. If the parameter is Dynamic, then the dynamic
elaboration model described in the Ada Reference Manual is used, as though the -gnatE
switch had been specified on the command line. If the parameter is Static, then the default
GNAT static model is used. This configuration pragma overrides the setting of the command
line. For full details on the elaboration models used by the GNAT compiler, see the chapter
on elaboration order handling in the GNAT User’s Guide.

2.53 Pragma Eliminate

Syntax:

pragma Eliminate ([Entity =>] DEFINING_DESIGNATOR,
[Source_Location =>] STRING_LITERAL);

The string literal given for the source location is a string which specifies the line number of
the occurrence of the entity, using the syntax for SOURCE TRACE given below:

Chapter 2: Implementation Defined Pragmas 27

SOURCE_TRACE ::= SOURCE_REFERENCE [LBRACKET SOURCE_TRACE RBRACKET]

LBRACKET ::= [
RBRACKET ::=]

SOURCE_REFERENCE ::= FILE_NAME : LINE_NUMBER

LINE_NUMBER ::= DIGIT {DIGIT}

Spaces around the colon in a Source Reference are optional.

The DEFINING DESIGNATOR matches the defining designator used in an explicit sub-
program declaration, where the entity name in this designator appears on the source line
specified by the source location.

The source trace that is given as the Source Location shall obey the following rules. The
FILE NAME is the short name (with no directory information) of an Ada source file, given
using exactly the required syntax for the underlying file system (e.g. case is important if the
underlying operating system is case sensitive). LINE NUMBER gives the line number of
the occurrence of the entity as a decimal literal without an exponent or point. If an entity
is not declared in a generic instantiation (this includes generic subprogram instances), the
source trace includes only one source reference. If an entity is declared inside a generic
instantiation, its source trace (when parsing from left to right) starts with the source location
of the declaration of the entity in the generic unit and ends with the source location of the
instantiation (it is given in square brackets). This approach is recursively used in case of
nested instantiations: the rightmost (nested most deeply in square brackets) element of the
source trace is the location of the outermost instantiation, the next to left element is the
location of the next (first nested) instantiation in the code of the corresponding generic
unit, and so on, and the leftmost element (that is out of any square brackets) is the location
of the declaration of the entity to eliminate in a generic unit.

Note that the Source Location argument specifies which of a set of similarly named entities
is being eliminated, dealing both with overloading, and also appearance of the same entity
name in different scopes.

This pragma indicates that the given entity is not used in the program to be compiled
and built. The effect of the pragma is to allow the compiler to eliminate the code or data
associated with the named entity. Any reference to an eliminated entity causes a compile-
time or link-time error.

The intention of pragma Eliminate is to allow a program to be compiled in a system-
independent manner, with unused entities eliminated, without needing to modify the source
text. Normally the required set of Eliminate pragmas is constructed automatically using
the gnatelim tool.

Any source file change that removes, splits, or adds lines may make the set of Eliminate
pragmas invalid because their Source Location argument values may get out of date.

Pragma Eliminate may be used where the referenced entity is a dispatching operation. In
this case all the subprograms to which the given operation can dispatch are considered to
be unused (are never called as a result of a direct or a dispatching call).

Chapter 2: Implementation Defined Pragmas 28

2.54 Pragma Enable Atomic Synchronization

Syntax:

pragma Enable_Atomic_Synchronization [(Entity)];

Ada requires that accesses (reads or writes) of an atomic variable be regarded as synchroniza-
tion points in the case of multiple tasks. Particularly in the case of multi-processors this may
require special handling, e.g. the generation of memory barriers. This synchronization is
performed by default, but can be turned off using pragma Disable Atomic Synchronization.
The Enable Atomic Synchronization pragma can be used to turn it back on.

The placement and scope rules for this pragma are the same as those for pragma Unsuppress.
In particular it can be used as a configuration pragma, or in a declaration sequence where
it applies till the end of the scope. If an Entity argument is present, the action applies only
to that entity.

2.55 Pragma Export Function

Syntax:

pragma Export_Function (
[Internal =>] LOCAL_NAME

[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] result_SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
[, [Result_Mechanism =>] MECHANISM_NAME]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string_EXPRESSION
| ""

PARAMETER_TYPES ::=
null

| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::=
subtype_NAME

| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

Chapter 2: Implementation Defined Pragmas 29

Use this pragma to make a function externally callable and optionally provide information
on mechanisms to be used for passing parameter and result values. We recommend, for
the purposes of improving portability, this pragma always be used in conjunction with a
separate pragma Export, which must precede the pragma Export Function. GNAT does not
require a separate pragma Export, but if none is present, Convention Ada is assumed, which
is usually not what is wanted, so it is usually appropriate to use this pragma in conjunction
with a Export or Convention pragma that specifies the desired foreign convention. Pragma
Export Function (and Export, if present) must appear in the same declarative region as
the function to which they apply.
internal name must uniquely designate the function to which the pragma applies. If more
than one function name exists of this name in the declarative part you must use the Pa-
rameter Types and Result Type parameters is mandatory to achieve the required unique
designation. subtype mark‘s in these parameters must exactly match the subtypes in the
corresponding function specification, using positional notation to match parameters with
subtype marks. The form with an ‘’Access attribute can be used to match an anonymous
access parameter.
Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

2.56 Pragma Export Object

Syntax:
pragma Export_Object

[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string_EXPRESSION

This pragma designates an object as exported, and apart from the extended rules for ex-
ternal symbols, is identical in effect to the use of the normal Export pragma applied to an
object. You may use a separate Export pragma (and you probably should from the point
of view of portability), but it is not required. Size is syntax checked, but otherwise ignored
by GNAT.

2.57 Pragma Export Procedure

Syntax:
pragma Export_Procedure (

[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=

Chapter 2: Implementation Defined Pragmas 30

IDENTIFIER
| static_string_EXPRESSION
| ""

PARAMETER_TYPES ::=
null

| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::=
subtype_NAME

| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Export Function except that it applies to a procedure rather
than a function and the parameters Result Type and Result Mechanism are not permitted.
GNAT does not require a separate pragma Export, but if none is present, Convention Ada
is assumed, which is usually not what is wanted, so it is usually appropriate to use this
pragma in conjunction with a Export or Convention pragma that specifies the desired
foreign convention.
Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

2.58 Pragma Export Value

Syntax:
pragma Export_Value (

[Value =>] static_integer_EXPRESSION,
[Link_Name =>] static_string_EXPRESSION);

This pragma serves to export a static integer value for external use. The first argument
specifies the value to be exported. The Link Name argument specifies the symbolic name to
be associated with the integer value. This pragma is useful for defining a named static value
in Ada that can be referenced in assembly language units to be linked with the application.
This pragma is currently supported only for the AAMP target and is ignored for other
targets.

2.59 Pragma Export Valued Procedure

Syntax:
pragma Export_Valued_Procedure (

Chapter 2: Implementation Defined Pragmas 31

[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string_EXPRESSION
| ""

PARAMETER_TYPES ::=
null

| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::=
subtype_NAME

| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Export Procedure except that the first parameter of LO-
CAL NAME, which must be present, must be of mode OUT, and externally the subprogram
is treated as a function with this parameter as the result of the function. GNAT provides for
this capability to allow the use of OUT and IN OUT parameters in interfacing to external
functions (which are not permitted in Ada functions). GNAT does not require a separate
pragma Export, but if none is present, Convention Ada is assumed, which is almost cer-
tainly not what is wanted since the whole point of this pragma is to interface with foreign
language functions, so it is usually appropriate to use this pragma in conjunction with a
Export or Convention pragma that specifies the desired foreign convention.

Special treatment is given if the EXTERNAL is an explicit null string or a static string
expressions that evaluates to the null string. In this case, no external name is generated.
This form still allows the specification of parameter mechanisms.

2.60 Pragma Extend System

Syntax:

pragma Extend_System ([Name =>] IDENTIFIER);

This pragma is used to provide backwards compatibility with other implementations that
extend the facilities of package System. In GNAT, System contains only the definitions

Chapter 2: Implementation Defined Pragmas 32

that are present in the Ada RM. However, other implementations, notably the DEC Ada
83 implementation, provide many extensions to package System.
For each such implementation accommodated by this pragma, GNAT provides a package
Aux ‘xxx‘, e.g., Aux DEC for the DEC Ada 83 implementation, which provides the required
additional definitions. You can use this package in two ways. You can with it in the normal
way and access entities either by selection or using a use clause. In this case no special
processing is required.
However, if existing code contains references such as System.‘xxx‘ where xxx is an entity in
the extended definitions provided in package System, you may use this pragma to extend
visibility in System in a non-standard way that provides greater compatibility with the
existing code. Pragma Extend System is a configuration pragma whose single argument is
the name of the package containing the extended definition (e.g., Aux DEC for the DEC
Ada case). A unit compiled under control of this pragma will be processed using special
visibility processing that looks in package System.Aux ‘xxx‘ where Aux ‘xxx‘ is the pragma
argument for any entity referenced in package System, but not found in package System.
You can use this pragma either to access a predefined System extension supplied with the
compiler, for example Aux DEC or you can construct your own extension unit following the
above definition. Note that such a package is a child of System and thus is considered part
of the implementation. To compile it you will have to use the -gnatg switch for compiling
System units, as explained in the GNAT User’s Guide.

2.61 Pragma Extensions Allowed

Syntax:
pragma Extensions_Allowed (On | Off);

This configuration pragma enables or disables the implementation extension mode (the use
of Off as a parameter cancels the effect of the -gnatX command switch).
In extension mode, the latest version of the Ada language is implemented (currently Ada
2012), and in addition a small number of GNAT specific extensions are recognized as follows:

Constrained attribute for generic objects
The Constrained attribute is permitted for objects of generic types. The result
indicates if the corresponding actual is constrained.

2.62 Pragma Extensions Visible

Syntax:
pragma Extensions_Visible [(boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Extensions Visible in the SPARK
2014 Reference Manual, section 6.1.7.

2.63 Pragma External

Syntax:
pragma External (

[Convention =>] convention_IDENTIFIER,
[Entity =>] LOCAL_NAME

Chapter 2: Implementation Defined Pragmas 33

[, [External_Name =>] static_string_EXPRESSION]
[, [Link_Name =>] static_string_EXPRESSION]);

This pragma is identical in syntax and semantics to pragma Export as defined in the
Ada Reference Manual. It is provided for compatibility with some Ada 83 compilers that
used this pragma for exactly the same purposes as pragma Export before the latter was
standardized.

2.64 Pragma External Name Casing

Syntax:
pragma External_Name_Casing (

Uppercase | Lowercase
[, Uppercase | Lowercase | As_Is]);

This pragma provides control over the casing of external names associated with Import and
Export pragmas. There are two cases to consider:

* Implicit external names
Implicit external names are derived from identifiers. The most common case arises
when a standard Ada Import or Export pragma is used with only two arguments, as
in:

pragma Import (C, C_Routine);

Since Ada is a case-insensitive language, the spelling of the identifier in the Ada source
program does not provide any information on the desired casing of the external name,
and so a convention is needed. In GNAT the default treatment is that such names are
converted to all lower case letters. This corresponds to the normal C style in many
environments. The first argument of pragma External Name Casing can be used to
control this treatment. If Uppercase is specified, then the name will be forced to all
uppercase letters. If Lowercase is specified, then the normal default of all lower case
letters will be used.
This same implicit treatment is also used in the case of extended DEC Ada 83 compat-
ible Import and Export pragmas where an external name is explicitly specified using
an identifier rather than a string.

* Explicit external names
Explicit external names are given as string literals. The most common case arises when
a standard Ada Import or Export pragma is used with three arguments, as in:

pragma Import (C, C_Routine, "C_routine");

In this case, the string literal normally provides the exact casing required for the
external name. The second argument of pragma External Name Casing may be used
to modify this behavior. If Uppercase is specified, then the name will be forced to
all uppercase letters. If Lowercase is specified, then the name will be forced to all
lowercase letters. A specification of As Is provides the normal default behavior in
which the casing is taken from the string provided.

This pragma may appear anywhere that a pragma is valid. In particular, it can be used
as a configuration pragma in the gnat.adc file, in which case it applies to all subsequent
compilations, or it can be used as a program unit pragma, in which case it only applies

Chapter 2: Implementation Defined Pragmas 34

to the current unit, or it can be used more locally to control individual Import/Export
pragmas.

It was primarily intended for use with OpenVMS systems, where many compilers convert
all symbols to upper case by default. For interfacing to such compilers (e.g., the DEC C
compiler), it may be convenient to use the pragma:

pragma External_Name_Casing (Uppercase, Uppercase);

to enforce the upper casing of all external symbols.

2.65 Pragma Fast Math

Syntax:

pragma Fast_Math;

This is a configuration pragma which activates a mode in which speed is considered more
important for floating-point operations than absolutely accurate adherence to the require-
ments of the standard. Currently the following operations are affected:

Complex Multiplication
The normal simple formula for complex multiplication can result in intermediate
overflows for numbers near the end of the range. The Ada standard requires that
this situation be detected and corrected by scaling, but in Fast Math mode such
cases will simply result in overflow. Note that to take advantage of this you
must instantiate your own version of Ada.Numerics.Generic Complex Types
under control of the pragma, rather than use the preinstantiated versions.

2.66 Pragma Favor Top Level

Syntax:

pragma Favor_Top_Level (type_NAME);

The named type must be an access-to-subprogram type. This pragma is an efficiency hint
to the compiler, regarding the use of ’Access or ’Unrestricted Access on nested (non-library-
level) subprograms. The pragma means that nested subprograms are not used with this
type, or are rare, so that the generated code should be efficient in the top-level case. When
this pragma is used, dynamically generated trampolines may be used on some targets for
nested subprograms. See also the No Implicit Dynamic Code restriction.

2.67 Pragma Finalize Storage Only

Syntax:

pragma Finalize_Storage_Only (first_subtype_LOCAL_NAME);

This pragma allows the compiler not to emit a Finalize call for objects defined at the library
level. This is mostly useful for types where finalization is only used to deal with storage
reclamation since in most environments it is not necessary to reclaim memory just before
terminating execution, hence the name.

Chapter 2: Implementation Defined Pragmas 35

2.68 Pragma Float Representation

Syntax:

pragma Float_Representation (FLOAT_REP[, float_type_LOCAL_NAME]);

FLOAT_REP ::= VAX_Float | IEEE_Float

In the one argument form, this pragma is a configuration pragma which allows control over
the internal representation chosen for the predefined floating point types declared in the
packages Standard and System. This pragma is only provided for compatibility and has no
effect.

The two argument form specifies the representation to be used for the specified floating-
point type. The argument must be IEEE Float to specify the use of IEEE format, as
follows:

* For a digits value of 6, 32-bit IEEE short format will be used.

* For a digits value of 15, 64-bit IEEE long format will be used.

* No other value of digits is permitted.

2.69 Pragma Ghost

Syntax:

pragma Ghost [(boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Ghost in the SPARK 2014
Reference Manual, section 6.9.

2.70 Pragma Global

Syntax:

pragma Global (GLOBAL_SPECIFICATION);

GLOBAL_SPECIFICATION ::=
null

| (GLOBAL_LIST)
| (MODED_GLOBAL_LIST {, MODED_GLOBAL_LIST})

MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST

MODE_SELECTOR ::= In_Out | Input | Output | Proof_In
GLOBAL_LIST ::= GLOBAL_ITEM | (GLOBAL_ITEM {, GLOBAL_ITEM})
GLOBAL_ITEM ::= NAME

For the semantics of this pragma, see the entry for aspect Global in the SPARK 2014
Reference Manual, section 6.1.4.

2.71 Pragma Ident

Syntax:

Chapter 2: Implementation Defined Pragmas 36

pragma Ident (static_string_EXPRESSION);

This pragma is identical in effect to pragma Comment. It is provided for compatibility with
other Ada compilers providing this pragma.

2.72 Pragma Ignore Pragma

Syntax:
pragma Ignore_Pragma (pragma_IDENTIFIER);

This is a configuration pragma that takes a single argument that is a simple identifier. Any
subsequent use of a pragma whose pragma identifier matches this argument will be silently
ignored. This may be useful when legacy code or code intended for compilation with some
other compiler contains pragmas that match the name, but not the exact implementation,
of a GNAT pragma. The use of this pragma allows such pragmas to be ignored, which may
be useful in CodePeer mode, or during porting of legacy code.

2.73 Pragma Implementation Defined

Syntax:
pragma Implementation_Defined (local_NAME);

This pragma marks a previously declared entity as implementation-defined. For an over-
loaded entity, applies to the most recent homonym.

pragma Implementation_Defined;

The form with no arguments appears anywhere within a scope, most typically a package
spec, and indicates that all entities that are defined within the package spec are Implemen-
tation Defined.
This pragma is used within the GNAT runtime library to identify implementation-defined
entities introduced in language-defined units, for the purpose of implementing the
No Implementation Identifiers restriction.

2.74 Pragma Implemented

Syntax:
pragma Implemented (procedure_LOCAL_NAME, implementation_kind);

implementation_kind ::= By_Entry | By_Protected_Procedure | By_Any

This is an Ada 2012 representation pragma which applies to protected, task and synchro-
nized interface primitives. The use of pragma Implemented provides a way to impose a
static requirement on the overriding operation by adhering to one of the three implemen-
tation kinds: entry, protected procedure or any of the above. This pragma is available in
all earlier versions of Ada as an implementation-defined pragma.

type Synch_Iface is synchronized interface;
procedure Prim_Op (Obj : in out Iface) is abstract;
pragma Implemented (Prim_Op, By_Protected_Procedure);

protected type Prot_1 is new Synch_Iface with
procedure Prim_Op; -- Legal

Chapter 2: Implementation Defined Pragmas 37

end Prot_1;

protected type Prot_2 is new Synch_Iface with
entry Prim_Op; -- Illegal

end Prot_2;

task type Task_Typ is new Synch_Iface with
entry Prim_Op; -- Illegal

end Task_Typ;

When applied to the procedure or entry NAME of a requeue statement, pragma Imple-
mented determines the runtime behavior of the requeue. Implementation kind By Entry
guarantees that the action of requeueing will proceed from an entry to another entry. Im-
plementation kind By Protected Procedure transforms the requeue into a dispatching call,
thus eliminating the chance of blocking. Kind By Any shares the behavior of By Entry and
By Protected Procedure depending on the target’s overriding subprogram kind.

2.75 Pragma Implicit Packing

Syntax:
pragma Implicit_Packing;

This is a configuration pragma that requests implicit packing for packed arrays for which
a size clause is given but no explicit pragma Pack or specification of Component Size is
present. It also applies to records where no record representation clause is present. Consider
this example:

type R is array (0 .. 7) of Boolean;
for R’Size use 8;

In accordance with the recommendation in the RM (RM 13.3(53)), a Size clause does not
change the layout of a composite object. So the Size clause in the above example is normally
rejected, since the default layout of the array uses 8-bit components, and thus the array
requires a minimum of 64 bits.
If this declaration is compiled in a region of code covered by an occurrence of the configura-
tion pragma Implicit Packing, then the Size clause in this and similar examples will cause
implicit packing and thus be accepted. For this implicit packing to occur, the type in ques-
tion must be an array of small components whose size is known at compile time, and the Size
clause must specify the exact size that corresponds to the number of elements in the array
multiplied by the size in bits of the component type (both single and multi-dimensioned
arrays can be controlled with this pragma).
Similarly, the following example shows the use in the record case

type r is record
a, b, c, d, e, f, g, h : boolean;
chr : character;

end record;
for r’size use 16;

Without a pragma Pack, each Boolean field requires 8 bits, so the minimum size is 72 bits,
but with a pragma Pack, 16 bits would be sufficient. The use of pragma Implicit Packing
allows this record declaration to compile without an explicit pragma Pack.

Chapter 2: Implementation Defined Pragmas 38

2.76 Pragma Import Function

Syntax:

pragma Import_Function (
[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Result_Type =>] SUBTYPE_MARK]
[, [Mechanism =>] MECHANISM]
[, [Result_Mechanism =>] MECHANISM_NAME]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string_EXPRESSION

PARAMETER_TYPES ::=
null

| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::=
subtype_NAME

| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::=
Value

| Reference

This pragma is used in conjunction with a pragma Import to specify additional informa-
tion for an imported function. The pragma Import (or equivalent pragma Interface) must
precede the Import Function pragma and both must appear in the same declarative part
as the function specification.

The Internal argument must uniquely designate the function to which the pragma applies.
If more than one function name exists of this name in the declarative part you must use the
Parameter Types and Result Type parameters to achieve the required unique designation.
Subtype marks in these parameters must exactly match the subtypes in the corresponding
function specification, using positional notation to match parameters with subtype marks.
The form with an ’Access attribute can be used to match an anonymous access parameter.

You may optionally use the Mechanism and Result Mechanism parameters to specify pass-
ing mechanisms for the parameters and result. If you specify a single mechanism name, it
applies to all parameters. Otherwise you may specify a mechanism on a parameter by pa-

Chapter 2: Implementation Defined Pragmas 39

rameter basis using either positional or named notation. If the mechanism is not specified,
the default mechanism is used.

2.77 Pragma Import Object

Syntax:
pragma Import_Object

[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string_EXPRESSION

This pragma designates an object as imported, and apart from the extended rules for
external symbols, is identical in effect to the use of the normal Import pragma applied
to an object. Unlike the subprogram case, you need not use a separate Import pragma,
although you may do so (and probably should do so from a portability point of view). size
is syntax checked, but otherwise ignored by GNAT.

2.78 Pragma Import Procedure

Syntax:
pragma Import_Procedure (

[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string_EXPRESSION

PARAMETER_TYPES ::=
null

| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::=
subtype_NAME

| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

Chapter 2: Implementation Defined Pragmas 40

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Import Function except that it applies to a procedure rather
than a function and the parameters Result Type and Result Mechanism are not permitted.

2.79 Pragma Import Valued Procedure

Syntax:

pragma Import_Valued_Procedure (
[Internal =>] LOCAL_NAME

[, [External =>] EXTERNAL_SYMBOL]
[, [Parameter_Types =>] PARAMETER_TYPES]
[, [Mechanism =>] MECHANISM]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string_EXPRESSION

PARAMETER_TYPES ::=
null

| TYPE_DESIGNATOR {, TYPE_DESIGNATOR}

TYPE_DESIGNATOR ::=
subtype_NAME

| subtype_Name ’ Access

MECHANISM ::=
MECHANISM_NAME

| (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

MECHANISM_ASSOCIATION ::=
[formal_parameter_NAME =>] MECHANISM_NAME

MECHANISM_NAME ::= Value | Reference

This pragma is identical to Import Procedure except that the first parameter of LO-
CAL NAME, which must be present, must be of mode OUT, and externally the subprogram
is treated as a function with this parameter as the result of the function. The purpose of
this capability is to allow the use of OUT and IN OUT parameters in interfacing to external
functions (which are not permitted in Ada functions). You may optionally use the Mecha-
nism parameters to specify passing mechanisms for the parameters. If you specify a single
mechanism name, it applies to all parameters. Otherwise you may specify a mechanism on a
parameter by parameter basis using either positional or named notation. If the mechanism
is not specified, the default mechanism is used.

Note that it is important to use this pragma in conjunction with a separate pragma Import
that specifies the desired convention, since otherwise the default convention is Ada, which
is almost certainly not what is required.

Chapter 2: Implementation Defined Pragmas 41

2.80 Pragma Independent

Syntax:

pragma Independent (Local_NAME);

This pragma is standard in Ada 2012 mode (which also provides an aspect of the same
name). It is also available as an implementation-defined pragma in all earlier versions. It
specifies that the designated object or all objects of the designated type must be indepen-
dently addressable. This means that separate tasks can safely manipulate such objects. For
example, if two components of a record are independent, then two separate tasks may access
these two components. This may place constraints on the representation of the object (for
instance prohibiting tight packing).

2.81 Pragma Independent Components

Syntax:

pragma Independent_Components (Local_NAME);

This pragma is standard in Ada 2012 mode (which also provides an aspect of the same
name). It is also available as an implementation-defined pragma in all earlier versions. It
specifies that the components of the designated object, or the components of each object of
the designated type, must be independently addressable. This means that separate tasks can
safely manipulate separate components in the composite object. This may place constraints
on the representation of the object (for instance prohibiting tight packing).

2.82 Pragma Initial Condition

Syntax:

pragma Initial_Condition (boolean_EXPRESSION);

For the semantics of this pragma, see the entry for aspect Initial Condition in the SPARK
2014 Reference Manual, section 7.1.6.

2.83 Pragma Initialize Scalars

Syntax:

pragma Initialize_Scalars;

This pragma is similar to Normalize Scalars conceptually but has two important differences.
First, there is no requirement for the pragma to be used uniformly in all units of a partition,
in particular, it is fine to use this just for some or all of the application units of a partition,
without needing to recompile the run-time library.

In the case where some units are compiled with the pragma, and some without, then a
declaration of a variable where the type is defined in package Standard or is locally declared
will always be subject to initialization, as will any declaration of a scalar variable. For
composite variables, whether the variable is initialized may also depend on whether the
package in which the type of the variable is declared is compiled with the pragma.

The other important difference is that you can control the value used for initializing scalar
objects. At bind time, you can select several options for initialization. You can initialize
with invalid values (similar to Normalize Scalars, though for Initialize Scalars it is not

Chapter 2: Implementation Defined Pragmas 42

always possible to determine the invalid values in complex cases like signed component
fields with non-standard sizes). You can also initialize with high or low values, or with a
specified bit pattern. See the GNAT User’s Guide for binder options for specifying these
cases.
This means that you can compile a program, and then without having to recompile the
program, you can run it with different values being used for initializing otherwise uninitial-
ized values, to test if your program behavior depends on the choice. Of course the behavior
should not change, and if it does, then most likely you have an incorrect reference to an
uninitialized value.
It is even possible to change the value at execution time eliminating even the need to rebind
with a different switch using an environment variable. See the GNAT User’s Guide for
details.
Note that pragma Initialize Scalars is particularly useful in conjunction with the enhanced
validity checking that is now provided in GNAT, which checks for invalid values under
more conditions. Using this feature (see description of the -gnatV flag in the GNAT User’s
Guide) in conjunction with pragma Initialize Scalars provides a powerful new tool to assist
in the detection of problems caused by uninitialized variables.
Note: the use of Initialize Scalars has a fairly extensive effect on the generated code. This
may cause your code to be substantially larger. It may also cause an increase in the amount
of stack required, so it is probably a good idea to turn on stack checking (see description
of stack checking in the GNAT User’s Guide) when using this pragma.

2.84 Pragma Initializes

Syntax:
pragma Initializes (INITIALIZATION_LIST);

INITIALIZATION_LIST ::=
null

| (INITIALIZATION_ITEM {, INITIALIZATION_ITEM})

INITIALIZATION_ITEM ::= name [=> INPUT_LIST]

INPUT_LIST ::=
null

| INPUT
| (INPUT {, INPUT})

INPUT ::= name

For the semantics of this pragma, see the entry for aspect Initializes in the SPARK 2014
Reference Manual, section 7.1.5.

2.85 Pragma Inline Always

Syntax:
pragma Inline_Always (NAME [, NAME]);

Chapter 2: Implementation Defined Pragmas 43

Similar to pragma Inline except that inlining is not subject to the use of option -gnatn or
-gnatN and the inlining happens regardless of whether these options are used.

2.86 Pragma Inline Generic

Syntax:
pragma Inline_Generic (GNAME {, GNAME});

GNAME ::= generic_unit_NAME | generic_instance_NAME

This pragma is provided for compatibility with Dec Ada 83. It has no effect in GNAT
(which always inlines generics), other than to check that the given names are all names of
generic units or generic instances.

2.87 Pragma Interface

Syntax:
pragma Interface (

[Convention =>] convention_identifier,
[Entity =>] local_NAME

[, [External_Name =>] static_string_expression]
[, [Link_Name =>] static_string_expression]);

This pragma is identical in syntax and semantics to the standard Ada pragma Import.
It is provided for compatibility with Ada 83. The definition is upwards compatible both
with pragma Interface as defined in the Ada 83 Reference Manual, and also with some
extended implementations of this pragma in certain Ada 83 implementations. The only
difference between pragma Interface and pragma Import is that there is special circuitry
to allow both pragmas to appear for the same subprogram entity (normally it is illegal to
have multiple Import pragmas. This is useful in maintaining Ada 83/Ada 95 compatibility
and is compatible with other Ada 83 compilers.

2.88 Pragma Interface Name

Syntax:
pragma Interface_Name (

[Entity =>] LOCAL_NAME
[, [External_Name =>] static_string_EXPRESSION]
[, [Link_Name =>] static_string_EXPRESSION]);

This pragma provides an alternative way of specifying the interface name for an interfaced
subprogram, and is provided for compatibility with Ada 83 compilers that use the pragma
for this purpose. You must provide at least one of External Name or Link Name.

2.89 Pragma Interrupt Handler

Syntax:
pragma Interrupt_Handler (procedure_LOCAL_NAME);

This program unit pragma is supported for parameterless protected procedures as described
in Annex C of the Ada Reference Manual. On the AAMP target the pragma can also be

Chapter 2: Implementation Defined Pragmas 44

specified for nonprotected parameterless procedures that are declared at the library level
(which includes procedures declared at the top level of a library package). In the case of
AAMP, when this pragma is applied to a nonprotected procedure, the instruction IERET
is generated for returns from the procedure, enabling maskable interrupts, in place of the
normal return instruction.

2.90 Pragma Interrupt State

Syntax:
pragma Interrupt_State
([Name =>] value,
[State =>] SYSTEM | RUNTIME | USER);

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program Error to be raised, as described in RM C.3.2(22). A typical
example is the SIGINT interrupt used in many systems for an Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl-C can be used to interrupt
execution. Additionally, signals such as SIGSEGV, SIGABRT, SIGFPE and SIGILL are
often mapped to specific Ada exceptions, or used to implement run-time functions such as
the abort statement and stack overflow checking.
Pragma Interrupt State provides a general mechanism for overriding such uses of interrupts.
It subsumes the functionality of pragma Unreserve All Interrupts. Pragma Interrupt State
is not available on Windows or VMS. On all other platforms than VxWorks, it applies to
signals; on VxWorks, it applies to vectored hardware interrupts and may be used to mark
interrupts required by the board support package as reserved.
Interrupts can be in one of three states:

* System
The interrupt is reserved (no Ada handler can be installed), and the Ada run-time may
not install a handler. As a result you are guaranteed standard system default action if
this interrupt is raised.

* Runtime
The interrupt is reserved (no Ada handler can be installed). The run time is allowed
to install a handler for internal control purposes, but is not required to do so.

* User
The interrupt is unreserved. The user may install a handler to provide some other
action.

These states are the allowed values of the State parameter of the pragma. The Name
parameter is a value of the type Ada.Interrupts.Interrupt ID. Typically, it is a name declared
in Ada.Interrupts.Names.
This is a configuration pragma, and the binder will check that there are no inconsistencies
between different units in a partition in how a given interrupt is specified. It may appear
anywhere a pragma is legal.
The effect is to move the interrupt to the specified state.
By declaring interrupts to be SYSTEM, you guarantee the standard system action, such as
a core dump.

Chapter 2: Implementation Defined Pragmas 45

By declaring interrupts to be USER, you guarantee that you can install a handler.

Note that certain signals on many operating systems cannot be caught and handled by
applications. In such cases, the pragma is ignored. See the operating system documentation,
or the value of the array Reserved declared in the spec of package System.OS Interface.

Overriding the default state of signals used by the Ada runtime may interfere with an
application’s runtime behavior in the cases of the synchronous signals, and in the case of
the signal used to implement the abort statement.

2.91 Pragma Invariant

Syntax:

pragma Invariant
([Entity =>] private_type_LOCAL_NAME,
[Check =>] EXPRESSION
[,[Message =>] String_Expression]);

This pragma provides exactly the same capabilities as the Type Invariant aspect defined in
AI05-0146-1, and in the Ada 2012 Reference Manual. The Type Invariant aspect is fully
implemented in Ada 2012 mode, but since it requires the use of the aspect syntax, which
is not available except in 2012 mode, it is not possible to use the Type Invariant aspect in
earlier versions of Ada. However the Invariant pragma may be used in any version of Ada.
Also note that the aspect Invariant is a synonym in GNAT for the aspect Type Invariant,
but there is no pragma Type Invariant.

The pragma must appear within the visible part of the package specification, after the type
to which its Entity argument appears. As with the Invariant aspect, the Check expression
is not analyzed until the end of the visible part of the package, so it may contain forward
references. The Message argument, if present, provides the exception message used if the
invariant is violated. If no Message parameter is provided, a default message that identifies
the line on which the pragma appears is used.

It is permissible to have multiple Invariants for the same type entity, in which case they are
and’ed together. It is permissible to use this pragma in Ada 2012 mode, but you cannot
have both an invariant aspect and an invariant pragma for the same entity.

For further details on the use of this pragma, see the Ada 2012 documentation of the
Type Invariant aspect.

2.92 Pragma Keep Names

Syntax:

pragma Keep_Names ([On =>] enumeration_first_subtype_LOCAL_NAME);

The LOCAL NAME argument must refer to an enumeration first subtype in the current
declarative part. The effect is to retain the enumeration literal names for use by Image
and Value even if a global Discard Names pragma applies. This is useful when you want
to generally suppress enumeration literal names and for example you therefore use a Dis-
card Names pragma in the gnat.adc file, but you want to retain the names for specific
enumeration types.

Chapter 2: Implementation Defined Pragmas 46

2.93 Pragma License

Syntax:
pragma License (Unrestricted | GPL | Modified_GPL | Restricted);

This pragma is provided to allow automated checking for appropriate license conditions
with respect to the standard and modified GPL. A pragma License, which is a configuration
pragma that typically appears at the start of a source file or in a separate gnat.adc file,
specifies the licensing conditions of a unit as follows:

* Unrestricted This is used for a unit that can be freely used with no license restrictions.
Examples of such units are public domain units, and units from the Ada Reference
Manual.

* GPL This is used for a unit that is licensed under the unmodified GPL, and which
therefore cannot be with’ed by a restricted unit.

* Modified GPL This is used for a unit licensed under the GNAT modified GPL that
includes a special exception paragraph that specifically permits the inclusion of the
unit in programs without requiring the entire program to be released under the GPL.

* Restricted This is used for a unit that is restricted in that it is not permitted to depend
on units that are licensed under the GPL. Typical examples are proprietary code that
is to be released under more restrictive license conditions. Note that restricted units
are permitted to with units which are licensed under the modified GPL (this is the
whole point of the modified GPL).

Normally a unit with no License pragma is considered to have an unknown license, and no
checking is done. However, standard GNAT headers are recognized, and license information
is derived from them as follows.
A GNAT license header starts with a line containing 78 hyphens. The following comment
text is searched for the appearance of any of the following strings.
If the string ’GNU General Public License’ is found, then the unit is assumed to have GPL
license, unless the string ’As a special exception’ follows, in which case the license is assumed
to be modified GPL.
If one of the strings ’This specification is adapted from the Ada Semantic Interface’ or ’This
specification is derived from the Ada Reference Manual’ is found then the unit is assumed
to be unrestricted.
These default actions means that a program with a restricted license pragma will automat-
ically get warnings if a GPL unit is inappropriately with’ed. For example, the program:

with Sem_Ch3;
with GNAT.Sockets;
procedure Secret_Stuff is

...
end Secret_Stuff

if compiled with pragma License (Restricted) in a gnat.adc file will generate the warning:
1. with Sem_Ch3;

|
>>> license of withed unit "Sem_Ch3" is incompatible

Chapter 2: Implementation Defined Pragmas 47

2. with GNAT.Sockets;
3. procedure Secret_Stuff is

Here we get a warning on Sem Ch3 since it is part of the GNAT compiler and is licensed
under the GPL, but no warning for GNAT.Sockets which is part of the GNAT run time,
and is therefore licensed under the modified GPL.

2.94 Pragma Link With

Syntax:

pragma Link_With (static_string_EXPRESSION {,static_string_EXPRESSION});

This pragma is provided for compatibility with certain Ada 83 compilers. It has exactly
the same effect as pragma Linker Options except that spaces occurring within one of the
string expressions are treated as separators. For example, in the following case:

pragma Link_With ("-labc -ldef");

results in passing the strings -labc and -ldef as two separate arguments to the linker. In
addition pragma Link With allows multiple arguments, with the same effect as successive
pragmas.

2.95 Pragma Linker Alias

Syntax:

pragma Linker_Alias (
[Entity =>] LOCAL_NAME,
[Target =>] static_string_EXPRESSION);

LOCAL NAME must refer to an object that is declared at the library level. This pragma
establishes the given entity as a linker alias for the given target. It is equivalent to

attribute ((alias)) in GNU C and causes LOCAL NAME to be emitted as an alias for
the symbol static string EXPRESSION in the object file, that is to say no space is re-
served for LOCAL NAME by the assembler and it will be resolved to the same address as
static string EXPRESSION by the linker.

The actual linker name for the target must be used (e.g., the fully encoded name with
qualification in Ada, or the mangled name in C++), or it must be declared using the C
convention with pragma Import or pragma Export.

Not all target machines support this pragma. On some of them it is accepted only if pragma
Weak External has been applied to LOCAL NAME.

-- Example of the use of pragma Linker_Alias

package p is
i : Integer := 1;
pragma Export (C, i);

new_name_for_i : Integer;
pragma Linker_Alias (new_name_for_i, "i");

end p;

Chapter 2: Implementation Defined Pragmas 48

2.96 Pragma Linker Constructor

Syntax:
pragma Linker_Constructor (procedure_LOCAL_NAME);

procedure LOCAL NAME must refer to a parameterless procedure that is declared at the
library level. A procedure to which this pragma is applied will be treated as an initialization
routine by the linker. It is equivalent to attribute ((constructor)) in GNU C and causes
procedure LOCAL NAME to be invoked before the entry point of the executable is called
(or immediately after the shared library is loaded if the procedure is linked in a shared
library), in particular before the Ada run-time environment is set up.
Because of these specific contexts, the set of operations such a procedure can perform
is very limited and the type of objects it can manipulate is essentially restricted to the
elementary types. In particular, it must only contain code to which pragma Restrictions
(No Elaboration Code) applies.
This pragma is used by GNAT to implement auto-initialization of shared Stand Alone
Libraries, which provides a related capability without the restrictions listed above. Where
possible, the use of Stand Alone Libraries is preferable to the use of this pragma.

2.97 Pragma Linker Destructor

Syntax:
pragma Linker_Destructor (procedure_LOCAL_NAME);

procedure LOCAL NAME must refer to a parameterless procedure that is declared at the
library level. A procedure to which this pragma is applied will be treated as a finalization
routine by the linker. It is equivalent to attribute ((destructor)) in GNU C and causes
procedure LOCAL NAME to be invoked after the entry point of the executable has exited
(or immediately before the shared library is unloaded if the procedure is linked in a shared
library), in particular after the Ada run-time environment is shut down.
See pragma Linker Constructor for the set of restrictions that apply because of these specific
contexts.

2.98 Pragma Linker Section

Syntax:
pragma Linker_Section (

[Entity =>] LOCAL_NAME,
[Section =>] static_string_EXPRESSION);

LOCAL NAME must refer to an object, type, or subprogram that is declared at the library
level. This pragma specifies the name of the linker section for the given entity. It is
equivalent to attribute ((section)) in GNU C and causes LOCAL NAME to be placed
in the static string EXPRESSION section of the executable (assuming the linker doesn’t
rename the section). GNAT also provides an implementation defined aspect of the same
name.
In the case of specifying this aspect for a type, the effect is to specify the corresponding for
all library level objects of the type which do not have an explicit linker section set. Note
that this only applies to whole objects, not to components of composite objects.

Chapter 2: Implementation Defined Pragmas 49

In the case of a subprogram, the linker section applies to all previously declared matching
overloaded subprograms in the current declarative part which do not already have a linker
section assigned. The linker section aspect is useful in this case for specifying different linker
sections for different elements of such an overloaded set.

Note that an empty string specifies that no linker section is specified. This is not quite the
same as omitting the pragma or aspect, since it can be used to specify that one element
of an overloaded set of subprograms has the default linker section, or that one object of a
type for which a linker section is specified should has the default linker section.

The compiler normally places library-level entities in standard sections depending on the
class: procedures and functions generally go in the .text section, initialized variables in the
.data section and uninitialized variables in the .bss section.

Other, special sections may exist on given target machines to map special hardware, for
example I/O ports or flash memory. This pragma is a means to defer the final layout of the
executable to the linker, thus fully working at the symbolic level with the compiler.

Some file formats do not support arbitrary sections so not all target machines support this
pragma. The use of this pragma may cause a program execution to be erroneous if it is
used to place an entity into an inappropriate section (e.g., a modified variable into the .text
section). See also pragma Persistent BSS.

-- Example of the use of pragma Linker_Section

package IO_Card is
Port_A : Integer;
pragma Volatile (Port_A);
pragma Linker_Section (Port_A, ".bss.port_a");

Port_B : Integer;
pragma Volatile (Port_B);
pragma Linker_Section (Port_B, ".bss.port_b");

type Port_Type is new Integer with Linker_Section => ".bss";
PA : Port_Type with Linker_Section => ".bss.PA";
PB : Port_Type; -- ends up in linker section ".bss"

procedure Q with Linker_Section => "Qsection";
end IO_Card;

2.99 Pragma Lock Free

Syntax: This pragma may be specified for protected types or objects. It specifies that the
implementation of protected operations must be implemented without locks. Compilation
fails if the compiler cannot generate lock-free code for the operations.

2.100 Pragma Loop Invariant

Syntax:

pragma Loop_Invariant (boolean_EXPRESSION);

Chapter 2: Implementation Defined Pragmas 50

The effect of this pragma is similar to that of pragma Assert, except that in an Asser-
tion Policy pragma, the identifier Loop Invariant is used to control whether it is ignored
or checked (or disabled).

Loop Invariant can only appear as one of the items in the sequence of statements of a loop
body, or nested inside block statements that appear in the sequence of statements of a
loop body. The intention is that it be used to represent a "loop invariant" assertion, i.e.
something that is true each time through the loop, and which can be used to show that the
loop is achieving its purpose.

Multiple Loop Invariant and Loop Variant pragmas that apply to the same loop should be
grouped in the same sequence of statements.

To aid in writing such invariants, the special attribute Loop Entry may be used to refer
to the value of an expression on entry to the loop. This attribute can only be used within
the expression of a Loop Invariant pragma. For full details, see documentation of attribute
Loop Entry.

2.101 Pragma Loop Optimize

Syntax:

pragma Loop_Optimize (OPTIMIZATION_HINT {, OPTIMIZATION_HINT});

OPTIMIZATION_HINT ::= Ivdep | No_Unroll | Unroll | No_Vector | Vector

This pragma must appear immediately within a loop statement. It allows the programmer
to specify optimization hints for the enclosing loop. The hints are not mutually exclusive
and can be freely mixed, but not all combinations will yield a sensible outcome.

There are five supported optimization hints for a loop:

* Ivdep

The programmer asserts that there are no loop-carried dependencies which would pre-
vent consecutive iterations of the loop from being executed simultaneously.

* No Unroll

The loop must not be unrolled. This is a strong hint: the compiler will not unroll a
loop marked with this hint.

* Unroll

The loop should be unrolled. This is a weak hint: the compiler will try to apply
unrolling to this loop preferably to other optimizations, notably vectorization, but
there is no guarantee that the loop will be unrolled.

* No Vector

The loop must not be vectorized. This is a strong hint: the compiler will not vectorize
a loop marked with this hint.

* Vector

The loop should be vectorized. This is a weak hint: the compiler will try to apply
vectorization to this loop preferably to other optimizations, notably unrolling, but
there is no guarantee that the loop will be vectorized.

Chapter 2: Implementation Defined Pragmas 51

These hints do not remove the need to pass the appropriate switches to the compiler in
order to enable the relevant optimizations, that is to say -funroll-loops for unrolling and
-ftree-vectorize for vectorization.

2.102 Pragma Loop Variant

Syntax:

pragma Loop_Variant (LOOP_VARIANT_ITEM {, LOOP_VARIANT_ITEM });
LOOP_VARIANT_ITEM ::= CHANGE_DIRECTION => discrete_EXPRESSION
CHANGE_DIRECTION ::= Increases | Decreases

Loop Variant can only appear as one of the items in the sequence of statements of a loop
body, or nested inside block statements that appear in the sequence of statements of a loop
body. It allows the specification of quantities which must always decrease or increase in
successive iterations of the loop. In its simplest form, just one expression is specified, whose
value must increase or decrease on each iteration of the loop.

In a more complex form, multiple arguments can be given which are intepreted in a nesting
lexicographic manner. For example:

pragma Loop_Variant (Increases => X, Decreases => Y);

specifies that each time through the loop either X increases, or X stays the same and Y
decreases. A Loop Variant pragma ensures that the loop is making progress. It can be
useful in helping to show informally or prove formally that the loop always terminates.

Loop Variant is an assertion whose effect can be controlled using an Assertion Policy with
a check name of Loop Variant. The policy can be Check to enable the loop variant check,
Ignore to ignore the check (in which case the pragma has no effect on the program), or
Disable in which case the pragma is not even checked for correct syntax.

Multiple Loop Invariant and Loop Variant pragmas that apply to the same loop should be
grouped in the same sequence of statements.

The Loop Entry attribute may be used within the expressions of the Loop Variant pragma
to refer to values on entry to the loop.

2.103 Pragma Machine Attribute

Syntax:

pragma Machine_Attribute (
[Entity =>] LOCAL_NAME,
[Attribute_Name =>] static_string_EXPRESSION

[, [Info =>] static_EXPRESSION]);

Machine-dependent attributes can be specified for types and/or declarations. This pragma
is semantically equivalent to attribute ((‘attribute name))‘ (if info is not specified) or

attribute ((‘attribute name‘(‘info))) in GNU C, where attribute_name is recognized by
the compiler middle-end or the TARGET ATTRIBUTE TABLE machine specific macro.
A string literal for the optional parameter info is transformed into an identifier, which may
make this pragma unusable for some attributes. For further information see GNU Compiler
Collection (GCC) Internals.

Chapter 2: Implementation Defined Pragmas 52

2.104 Pragma Main

Syntax:

pragma Main
(MAIN_OPTION [, MAIN_OPTION]);

MAIN_OPTION ::=
[Stack_Size =>] static_integer_EXPRESSION

| [Task_Stack_Size_Default =>] static_integer_EXPRESSION
| [Time_Slicing_Enabled =>] static_boolean_EXPRESSION

This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect
in GNAT, other than being syntax checked.

2.105 Pragma Main Storage

Syntax:

pragma Main_Storage
(MAIN_STORAGE_OPTION [, MAIN_STORAGE_OPTION]);

MAIN_STORAGE_OPTION ::=
[WORKING_STORAGE =>] static_SIMPLE_EXPRESSION

| [TOP_GUARD =>] static_SIMPLE_EXPRESSION

This pragma is provided for compatibility with OpenVMS VAX Systems. It has no effect
in GNAT, other than being syntax checked.

2.106 Pragma Max Queue Length

Syntax:

pragma Max_Entry_Queue (static_integer_EXPRESSION);

This pragma is used to specify the maximum callers per entry queue for individual protected
entries and entry families. It accepts a single positive integer as a parameter and must
appear after the declaration of an entry.

2.107 Pragma No Body

Syntax:

pragma No_Body;

There are a number of cases in which a package spec does not require a body, and in fact
a body is not permitted. GNAT will not permit the spec to be compiled if there is a body
around. The pragma No Body allows you to provide a body file, even in a case where no
body is allowed. The body file must contain only comments and a single No Body pragma.
This is recognized by the compiler as indicating that no body is logically present.

This is particularly useful during maintenance when a package is modified in such a way
that a body needed before is no longer needed. The provision of a dummy body with a
No Body pragma ensures that there is no interference from earlier versions of the package
body.

Chapter 2: Implementation Defined Pragmas 53

2.108 Pragma No Elaboration Code All

Syntax:

pragma No_Elaboration_Code_All [(program_unit_NAME)];

This is a program unit pragma (there is also an equivalent aspect of the same name) that
establishes the restriction No Elaboration Code for the current unit and any extended
main source units (body and subunits. It also has has the effect of enforcing a transitive
application of this aspect, so that if any unit is implicitly or explicitly WITH’ed by the
current unit, it must also have the No Elaboration Code All aspect set. It may be applied
to package or subprogram specs or their generic versions.

2.109 Pragma No Inline

Syntax:

pragma No_Inline (NAME {, NAME});

This pragma suppresses inlining for the callable entity or the instances of the generic sub-
program designated by NAME, including inlining that results from the use of pragma Inline.
This pragma is always active, in particular it is not subject to the use of option -gnatn or
-gnatN. It is illegal to specify both pragma No Inline and pragma Inline Always for the
same NAME.

2.110 Pragma No Return

Syntax:

pragma No_Return (procedure_LOCAL_NAME {, procedure_LOCAL_NAME});

Each procedure LOCAL NAME argument must refer to one or more procedure declarations
in the current declarative part. A procedure to which this pragma is applied may not contain
any explicit return statements. In addition, if the procedure contains any implicit returns
from falling off the end of a statement sequence, then execution of that implicit return will
cause Program Error to be raised.

One use of this pragma is to identify procedures whose only purpose is to raise an exception.
Another use of this pragma is to suppress incorrect warnings about missing returns in
functions, where the last statement of a function statement sequence is a call to such a
procedure.

Note that in Ada 2005 mode, this pragma is part of the language. It is available in all
earlier versions of Ada as an implementation-defined pragma.

2.111 Pragma No Run Time

Syntax:

pragma No_Run_Time;

This is an obsolete configuration pragma that historically was used to set up a runtime
library with no object code. It is now used only for internal testing. The pragma has been
superseded by the reconfigurable runtime capability of GNAT.

Chapter 2: Implementation Defined Pragmas 54

2.112 Pragma No Strict Aliasing

Syntax:
pragma No_Strict_Aliasing [([Entity =>] type_LOCAL_NAME)];

type LOCAL NAME must refer to an access type declaration in the current declarative
part. The effect is to inhibit strict aliasing optimization for the given type. The form with
no arguments is a configuration pragma which applies to all access types declared in units
to which the pragma applies. For a detailed description of the strict aliasing optimization,
and the situations in which it must be suppressed, see the section on Optimization and
Strict Aliasing in the GNAT User’s Guide.
This pragma currently has no effects on access to unconstrained array types.

2.113 Pragma No Tagged Streams

Syntax:
pragma No_Tagged_Streams;
pragma No_Tagged_Streams [([Entity =>] tagged_type_LOCAL_NAME)];

Normally when a tagged type is introduced using a full type declaration, part of the process-
ing includes generating stream access routines to be used by stream attributes referencing
the type (or one of its subtypes or derived types). This can involve the generation of signif-
icant amounts of code which is wasted space if stream routines are not needed for the type
in question.
The No Tagged Streams pragma causes the generation of these stream routines to be
skipped, and any attempt to use stream operations on types subject to this pragma will be
statically rejected as illegal.
There are two forms of the pragma. The form with no arguments must appear in a declar-
ative sequence or in the declarations of a package spec. This pragma affects all subsequent
root tagged types declared in the declaration sequence, and specifies that no stream routines
be generated. The form with an argument (for which there is also a corresponding aspect)
specifies a single root tagged type for which stream routines are not to be generated.
Once the pragma has been given for a particular root tagged type, all subtypes and derived
types of this type inherit the pragma automatically, so the effect applies to a complete
hierarchy (this is necessary to deal with the class-wide dispatching versions of the stream
routines).

2.114 Pragma Normalize Scalars

Syntax:
pragma Normalize_Scalars;

This is a language defined pragma which is fully implemented in GNAT. The effect is to
cause all scalar objects that are not otherwise initialized to be initialized. The initial values
are implementation dependent and are as follows:

Standard.Character
Objects whose root type is Standard.Character are initialized to Character’Last
unless the subtype range excludes NUL (in which case NUL is used). This choice
will always generate an invalid value if one exists.

Chapter 2: Implementation Defined Pragmas 55

Standard.Wide Character
Objects whose root type is Standard.Wide Character are initialized to
Wide Character’Last unless the subtype range excludes NUL (in which case
NUL is used). This choice will always generate an invalid value if one exists.

Standard.Wide Wide Character
Objects whose root type is Standard.Wide Wide Character are initialized to
the invalid value 16#FFFF FFFF# unless the subtype range excludes NUL
(in which case NUL is used). This choice will always generate an invalid value
if one exists.

Integer types
Objects of an integer type are treated differently depending on whether negative
values are present in the subtype. If no negative values are present, then all one
bits is used as the initial value except in the special case where zero is excluded
from the subtype, in which case all zero bits are used. This choice will always
generate an invalid value if one exists.
For subtypes with negative values present, the largest negative number is used,
except in the unusual case where this largest negative number is in the subtype,
and the largest positive number is not, in which case the largest positive value
is used. This choice will always generate an invalid value if one exists.

Floating-Point Types
Objects of all floating-point types are initialized to all 1-bits. For standard
IEEE format, this corresponds to a NaN (not a number) which is indeed an
invalid value.

Fixed-Point Types
Objects of all fixed-point types are treated as described above for integers,
with the rules applying to the underlying integer value used to represent the
fixed-point value.

Modular types
Objects of a modular type are initialized to all one bits, except in the special
case where zero is excluded from the subtype, in which case all zero bits are
used. This choice will always generate an invalid value if one exists.

Enumeration types
Objects of an enumeration type are initialized to all one-bits, i.e., to the value
2 ** typ’Size - 1 unless the subtype excludes the literal whose Pos value is zero,
in which case a code of zero is used. This choice will always generate an invalid
value if one exists.

2.115 Pragma Obsolescent

Syntax:
pragma Obsolescent;

pragma Obsolescent (
[Message =>] static_string_EXPRESSION

Chapter 2: Implementation Defined Pragmas 56

[,[Version =>] Ada_05]]);

pragma Obsolescent (
[Entity =>] NAME

[,[Message =>] static_string_EXPRESSION
[,[Version =>] Ada_05]]);

This pragma can occur immediately following a declaration of an entity, including the case
of a record component. If no Entity argument is present, then this declaration is the one
to which the pragma applies. If an Entity parameter is present, it must either match the
name of the entity in this declaration, or alternatively, the pragma can immediately follow
an enumeration type declaration, where the Entity argument names one of the enumeration
literals.

This pragma is used to indicate that the named entity is considered obsolescent and should
not be used. Typically this is used when an API must be modified by eventually remov-
ing or modifying existing subprograms or other entities. The pragma can be used at an
intermediate stage when the entity is still present, but will be removed later.

The effect of this pragma is to output a warning message on a reference to an entity thus
marked that the subprogram is obsolescent if the appropriate warning option in the compiler
is activated. If the Message parameter is present, then a second warning message is given
containing this text. In addition, a reference to the entity is considered to be a violation of
pragma Restrictions (No Obsolescent Features).

This pragma can also be used as a program unit pragma for a package, in which case the
entity name is the name of the package, and the pragma indicates that the entire package is
considered obsolescent. In this case a client with’ing such a package violates the restriction,
and the with statement is flagged with warnings if the warning option is set.

If the Version parameter is present (which must be exactly the identifier Ada 05, no other
argument is allowed), then the indication of obsolescence applies only when compiling in
Ada 2005 mode. This is primarily intended for dealing with the situations in the predefined
library where subprograms or packages have become defined as obsolescent in Ada 2005
(e.g., in Ada.Characters.Handling), but may be used anywhere.

The following examples show typical uses of this pragma:

package p is
pragma Obsolescent (p, Message => "use pp instead of p");

end p;

package q is
procedure q2;
pragma Obsolescent ("use q2new instead");

type R is new integer;
pragma Obsolescent
(Entity => R,
Message => "use RR in Ada 2005",
Version => Ada_05);

Chapter 2: Implementation Defined Pragmas 57

type M is record
F1 : Integer;
F2 : Integer;
pragma Obsolescent;
F3 : Integer;

end record;

type E is (a, bc, ’d’, quack);
pragma Obsolescent (Entity => bc)
pragma Obsolescent (Entity => ’d’)

function "+"
(a, b : character) return character;

pragma Obsolescent (Entity => "+");
end;

Note that, as for all pragmas, if you use a pragma argument identifier, then all subsequent
parameters must also use a pragma argument identifier. So if you specify "Entity =>" for
the Entity argument, and a Message argument is present, it must be preceded by "Message
=>".

2.116 Pragma Optimize Alignment

Syntax:
pragma Optimize_Alignment (TIME | SPACE | OFF);

This is a configuration pragma which affects the choice of default alignments for types
and objects where no alignment is explicitly specified. There is a time/space trade-off
in the selection of these values. Large alignments result in more efficient code, at the
expense of larger data space, since sizes have to be increased to match these alignments.
Smaller alignments save space, but the access code is slower. The normal choice of default
alignments for types and individual alignment promotions for objects (which is what you
get if you do not use this pragma, or if you use an argument of OFF), tries to balance these
two requirements.
Specifying SPACE causes smaller default alignments to be chosen in two cases. First any
packed record is given an alignment of 1. Second, if a size is given for the type, then the
alignment is chosen to avoid increasing this size. For example, consider:

type R is record
X : Integer;
Y : Character;

end record;

for R’Size use 5*8;

In the default mode, this type gets an alignment of 4, so that access to the Integer field X
are efficient. But this means that objects of the type end up with a size of 8 bytes. This
is a valid choice, since sizes of objects are allowed to be bigger than the size of the type,
but it can waste space if for example fields of type R appear in an enclosing record. If the
above type is compiled in Optimize Alignment (Space) mode, the alignment is set to 1.

Chapter 2: Implementation Defined Pragmas 58

However, there is one case in which SPACE is ignored. If a variable length record (that
is a discriminated record with a component which is an array whose length depends on a
discriminant), has a pragma Pack, then it is not in general possible to set the alignment of
such a record to one, so the pragma is ignored in this case (with a warning).

Specifying SPACE also disables alignment promotions for standalone objects, which oc-
cur when the compiler increases the alignment of a specific object without changing the
alignment of its type.

Specifying TIME causes larger default alignments to be chosen in the case of small types
with sizes that are not a power of 2. For example, consider:

type R is record
A : Character;
B : Character;
C : Boolean;

end record;

pragma Pack (R);
for R’Size use 17;

The default alignment for this record is normally 1, but if this type is compiled in Opti-
mize Alignment (Time) mode, then the alignment is set to 4, which wastes space for objects
of the type, since they are now 4 bytes long, but results in more efficient access when the
whole record is referenced.

As noted above, this is a configuration pragma, and there is a requirement that all units in
a partition be compiled with a consistent setting of the optimization setting. This would
normally be achieved by use of a configuration pragma file containing the appropriate
setting. The exception to this rule is that units with an explicit configuration pragma in
the same file as the source unit are excluded from the consistency check, as are all predefined
units. The latter are compiled by default in pragma Optimize Alignment (Off) mode if no
pragma appears at the start of the file.

2.117 Pragma Ordered

Syntax:

pragma Ordered (enumeration_first_subtype_LOCAL_NAME);

Most enumeration types are from a conceptual point of view unordered. For example,
consider:

type Color is (Red, Blue, Green, Yellow);

By Ada semantics Blue > Red and Green > Blue, but really these relations make no sense;
the enumeration type merely specifies a set of possible colors, and the order is unimportant.

For unordered enumeration types, it is generally a good idea if clients avoid comparisons
(other than equality or inequality) and explicit ranges. (A client is a unit where the type is
referenced, other than the unit where the type is declared, its body, and its subunits.) For
example, if code buried in some client says:

if Current_Color < Yellow then ...
if Current_Color in Blue .. Green then ...

Chapter 2: Implementation Defined Pragmas 59

then the client code is relying on the order, which is undesirable. It makes the code hard to
read and creates maintenance difficulties if entries have to be added to the enumeration type.
Instead, the code in the client should list the possibilities, or an appropriate subtype should
be declared in the unit that declares the original enumeration type. E.g., the following
subtype could be declared along with the type Color:

subtype RBG is Color range Red .. Green;

and then the client could write:
if Current_Color in RBG then ...
if Current_Color = Blue or Current_Color = Green then ...

However, some enumeration types are legitimately ordered from a conceptual point of view.
For example, if you declare:

type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

then the ordering imposed by the language is reasonable, and clients can depend on it,
writing for example:

if D in Mon .. Fri then ...
if D < Wed then ...

The pragma Ordered is provided to mark enumeration types that are conceptually ordered,
alerting the reader that clients may depend on the ordering. GNAT provides a pragma to
mark enumerations as ordered rather than one to mark them as unordered, since in our
experience, the great majority of enumeration types are conceptually unordered.
The types Boolean, Character, Wide Character, and Wide Wide Character are considered
to be ordered types, so each is declared with a pragma Ordered in package Standard.
Normally pragma Ordered serves only as documentation and a guide for coding standards,
but GNAT provides a warning switch -gnatw.u that requests warnings for inappropriate
uses (comparisons and explicit subranges) for unordered types. If this switch is used, then
any enumeration type not marked with pragma Ordered will be considered as unordered,
and will generate warnings for inappropriate uses.
Note that generic types are not considered ordered or unordered (since the template can be
instantiated for both cases), so we never generate warnings for the case of generic enumer-
ated types.
For additional information please refer to the description of the -gnatw.u switch in the
GNAT User’s Guide.

2.118 Pragma Overflow Mode

Syntax:
pragma Overflow_Mode
([General =>] MODE
[,[Assertions =>] MODE]);

MODE ::= STRICT | MINIMIZED | ELIMINATED

This pragma sets the current overflow mode to the given setting. For details of the meaning
of these modes, please refer to the ’Overflow Check Handling in GNAT’ appendix in the
GNAT User’s Guide. If only the General parameter is present, the given mode applies to

Chapter 2: Implementation Defined Pragmas 60

all expressions. If both parameters are present, the General mode applies to expressions
outside assertions, and the Eliminated mode applies to expressions within assertions.

The case of the MODE parameter is ignored, so MINIMIZED, Minimized and minimized
all have the same effect.

The Overflow Mode pragma has the same scoping and placement rules as pragma Suppress,
so it can occur either as a configuration pragma, specifying a default for the whole program,
or in a declarative scope, where it applies to the remaining declarations and statements in
that scope.

The pragma Suppress (Overflow Check) suppresses overflow checking, but does not affect
the overflow mode.

The pragma Unsuppress (Overflow Check) unsuppresses (enables) overflow checking, but
does not affect the overflow mode.

2.119 Pragma Overriding Renamings

Syntax:

pragma Overriding_Renamings;

This is a GNAT configuration pragma to simplify porting legacy code accepted by the
Rational Ada compiler. In the presence of this pragma, a renaming declaration that renames
an inherited operation declared in the same scope is legal if selected notation is used as in:

pragma Overriding_Renamings;
...
package R is

function F (..);
...
function F (..) renames R.F;

end R;

even though RM 8.3 (15) stipulates that an overridden operation is not visible within the
declaration of the overriding operation.

2.120 Pragma Partition Elaboration Policy

Syntax:

pragma Partition_Elaboration_Policy (POLICY_IDENTIFIER);

POLICY_IDENTIFIER ::= Concurrent | Sequential

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.121 Pragma Part Of

Syntax:

pragma Part_Of (ABSTRACT_STATE);

ABSTRACT_STATE ::= NAME

Chapter 2: Implementation Defined Pragmas 61

For the semantics of this pragma, see the entry for aspect Part Of in the SPARK 2014
Reference Manual, section 7.2.6.

2.122 Pragma Passive

Syntax:

pragma Passive [(Semaphore | No)];

Syntax checked, but otherwise ignored by GNAT. This is recognized for compatibility with
DEC Ada 83 implementations, where it is used within a task definition to request that a
task be made passive. If the argument Semaphore is present, or the argument is omitted,
then DEC Ada 83 treats the pragma as an assertion that the containing task is passive and
that optimization of context switch with this task is permitted and desired. If the argument
No is present, the task must not be optimized. GNAT does not attempt to optimize any
tasks in this manner (since protected objects are available in place of passive tasks).

For more information on the subject of passive tasks, see the section ’Passive Task Opti-
mization’ in the GNAT Users Guide.

2.123 Pragma Persistent BSS

Syntax:

pragma Persistent_BSS [(LOCAL_NAME)]

This pragma allows selected objects to be placed in the .persistent bss section. On some
targets the linker and loader provide for special treatment of this section, allowing a program
to be reloaded without affecting the contents of this data (hence the name persistent).

There are two forms of usage. If an argument is given, it must be the local name of a library
level object, with no explicit initialization and whose type is potentially persistent. If no
argument is given, then the pragma is a configuration pragma, and applies to all library
level objects with no explicit initialization of potentially persistent types.

A potentially persistent type is a scalar type, or an untagged, non-discriminated record,
all of whose components have no explicit initialization and are themselves of a potentially
persistent type, or an array, all of whose constraints are static, and whose component type
is potentially persistent.

If this pragma is used on a target where this feature is not supported, then the pragma will
be ignored. See also pragma Linker Section.

2.124 Pragma Polling

Syntax:

pragma Polling (ON | OFF);

This pragma controls the generation of polling code. This is normally off. If pragma Polling
(ON) is used then periodic calls are generated to the routine Ada.Exceptions.Poll. This
routine is a separate unit in the runtime library, and can be found in file a-excpol.adb.

Pragma Polling can appear as a configuration pragma (for example it can be placed in the
gnat.adc file) to enable polling globally, or it can be used in the statement or declaration
sequence to control polling more locally.

Chapter 2: Implementation Defined Pragmas 62

A call to the polling routine is generated at the start of every loop and at the start of every
subprogram call. This guarantees that the Poll routine is called frequently, and places an
upper bound (determined by the complexity of the code) on the period between two Poll
calls.

The primary purpose of the polling interface is to enable asynchronous aborts on targets
that cannot otherwise support it (for example Windows NT), but it may be used for any
other purpose requiring periodic polling. The standard version is null, and can be replaced
by a user program. This will require re-compilation of the Ada.Exceptions package that
can be found in files a-except.ads and a-except.adb.

A standard alternative unit (in file 4wexcpol.adb in the standard GNAT distribution) is
used to enable the asynchronous abort capability on targets that do not normally support
the capability. The version of Poll in this file makes a call to the appropriate runtime
routine to test for an abort condition.

Note that polling can also be enabled by use of the -gnatP switch. See the section on
switches for gcc in the GNAT User’s Guide.

2.125 Pragma Post

Syntax:

pragma Post (Boolean_Expression);

The Post pragma is intended to be an exact replacement for the language-defined Post as-
pect, and shares its restrictions and semantics. It must appear either immediately following
the corresponding subprogram declaration (only other pragmas may intervene), or if there
is no separate subprogram declaration, then it can appear at the start of the declarations
in a subprogram body (preceded only by other pragmas).

2.126 Pragma Postcondition

Syntax:

pragma Postcondition (
[Check =>] Boolean_Expression

[,[Message =>] String_Expression]);

The Postcondition pragma allows specification of automatic postcondition checks for sub-
programs. These checks are similar to assertions, but are automatically inserted just prior to
the return statements of the subprogram with which they are associated (including implicit
returns at the end of procedure bodies and associated exception handlers).

In addition, the boolean expression which is the condition which must be true may contain
references to function’Result in the case of a function to refer to the returned value.

Postcondition pragmas may appear either immediately following the (separate) declaration
of a subprogram, or at the start of the declarations of a subprogram body. Only other
pragmas may intervene (that is appear between the subprogram declaration and its post-
conditions, or appear before the postcondition in the declaration sequence in a subprogram
body). In the case of a postcondition appearing after a subprogram declaration, the for-
mal arguments of the subprogram are visible, and can be referenced in the postcondition
expressions.

Chapter 2: Implementation Defined Pragmas 63

The postconditions are collected and automatically tested just before any return (implicit
or explicit) in the subprogram body. A postcondition is only recognized if postconditions
are active at the time the pragma is encountered. The compiler switch gnata turns on all
postconditions by default, and pragma Check Policy with an identifier of Postcondition can
also be used to control whether postconditions are active.

The general approach is that postconditions are placed in the spec if they represent func-
tional aspects which make sense to the client. For example we might have:

function Direction return Integer;
pragma Postcondition
(Direction’Result = +1

or else
Direction’Result = -1);

which serves to document that the result must be +1 or -1, and will test that this is the
case at run time if postcondition checking is active.

Postconditions within the subprogram body can be used to check that some internal aspect
of the implementation, not visible to the client, is operating as expected. For instance if a
square root routine keeps an internal counter of the number of times it is called, then we
might have the following postcondition:

Sqrt_Calls : Natural := 0;

function Sqrt (Arg : Float) return Float is
pragma Postcondition
(Sqrt_Calls = Sqrt_Calls’Old + 1);

...
end Sqrt

As this example, shows, the use of the Old attribute is often useful in postconditions to
refer to the state on entry to the subprogram.

Note that postconditions are only checked on normal returns from the subprogram. If an
abnormal return results from raising an exception, then the postconditions are not checked.

If a postcondition fails, then the exception System.Assertions.Assert Failure is raised. If a
message argument was supplied, then the given string will be used as the exception message.
If no message argument was supplied, then the default message has the form "Postcondition
failed at file name:line". The exception is raised in the context of the subprogram body, so
it is possible to catch postcondition failures within the subprogram body itself.

Within a package spec, normal visibility rules in Ada would prevent forward references
within a postcondition pragma to functions defined later in the same package. This would
introduce undesirable ordering constraints. To avoid this problem, all postcondition prag-
mas are analyzed at the end of the package spec, allowing forward references.

The following example shows that this even allows mutually recursive postconditions as in:

package Parity_Functions is
function Odd (X : Natural) return Boolean;
pragma Postcondition
(Odd’Result =

(x = 1

Chapter 2: Implementation Defined Pragmas 64

or else
(x /= 0 and then Even (X - 1))));

function Even (X : Natural) return Boolean;
pragma Postcondition
(Even’Result =

(x = 0
or else

(x /= 1 and then Odd (X - 1))));

end Parity_Functions;

There are no restrictions on the complexity or form of conditions used within Postcondi-
tion pragmas. The following example shows that it is even possible to verify performance
behavior.

package Sort is

Performance : constant Float;
-- Performance constant set by implementation
-- to match target architecture behavior.

procedure Treesort (Arg : String);
-- Sorts characters of argument using N*logN sort
pragma Postcondition
(Float (Clock - Clock’Old) <=

Float (Arg’Length) *
log (Float (Arg’Length)) *
Performance);

end Sort;

Note: postcondition pragmas associated with subprograms that are marked as
Inline Always, or those marked as Inline with front-end inlining (-gnatN option set)
are accepted and legality-checked by the compiler, but are ignored at run-time even if
postcondition checking is enabled.
Note that pragma Postcondition differs from the language-defined Post aspect (and corre-
sponding Post pragma) in allowing multiple occurrences, allowing occurences in the body
even if there is a separate spec, and allowing a second string parameter, and the use of
the pragma identifier Check. Historically, pragma Postcondition was implemented prior to
the development of Ada 2012, and has been retained in its original form for compatibility
purposes.

2.127 Pragma Post Class

Syntax:
pragma Post_Class (Boolean_Expression);

The Post Class pragma is intended to be an exact replacement for the language-defined
Post’Class aspect, and shares its restrictions and semantics. It must appear either im-
mediately following the corresponding subprogram declaration (only other pragmas may

Chapter 2: Implementation Defined Pragmas 65

intervene), or if there is no separate subprogram declaration, then it can appear at the start
of the declarations in a subprogram body (preceded only by other pragmas).
Note: This pragma is called Post Class rather than Post’Class because the latter would not
be strictly conforming to the allowed syntax for pragmas. The motivation for provinding
pragmas equivalent to the aspects is to allow a program to be written using the pragmas,
and then compiled if necessary using an Ada compiler that does not recognize the pragmas
or aspects, but is prepared to ignore the pragmas. The assertion policy that controls this
pragma is Post’Class, not Post Class.

2.128 Pragma Rename Pragma

Syntax:
pragma Rename_Pragma (

[New_Name =>] IDENTIFIER,
[Renamed =>] pragma_IDENTIFIER);

This pragma provides a mechanism for supplying new names for existing pragmas. The
New Name identifier can subsequently be used as a synonym for the Renamed pragma. For
example, suppose you have code that was originally developed on a compiler that supports
Inline Only as an implementation defined pragma. And suppose the semantics of pragma
Inline Only are identical to (or at least very similar to) the GNAT implementation defined
pragma Inline Always. You could globally replace Inline Only with Inline Always.
However, to avoid that source modification, you could instead add a configuration pragma:

pragma Rename_Pragma (
New_Name => Inline_Only,
Renamed => Inline_Always);

Then GNAT will treat "pragma Inline Only ..." as if you had written "pragma
Inline Always ...".
Pragma Inline Only will not necessarily mean the same thing as the other Ada compiler;
it’s up to you to make sure the semantics are close enough.

2.129 Pragma Pre

Syntax:
pragma Pre (Boolean_Expression);

The Pre pragma is intended to be an exact replacement for the language-defined Pre aspect,
and shares its restrictions and semantics. It must appear either immediately following the
corresponding subprogram declaration (only other pragmas may intervene), or if there is
no separate subprogram declaration, then it can appear at the start of the declarations in
a subprogram body (preceded only by other pragmas).

2.130 Pragma Precondition

Syntax:
pragma Precondition (

[Check =>] Boolean_Expression
[,[Message =>] String_Expression]);

Chapter 2: Implementation Defined Pragmas 66

The Precondition pragma is similar to Postcondition except that the corresponding checks
take place immediately upon entry to the subprogram, and if a precondition fails, the
exception is raised in the context of the caller, and the attribute ’Result cannot be used
within the precondition expression.
Otherwise, the placement and visibility rules are identical to those described for postcon-
ditions. The following is an example of use within a package spec:

package Math_Functions is
...
function Sqrt (Arg : Float) return Float;
pragma Precondition (Arg >= 0.0)
...

end Math_Functions;

Precondition pragmas may appear either immediately following the (separate) declaration of
a subprogram, or at the start of the declarations of a subprogram body. Only other pragmas
may intervene (that is appear between the subprogram declaration and its postconditions,
or appear before the postcondition in the declaration sequence in a subprogram body).
Note: precondition pragmas associated with subprograms that are marked as Inline Always,
or those marked as Inline with front-end inlining (-gnatN option set) are accepted and
legality-checked by the compiler, but are ignored at run-time even if precondition checking
is enabled.
Note that pragma Precondition differs from the language-defined Pre aspect (and corre-
sponding Pre pragma) in allowing multiple occurrences, allowing occurences in the body
even if there is a separate spec, and allowing a second string parameter, and the use of
the pragma identifier Check. Historically, pragma Precondition was implemented prior to
the development of Ada 2012, and has been retained in its original form for compatibility
purposes.

2.131 Pragma Predicate

Syntax:
pragma Predicate

([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);

This pragma (available in all versions of Ada in GNAT) encompasses both the
Static Predicate and Dynamic Predicate aspects in Ada 2012. A predicate is regarded
as static if it has an allowed form for Static Predicate and is otherwise treated as a
Dynamic Predicate. Otherwise, predicates specified by this pragma behave exactly as
described in the Ada 2012 reference manual. For example, if we have

type R is range 1 .. 10;
subtype S is R;
pragma Predicate (Entity => S, Check => S not in 4 .. 6);
subtype Q is R
pragma Predicate (Entity => Q, Check => F(Q) or G(Q));

the effect is identical to the following Ada 2012 code:
type R is range 1 .. 10;

Chapter 2: Implementation Defined Pragmas 67

subtype S is R with
Static_Predicate => S not in 4 .. 6;

subtype Q is R with
Dynamic_Predicate => F(Q) or G(Q);

Note that there are no pragmas Dynamic Predicate or Static Predicate. That is because
these pragmas would affect legality and semantics of the program and thus do not have
a neutral effect if ignored. The motivation behind providing pragmas equivalent to corre-
sponding aspects is to allow a program to be written using the pragmas, and then compiled
with a compiler that will ignore the pragmas. That doesn’t work in the case of static and
dynamic predicates, since if the corresponding pragmas are ignored, then the behavior of
the program is fundamentally changed (for example a membership test A in B would not
take into account a predicate defined for subtype B). When following this approach, the use
of predicates should be avoided.

2.132 Pragma Predicate Failure

Syntax:

pragma Predicate_Failure
([Entity =>] type_LOCAL_NAME,
[Message =>] String_Expression);

The Predicate Failure pragma is intended to be an exact replacement for the language-
defined Predicate Failure aspect, and shares its restrictions and semantics.

2.133 Pragma Preelaborable Initialization

Syntax:

pragma Preelaborable_Initialization (DIRECT_NAME);

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.134 Pragma Prefix Exception Messages

Syntax:

pragma Prefix_Exception_Messages;

This is an implementation-defined configuration pragma that affects the behavior of raise
statements with a message given as a static string constant (typically a string literal). In
such cases, the string will be automatically prefixed by the name of the enclosing entity
(giving the package and subprogram containing the raise statement). This helps to identify
where messages are coming from, and this mode is automatic for the run-time library.

The pragma has no effect if the message is computed with an expression other than a
static string constant, since the assumption in this case is that the program computes
exactly the string it wants. If you still want the prefixing in this case, you can always call
GNAT.Source Info.Enclosing Entity and prepend the string manually.

Chapter 2: Implementation Defined Pragmas 68

2.135 Pragma Pre Class

Syntax:
pragma Pre_Class (Boolean_Expression);

The Pre Class pragma is intended to be an exact replacement for the language-defined
Pre’Class aspect, and shares its restrictions and semantics. It must appear either im-
mediately following the corresponding subprogram declaration (only other pragmas may
intervene), or if there is no separate subprogram declaration, then it can appear at the start
of the declarations in a subprogram body (preceded only by other pragmas).
Note: This pragma is called Pre Class rather than Pre’Class because the latter would not
be strictly conforming to the allowed syntax for pragmas. The motivation for providing
pragmas equivalent to the aspects is to allow a program to be written using the pragmas,
and then compiled if necessary using an Ada compiler that does not recognize the pragmas
or aspects, but is prepared to ignore the pragmas. The assertion policy that controls this
pragma is Pre’Class, not Pre Class.

2.136 Pragma Priority Specific Dispatching

Syntax:
pragma Priority_Specific_Dispatching (

POLICY_IDENTIFIER,
first_priority_EXPRESSION,
last_priority_EXPRESSION)

POLICY_IDENTIFIER ::=
EDF_Across_Priorities |
FIFO_Within_Priorities |
Non_Preemptive_Within_Priorities |
Round_Robin_Within_Priorities

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.137 Pragma Profile

Syntax:
pragma Profile (Ravenscar | Restricted | Rational | GNAT_Extended_Ravenscar);

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as
an implementation-defined pragma. This is a configuration pragma that establishes a
set of configuration pragmas that depend on the argument. Ravenscar is standard in
Ada 2005. The other possibilities (Restricted, Rational, GNAT Extended Ravenscar) are
implementation-defined. The set of configuration pragmas is defined in the following sec-
tions.

* Pragma Profile (Ravenscar)
The Ravenscar profile is standard in Ada 2005, but is available in all earlier versions
of Ada as an implementation-defined pragma. This profile establishes the following set
of configuration pragmas:

Chapter 2: Implementation Defined Pragmas 69

* Task_Dispatching_Policy (FIFO_Within_Priorities)

[RM D.2.2] Tasks are dispatched following a preemptive priority-ordered scheduling
policy.

* Locking_Policy (Ceiling_Locking)

[RM D.3] While tasks and interrupts execute a protected action, they inherit the
ceiling priority of the corresponding protected object.

* Detect_Blocking

This pragma forces the detection of potentially blocking operations within a pro-
tected operation, and to raise Program Error if that happens.

plus the following set of restrictions:
* Max_Entry_Queue_Length => 1

No task can be queued on a protected entry.
* Max_Protected_Entries => 1

* Max_Task_Entries => 0

No rendezvous statements are allowed.
* No_Abort_Statements

* No_Dynamic_Attachment

* No_Dynamic_Priorities

* No_Implicit_Heap_Allocations

* No_Local_Protected_Objects

* No_Local_Timing_Events

* No_Protected_Type_Allocators

* No_Relative_Delay

* No_Requeue_Statements

* No_Select_Statements

* No_Specific_Termination_Handlers

* No_Task_Allocators

* No_Task_Hierarchy

* No_Task_Termination

* Simple_Barriers

The Ravenscar profile also includes the following restrictions that specify that there
are no semantic dependences on the corresponding predefined packages:

* No_Dependence => Ada.Asynchronous_Task_Control

* No_Dependence => Ada.Calendar

* No_Dependence => Ada.Execution_Time.Group_Budget

* No_Dependence => Ada.Execution_Time.Timers

* No_Dependence => Ada.Task_Attributes

* No_Dependence => System.Multiprocessors.Dispatching_Domains

Chapter 2: Implementation Defined Pragmas 70

This set of configuration pragmas and restrictions correspond to the definition of the
’Ravenscar Profile’ for limited tasking, devised and published by the International
Real-Time Ada Workshop, 1997. A description is also available at http://www-
users.cs.york.ac.uk/~burns/ravenscar.ps.
The original definition of the profile was revised at subsequent IRTAW
meetings. It has been included in the ISO Guide for the Use of the Ada
Programming Language in High Integrity Systems, and was made part of
the Ada 2005 standard. The formal definition given by the Ada Rapporteur
Group (ARG) can be found in two Ada Issues (AI-249 and AI-305) available
at http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00249.txt and
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-00305.txt.
The above set is a superset of the restrictions provided by pragma Profile
(Restricted), it includes six additional restrictions (Simple_Barriers, No_Select_
Statements, No_Calendar, No_Implicit_Heap_Allocations, No_Relative_Delay
and No_Task_Termination). This means that pragma Profile (Ravenscar), like the
pragma Profile (Restricted), automatically causes the use of a simplified, more
efficient version of the tasking run-time library.

* Pragma Profile (GNAT Extended Ravenscar)
This profile corresponds to a GNAT specific extension of the Ravenscar profile. The
profile may change in the future although only in a compatible way: some restrictions
may be removed or relaxed. It is defined as a variation of the Ravenscar profile.
The No_Implicit_Heap_Allocations restriction has been replaced by No_Implicit_
Task_Allocations and No_Implicit_Protected_Object_Allocations.
The Simple_Barriers restriction has been replaced by Pure_Barriers.
The Max_Protected_Entries, Max_Entry_Queue_Length, and No_Relative_Delay
restrictions have been removed.

* Pragma Profile (Restricted)
This profile corresponds to the GNAT restricted run time. It establishes the following
set of restrictions:

* No_Abort_Statements

* No_Entry_Queue

* No_Task_Hierarchy

* No_Task_Allocators

* No_Dynamic_Priorities

* No_Terminate_Alternatives

* No_Dynamic_Attachment

* No_Protected_Type_Allocators

* No_Local_Protected_Objects

* No_Requeue_Statements

* No_Task_Attributes_Package

* Max_Asynchronous_Select_Nesting = 0

* Max_Task_Entries = 0

Chapter 2: Implementation Defined Pragmas 71

* Max_Protected_Entries = 1

* Max_Select_Alternatives = 0

This set of restrictions causes the automatic selection of a simplified version of the run
time that provides improved performance for the limited set of tasking functionality
permitted by this set of restrictions.

* Pragma Profile (Rational)

The Rational profile is intended to facilitate porting legacy code that compiles with the
Rational APEX compiler, even when the code includes non- conforming Ada constructs.
The profile enables the following three pragmas:

* pragma Implicit_Packing

* pragma Overriding_Renamings

* pragma Use_VADS_Size

2.138 Pragma Profile Warnings

Syntax:

pragma Profile_Warnings (Ravenscar | Restricted | Rational);

This is an implementation-defined pragma that is similar in effect to pragma Profile except
that instead of generating Restrictions pragmas, it generates Restriction Warnings prag-
mas. The result is that violations of the profile generate warning messages instead of error
messages.

2.139 Pragma Propagate Exceptions

Syntax:

pragma Propagate_Exceptions;

This pragma is now obsolete and, other than generating a warning if warnings on obsolescent
features are enabled, is ignored. It is retained for compatibility purposes. It used to be
used in connection with optimization of a now-obsolete mechanism for implementation of
exceptions.

2.140 Pragma Provide Shift Operators

Syntax:

pragma Provide_Shift_Operators (integer_first_subtype_LOCAL_NAME);

This pragma can be applied to a first subtype local name that specifies either an unsigned or
signed type. It has the effect of providing the five shift operators (Shift Left, Shift Right,
Shift Right Arithmetic, Rotate Left and Rotate Right) for the given type. It is similar
to including the function declarations for these five operators, together with the pragma
Import (Intrinsic, ...) statements.

2.141 Pragma Psect Object

Syntax:

Chapter 2: Implementation Defined Pragmas 72

pragma Psect_Object (
[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBOL]
[, [Size =>] EXTERNAL_SYMBOL]);

EXTERNAL_SYMBOL ::=
IDENTIFIER

| static_string_EXPRESSION

This pragma is identical in effect to pragma Common Object.

2.142 Pragma Pure Function

Syntax:

pragma Pure_Function ([Entity =>] function_LOCAL_NAME);

This pragma appears in the same declarative part as a function declaration (or a set of
function declarations if more than one overloaded declaration exists, in which case the
pragma applies to all entities). It specifies that the function Entity is to be considered pure
for the purposes of code generation. This means that the compiler can assume that there
are no side effects, and in particular that two calls with identical arguments produce the
same result. It also means that the function can be used in an address clause.

Note that, quite deliberately, there are no static checks to try to ensure that this promise is
met, so Pure Function can be used with functions that are conceptually pure, even if they
do modify global variables. For example, a square root function that is instrumented to
count the number of times it is called is still conceptually pure, and can still be optimized,
even though it modifies a global variable (the count). Memo functions are another example
(where a table of previous calls is kept and consulted to avoid re-computation).

Note also that the normal rules excluding optimization of subprograms in pure units (when
parameter types are descended from System.Address, or when the full view of a param-
eter type is limited), do not apply for the Pure Function case. If you explicitly specify
Pure Function, the compiler may optimize away calls with identical arguments, and if that
results in unexpected behavior, the proper action is not to use the pragma for subprograms
that are not (conceptually) pure.

Note: Most functions in a Pure package are automatically pure, and there is no need to
use pragma Pure Function for such functions. One exception is any function that has at
least one formal of type System.Address or a type derived from it. Such functions are not
considered pure by default, since the compiler assumes that the Address parameter may
be functioning as a pointer and that the referenced data may change even if the address
value does not. Similarly, imported functions are not considered to be pure by default, since
there is no way of checking that they are in fact pure. The use of pragma Pure Function
for such a function will override these default assumption, and cause the compiler to treat
a designated subprogram as pure in these cases.

Note: If pragma Pure Function is applied to a renamed function, it applies to the underlying
renamed function. This can be used to disambiguate cases of overloading where some but
not all functions in a set of overloaded functions are to be designated as pure.

Chapter 2: Implementation Defined Pragmas 73

If pragma Pure Function is applied to a library level function, the function is also considered
pure from an optimization point of view, but the unit is not a Pure unit in the categorization
sense. So for example, a function thus marked is free to with non-pure units.

2.143 Pragma Rational

Syntax:
pragma Rational;

This pragma is considered obsolescent, but is retained for compatibility purposes. It is
equivalent to:

pragma Profile (Rational);

2.144 Pragma Ravenscar

Syntax:
pragma Ravenscar;

This pragma is considered obsolescent, but is retained for compatibility purposes. It is
equivalent to:

pragma Profile (Ravenscar);

which is the preferred method of setting the Ravenscar profile.

2.145 Pragma Refined Depends

Syntax:
pragma Refined_Depends (DEPENDENCY_RELATION);

DEPENDENCY_RELATION ::=
null

| (DEPENDENCY_CLAUSE {, DEPENDENCY_CLAUSE})

DEPENDENCY_CLAUSE ::=
OUTPUT_LIST =>[+] INPUT_LIST

| NULL_DEPENDENCY_CLAUSE

NULL_DEPENDENCY_CLAUSE ::= null => INPUT_LIST

OUTPUT_LIST ::= OUTPUT | (OUTPUT {, OUTPUT})

INPUT_LIST ::= null | INPUT | (INPUT {, INPUT})

OUTPUT ::= NAME | FUNCTION_RESULT
INPUT ::= NAME

where FUNCTION_RESULT is a function Result attribute_reference

For the semantics of this pragma, see the entry for aspect Refined Depends in the SPARK
2014 Reference Manual, section 6.1.5.

Chapter 2: Implementation Defined Pragmas 74

2.146 Pragma Refined Global

Syntax:

pragma Refined_Global (GLOBAL_SPECIFICATION);

GLOBAL_SPECIFICATION ::=
null

| (GLOBAL_LIST)
| (MODED_GLOBAL_LIST {, MODED_GLOBAL_LIST})

MODED_GLOBAL_LIST ::= MODE_SELECTOR => GLOBAL_LIST

MODE_SELECTOR ::= In_Out | Input | Output | Proof_In
GLOBAL_LIST ::= GLOBAL_ITEM | (GLOBAL_ITEM {, GLOBAL_ITEM})
GLOBAL_ITEM ::= NAME

For the semantics of this pragma, see the entry for aspect Refined Global in the SPARK
2014 Reference Manual, section 6.1.4.

2.147 Pragma Refined Post

Syntax:

pragma Refined_Post (boolean_EXPRESSION);

For the semantics of this pragma, see the entry for aspect Refined Post in the SPARK 2014
Reference Manual, section 7.2.7.

2.148 Pragma Refined State

Syntax:

pragma Refined_State (REFINEMENT_LIST);

REFINEMENT_LIST ::=
(REFINEMENT_CLAUSE {, REFINEMENT_CLAUSE})

REFINEMENT_CLAUSE ::= state_NAME => CONSTITUENT_LIST

CONSTITUENT_LIST ::=
null

| CONSTITUENT
| (CONSTITUENT {, CONSTITUENT})

CONSTITUENT ::= object_NAME | state_NAME

For the semantics of this pragma, see the entry for aspect Refined State in the SPARK
2014 Reference Manual, section 7.2.2.

2.149 Pragma Relative Deadline

Syntax:

Chapter 2: Implementation Defined Pragmas 75

pragma Relative_Deadline (time_span_EXPRESSION);

This pragma is standard in Ada 2005, but is available in all earlier versions of Ada as an
implementation-defined pragma. See Ada 2012 Reference Manual for details.

2.150 Pragma Remote Access Type

Syntax:
pragma Remote_Access_Type ([Entity =>] formal_access_type_LOCAL_NAME);

This pragma appears in the formal part of a generic declaration. It specifies an exception
to the RM rule from E.2.2(17/2), which forbids the use of a remote access to class-wide
type as actual for a formal access type.
When this pragma applies to a formal access type Entity, that type is treated as a remote
access to class-wide type in the generic. It must be a formal general access type, and its
designated type must be the class-wide type of a formal tagged limited private type from
the same generic declaration.
In the generic unit, the formal type is subject to all restrictions pertaining to remote access
to class-wide types. At instantiation, the actual type must be a remote access to class-wide
type.

2.151 Pragma Restricted Run Time

Syntax:
pragma Restricted_Run_Time;

This pragma is considered obsolescent, but is retained for compatibility purposes. It is
equivalent to:

pragma Profile (Restricted);

which is the preferred method of setting the restricted run time profile.

2.152 Pragma Restriction Warnings

Syntax:
pragma Restriction_Warnings

(restriction_IDENTIFIER {, restriction_IDENTIFIER});

This pragma allows a series of restriction identifiers to be specified (the list of allowed
identifiers is the same as for pragma Restrictions). For each of these identifiers the compiler
checks for violations of the restriction, but generates a warning message rather than an
error message if the restriction is violated.
One use of this is in situations where you want to know about violations of a restriction,
but you want to ignore some of these violations. Consider this example, where you want
to set Ada 95 mode and enable style checks, but you want to know about any other use of
implementation pragmas:

pragma Restriction_Warnings (No_Implementation_Pragmas);
pragma Warnings (Off, "violation of No_Implementation_Pragmas");
pragma Ada_95;
pragma Style_Checks ("2bfhkM160");

Chapter 2: Implementation Defined Pragmas 76

pragma Warnings (On, "violation of No_Implementation_Pragmas");

By including the above lines in a configuration pragmas file, the Ada 95 and Style Checks
pragmas are accepted without generating a warning, but any other use of implementation
defined pragmas will cause a warning to be generated.

2.153 Pragma Reviewable

Syntax:
pragma Reviewable;

This pragma is an RM-defined standard pragma, but has no effect on the program being
compiled, or on the code generated for the program.
To obtain the required output specified in RM H.3.1, the compiler must be run with various
special switches as follows:

* Where compiler-generated run-time checks remain
The switch -gnatGL may be used to list the expanded code in pseudo-Ada form. Run-
time checks show up in the listing either as explicit checks or operators marked with
{} to indicate a check is present.

* An identification of known exceptions at compile time
If the program is compiled with -gnatwa, the compiler warning messages will indicate
all cases where the compiler detects that an exception is certain to occur at run time.

* Possible reads of uninitialized variables
The compiler warns of many such cases, but its output is incomplete.

A supplemental static analysis tool may be used to obtain a comprehensive list of all possible
points at which uninitialized data may be read.

* Where run-time support routines are implicitly invoked
In the output from -gnatGL, run-time calls are explicitly listed as calls to the relevant
run-time routine.

* Object code listing
This may be obtained either by using the -S switch, or the objdump utility.

* Constructs known to be erroneous at compile time
These are identified by warnings issued by the compiler (use -gnatwa).

* Stack usage information
Static stack usage data (maximum per-subprogram) can be obtained via the -fstack-
usage switch to the compiler. Dynamic stack usage data (per task) can be obtained
via the -u switch to gnatbind

* Object code listing of entire partition
This can be obtained by compiling the partition with -S, or by applying objdump to
all the object files that are part of the partition.

* A description of the run-time model
The full sources of the run-time are available, and the documentation of these routines
describes how these run-time routines interface to the underlying operating system
facilities.

Chapter 2: Implementation Defined Pragmas 77

* Control and data-flow information

A supplemental static analysis tool may be used to obtain complete control and data-flow
information, as well as comprehensive messages identifying possible problems based on this
information.

2.154 Pragma Secondary Stack Size

Syntax:
pragma Secondary_Stack_Size (integer_EXPRESSION);

This pragma appears within the task definition of a single task declaration or a task type
declaration (like pragma Storage Size) and applies to all task objects of that type. The
argument specifies the size of the secondary stack to be used by these task objects, and
must be of an integer type. The secondary stack is used to handle functions that return a
variable-sized result, for example a function returning an unconstrained String.
Note this pragma only applies to targets using fixed secondary stacks, like VxWorks 653
and bare board targets, where a fixed block for the secondary stack is allocated from the
primary stack of the task. By default, these targets assign a percentage of the primary stack
for the secondary stack, as defined by System.Parameter.Sec Stack Percentage. With this
pragma, an integer EXPRESSION of bytes is assigned from the primary stack instead.
For most targets, the pragma does not apply as the secondary stack grows on demand:
allocated as a chain of blocks in the heap. The default size of these blocks can be modified
via the -D binder option as described in GNAT User’s Guide.
Note that no check is made to see if the secondary stack can fit inside the primary stack.
Note the pragma cannot appear when the restriction No Secondary Stack is in effect.

2.155 Pragma Share Generic

Syntax:
pragma Share_Generic (GNAME {, GNAME});

GNAME ::= generic_unit_NAME | generic_instance_NAME

This pragma is provided for compatibility with Dec Ada 83. It has no effect in GNAT
(which does not implement shared generics), other than to check that the given names are
all names of generic units or generic instances.

2.156 Pragma Shared

This pragma is provided for compatibility with Ada 83. The syntax and semantics are
identical to pragma Atomic.

2.157 Pragma Short Circuit And Or

Syntax:
pragma Short_Circuit_And_Or;

This configuration pragma causes any occurrence of the AND operator applied to operands
of type Standard.Boolean to be short-circuited (i.e. the AND operator is treated as if

Chapter 2: Implementation Defined Pragmas 78

it were AND THEN). Or is similarly treated as OR ELSE. This may be useful in the
context of certification protocols requiring the use of short-circuited logical operators. If
this configuration pragma occurs locally within the file being compiled, it applies only to
the file being compiled. There is no requirement that all units in a partition use this option.

2.158 Pragma Short Descriptors

Syntax:
pragma Short_Descriptors

This pragma is provided for compatibility with other Ada implementations. It is recognized
but ignored by all current versions of GNAT.

2.159 Pragma Simple Storage Pool Type

Syntax:
pragma Simple_Storage_Pool_Type (type_LOCAL_NAME);

A type can be established as a ’simple storage pool type’ by applying the representation
pragma Simple Storage Pool Type to the type. A type named in the pragma must be a
library-level immutably limited record type or limited tagged type declared immediately
within a package declaration. The type can also be a limited private type whose full type
is allowed as a simple storage pool type.
For a simple storage pool type SSP, nonabstract primitive subprograms Allocate, Deal-
locate, and Storage Size can be declared that are subtype conformant with the following
subprogram declarations:

procedure Allocate
(Pool : in out SSP;
Storage_Address : out System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count);

procedure Deallocate
(Pool : in out SSP;
Storage_Address : System.Address;
Size_In_Storage_Elements : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count);

function Storage_Size (Pool : SSP)
return System.Storage_Elements.Storage_Count;

Procedure Allocate must be declared, whereas Deallocate and Storage Size are optional. If
Deallocate is not declared, then applying an unchecked deallocation has no effect other than
to set its actual parameter to null. If Storage Size is not declared, then the Storage Size
attribute applied to an access type associated with a pool object of type SSP returns zero.
Additional operations can be declared for a simple storage pool type (such as for supporting
a mark/release storage-management discipline).
An object of a simple storage pool type can be associated with an access type by specifying
the attribute [Simple Storage Pool], page 121. For example:

Chapter 2: Implementation Defined Pragmas 79

My_Pool : My_Simple_Storage_Pool_Type;

type Acc is access My_Data_Type;

for Acc’Simple_Storage_Pool use My_Pool;

See attribute [Simple Storage Pool], page 121 for further details.

2.160 Pragma Source File Name

Syntax:
pragma Source_File_Name (

[Unit_Name =>] unit_NAME,
Spec_File_Name => STRING_LITERAL,
[Index => INTEGER_LITERAL]);

pragma Source_File_Name (
[Unit_Name =>] unit_NAME,
Body_File_Name => STRING_LITERAL,
[Index => INTEGER_LITERAL]);

Use this to override the normal naming convention. It is a configuration pragma, and so has
the usual applicability of configuration pragmas (i.e., it applies to either an entire partition,
or to all units in a compilation, or to a single unit, depending on how it is used. unit name
is mapped to file name literal. The identifier for the second argument is required, and
indicates whether this is the file name for the spec or for the body.
The optional Index argument should be used when a file contains multiple units, and when
you do not want to use gnatchop to separate then into multiple files (which is the recom-
mended procedure to limit the number of recompilations that are needed when some sources
change). For instance, if the source file source.ada contains

package B is
...
end B;

with B;
procedure A is
begin

..
end A;

you could use the following configuration pragmas:
pragma Source_File_Name

(B, Spec_File_Name => "source.ada", Index => 1);
pragma Source_File_Name

(A, Body_File_Name => "source.ada", Index => 2);

Note that the gnatname utility can also be used to generate those configuration pragmas.
Another form of the Source File Name pragma allows the specification of patterns defining
alternative file naming schemes to apply to all files.

Chapter 2: Implementation Defined Pragmas 80

pragma Source_File_Name
([Spec_File_Name =>] STRING_LITERAL
[,[Casing =>] CASING_SPEC]
[,[Dot_Replacement =>] STRING_LITERAL]);

pragma Source_File_Name
([Body_File_Name =>] STRING_LITERAL
[,[Casing =>] CASING_SPEC]
[,[Dot_Replacement =>] STRING_LITERAL]);

pragma Source_File_Name
([Subunit_File_Name =>] STRING_LITERAL
[,[Casing =>] CASING_SPEC]
[,[Dot_Replacement =>] STRING_LITERAL]);

CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The first argument is a pattern that contains a single asterisk indicating the point at which
the unit name is to be inserted in the pattern string to form the file name. The second
argument is optional. If present it specifies the casing of the unit name in the resulting file
name string. The default is lower case. Finally the third argument allows for systematic
replacement of any dots in the unit name by the specified string literal.

Note that Source File Name pragmas should not be used if you are using project files.
The reason for this rule is that the project manager is not aware of these pragmas, and
so other tools that use the projet file would not be aware of the intended naming conven-
tions. If you are using project files, file naming is controlled by Source File Name Project
pragmas, which are usually supplied automatically by the project manager. A pragma
Source File Name cannot appear after a [Pragma Source File Name Project], page 80.

For more details on the use of the Source File Name pragma, see the sections on Using
Other File Names and Alternative File Naming Schemes’ in the :title:‘GNAT User’s Guide.

2.161 Pragma Source File Name Project

This pragma has the same syntax and semantics as pragma Source File Name. It is
only allowed as a stand-alone configuration pragma. It cannot appear after a [Pragma
Source File Name], page 79, and most importantly, once pragma Source File Name Project
appears, no further Source File Name pragmas are allowed.

The intention is that Source File Name Project pragmas are always generated by the
Project Manager in a manner consistent with the naming specified in a project file, and when
naming is controlled in this manner, it is not permissible to attempt to modify this naming
scheme using Source File Name or Source File Name Project pragmas (which would not
be known to the project manager).

2.162 Pragma Source Reference

Syntax:

pragma Source_Reference (INTEGER_LITERAL, STRING_LITERAL);

Chapter 2: Implementation Defined Pragmas 81

This pragma must appear as the first line of a source file. integer literal is the logical
line number of the line following the pragma line (for use in error messages and debugging
information). string literal is a static string constant that specifies the file name to be used
in error messages and debugging information. This is most notably used for the output of
gnatchop with the -r switch, to make sure that the original unchopped source file is the one
referred to.
The second argument must be a string literal, it cannot be a static string expression other
than a string literal. This is because its value is needed for error messages issued by all
phases of the compiler.

2.163 Pragma SPARK Mode

Syntax:
pragma SPARK_Mode [(On | Off)] ;

In general a program can have some parts that are in SPARK 2014 (and follow all the rules
in the SPARK Reference Manual), and some parts that are full Ada 2012.
The SPARK Mode pragma is used to identify which parts are in SPARK 2014 (by default
programs are in full Ada). The SPARK Mode pragma can be used in the following places:

* As a configuration pragma, in which case it sets the default mode for all units compiled
with this pragma.

* Immediately following a library-level subprogram spec
* Immediately within a library-level package body
* Immediately following the private keyword of a library-level package spec
* Immediately following the begin keyword of a library-level package body
* Immediately within a library-level subprogram body

Normally a subprogram or package spec/body inherits the current mode that is active at
the point it is declared. But this can be overridden by pragma within the spec or body as
above.
The basic consistency rule is that you can’t turn SPARK Mode back On, once you have
explicitly (with a pragma) turned if Off. So the following rules apply:
If a subprogram spec has SPARK Mode Off, then the body must also have SPARK Mode
Off.
For a package, we have four parts:

* the package public declarations
* the package private part
* the body of the package
* the elaboration code after begin

For a package, the rule is that if you explicitly turn SPARK Mode Off for any part, then
all the following parts must have SPARK Mode Off. Note that this may require repeating
a pragma SPARK Mode (Off) in the body. For example, if we have a configuration pragma
SPARK Mode (On) that turns the mode on by default everywhere, and one particular
package spec has pragma SPARK Mode (Off), then that pragma will need to be repeated
in the package body.

Chapter 2: Implementation Defined Pragmas 82

2.164 Pragma Static Elaboration Desired

Syntax:
pragma Static_Elaboration_Desired;

This pragma is used to indicate that the compiler should attempt to initialize statically
the objects declared in the library unit to which the pragma applies, when these objects
are initialized (explicitly or implicitly) by an aggregate. In the absence of this pragma,
aggregates in object declarations are expanded into assignments and loops, even when the
aggregate components are static constants. When the aggregate is present the compiler
builds a static expression that requires no run-time code, so that the initialized object
can be placed in read-only data space. If the components are not static, or the aggregate
has more that 100 components, the compiler emits a warning that the pragma cannot be
obeyed. (See also the restriction No Implicit Loops, which supports static construction of
larger aggregates with static components that include an others choice.)

2.165 Pragma Stream Convert

Syntax:
pragma Stream_Convert (

[Entity =>] type_LOCAL_NAME,
[Read =>] function_NAME,
[Write =>] function_NAME);

This pragma provides an efficient way of providing user-defined stream attributes. Not only
is it simpler to use than specifying the attributes directly, but more importantly, it allows
the specification to be made in such a way that the predefined unit Ada.Streams is not
loaded unless it is actually needed (i.e. unless the stream attributes are actually used); the
use of the Stream Convert pragma adds no overhead at all, unless the stream attributes
are actually used on the designated type.
The first argument specifies the type for which stream functions are provided. The second
parameter provides a function used to read values of this type. It must name a function
whose argument type may be any subtype, and whose returned type must be the type given
as the first argument to the pragma.
The meaning of the Read parameter is that if a stream attribute directly or indirectly
specifies reading of the type given as the first parameter, then a value of the type given as
the argument to the Read function is read from the stream, and then the Read function is
used to convert this to the required target type.
Similarly the Write parameter specifies how to treat write attributes that directly or in-
directly apply to the type given as the first parameter. It must have an input parameter
of the type specified by the first parameter, and the return type must be the same as the
input type of the Read function. The effect is to first call the Write function to convert to
the given stream type, and then write the result type to the stream.
The Read and Write functions must not be overloaded subprograms. If necessary renamings
can be supplied to meet this requirement. The usage of this attribute is best illustrated by a
simple example, taken from the GNAT implementation of package Ada.Strings.Unbounded:

function To_Unbounded (S : String) return Unbounded_String
renames To_Unbounded_String;

Chapter 2: Implementation Defined Pragmas 83

pragma Stream_Convert
(Unbounded_String, To_Unbounded, To_String);

The specifications of the referenced functions, as given in the Ada Reference Manual are:
function To_Unbounded_String (Source : String)

return Unbounded_String;

function To_String (Source : Unbounded_String)
return String;

The effect is that if the value of an unbounded string is written to a stream, then the
representation of the item in the stream is in the same format that would be used for
Standard.String’Output, and this same representation is expected when a value of this type
is read from the stream. Note that the value written always includes the bounds, even for
Unbounded String’Write, since Unbounded String is not an array type.
Note that the Stream Convert pragma is not effective in the case of a derived type of a
non-limited tagged type. If such a type is specified then the pragma is silently ignored, and
the default implementation of the stream attributes is used instead.

2.166 Pragma Style Checks

Syntax:
pragma Style_Checks (string_LITERAL | ALL_CHECKS |

On | Off [, LOCAL_NAME]);

This pragma is used in conjunction with compiler switches to control the built in style
checking provided by GNAT. The compiler switches, if set, provide an initial setting for
the switches, and this pragma may be used to modify these settings, or the settings may
be provided entirely by the use of the pragma. This pragma can be used anywhere that
a pragma is legal, including use as a configuration pragma (including use in the gnat.adc
file).
The form with a string literal specifies which style options are to be activated. These are
additive, so they apply in addition to any previously set style check options. The codes
for the options are the same as those used in the -gnaty switch to gcc or gnatmake. For
example the following two methods can be used to enable layout checking:

*
pragma Style_Checks ("l");

*
gcc -c -gnatyl ...

The form ALL CHECKS activates all standard checks (its use is equivalent to the use of
the gnaty switch with no options. See the GNAT User’s Guide for details.)
Note: the behavior is slightly different in GNAT mode (-gnatg used). In this case,
ALL CHECKS implies the standard set of GNAT mode style check options (i.e. equivalent
to -gnatyg).
The forms with Off and On can be used to temporarily disable style checks as shown in
the following example:

Chapter 2: Implementation Defined Pragmas 84

pragma Style_Checks ("k"); -- requires keywords in lower case
pragma Style_Checks (Off); -- turn off style checks
NULL; -- this will not generate an error message
pragma Style_Checks (On); -- turn style checks back on
NULL; -- this will generate an error message

Finally the two argument form is allowed only if the first argument is On or Off. The effect
is to turn of semantic style checks for the specified entity, as shown in the following example:

pragma Style_Checks ("r"); -- require consistency of identifier casing
Arg : Integer;
Rf1 : Integer := ARG; -- incorrect, wrong case
pragma Style_Checks (Off, Arg);
Rf2 : Integer := ARG; -- OK, no error

2.167 Pragma Subtitle

Syntax:
pragma Subtitle ([Subtitle =>] STRING_LITERAL);

This pragma is recognized for compatibility with other Ada compilers but is ignored by
GNAT.

2.168 Pragma Suppress

Syntax:
pragma Suppress (Identifier [, [On =>] Name]);

This is a standard pragma, and supports all the check names required in the RM. It is in-
cluded here because GNAT recognizes some additional check names that are implementation
defined (as permitted by the RM):

* Alignment Check can be used to suppress alignment checks on addresses used in ad-
dress clauses. Such checks can also be suppressed by suppressing range checks, but
the specific use of Alignment Check allows suppression of alignment checks without
suppressing other range checks. Note that Alignment Check is suppressed by default
on machines (such as the x86) with non-strict alignment.

* Atomic Synchronization can be used to suppress the special memory synchronization
instructions that are normally generated for access to Atomic variables to ensure correct
synchronization between tasks that use such variables for synchronization purposes.

* Duplicated Tag Check Can be used to suppress the check that is generated for a du-
plicated tag value when a tagged type is declared.

* Container Checks Can be used to suppress all checks within Ada.Containers and in-
stances of its children, including Tampering Check.

* Tampering Check Can be used to suppress tampering check in the containers.
* Predicate Check can be used to control whether predicate checks are active. It is

applicable only to predicates for which the policy is Check. Unlike Assertion Policy,
which determines if a given predicate is ignored or checked for the whole program, the
use of Suppress and Unsuppress with this check name allows a given predicate to be
turned on and off at specific points in the program.

Chapter 2: Implementation Defined Pragmas 85

* Validity Check can be used specifically to control validity checks. If Suppress is used
to suppress validity checks, then no validity checks are performed, including those
specified by the appropriate compiler switch or the Validity Checks pragma.

* Additional check names previously introduced by use of the Check Name pragma are
also allowed.

Note that pragma Suppress gives the compiler permission to omit checks, but does not
require the compiler to omit checks. The compiler will generate checks if they are essentially
free, even when they are suppressed. In particular, if the compiler can prove that a certain
check will necessarily fail, it will generate code to do an unconditional ’raise’, even if checks
are suppressed. The compiler warns in this case.

Of course, run-time checks are omitted whenever the compiler can prove that they will not
fail, whether or not checks are suppressed.

2.169 Pragma Suppress All

Syntax:

pragma Suppress_All;

This pragma can appear anywhere within a unit. The effect is to apply Suppress
(All Checks) to the unit in which it appears. This pragma is implemented for compatibility
with DEC Ada 83 usage where it appears at the end of a unit, and for compatibility with
Rational Ada, where it appears as a program unit pragma. The use of the standard Ada
pragma Suppress (All Checks) as a normal configuration pragma is the preferred usage in
GNAT.

2.170 Pragma Suppress Debug Info

Syntax:

pragma Suppress_Debug_Info ([Entity =>] LOCAL_NAME);

This pragma can be used to suppress generation of debug information for the specified
entity. It is intended primarily for use in debugging the debugger, and navigating around
debugger problems.

2.171 Pragma Suppress Exception Locations

Syntax:

pragma Suppress_Exception_Locations;

In normal mode, a raise statement for an exception by default generates an exception
message giving the file name and line number for the location of the raise. This is useful
for debugging and logging purposes, but this entails extra space for the strings for the
messages. The configuration pragma Suppress Exception Locations can be used to suppress
the generation of these strings, with the result that space is saved, but the exception message
for such raises is null. This configuration pragma may appear in a global configuration
pragma file, or in a specific unit as usual. It is not required that this pragma be used
consistently within a partition, so it is fine to have some units within a partition compiled
with this pragma and others compiled in normal mode without it.

Chapter 2: Implementation Defined Pragmas 86

2.172 Pragma Suppress Initialization

Syntax:

pragma Suppress_Initialization ([Entity =>] variable_or_subtype_Name);

Here variable or subtype Name is the name introduced by a type declaration or subtype
declaration or the name of a variable introduced by an object declaration.

In the case of a type or subtype this pragma suppresses any implicit or explicit initialization
for all variables of the given type or subtype, including initialization resulting from the use
of pragmas Normalize Scalars or Initialize Scalars.

This is considered a representation item, so it cannot be given after the type is frozen. It
applies to all subsequent object declarations, and also any allocator that creates objects of
the type.

If the pragma is given for the first subtype, then it is considered to apply to the base type
and all its subtypes. If the pragma is given for other than a first subtype, then it applies
only to the given subtype. The pragma may not be given after the type is frozen.

Note that this includes eliminating initialization of discriminants for discriminated types,
and tags for tagged types. In these cases, you will have to use some non-portable mechanism
(e.g. address overlays or unchecked conversion) to achieve required initialization of these
fields before accessing any object of the corresponding type.

For the variable case, implicit initialization for the named variable is suppressed, just as
though its subtype had been given in a pragma Suppress Initialization, as described above.

2.173 Pragma Task Name

Syntax

pragma Task_Name (string_EXPRESSION);

This pragma appears within a task definition (like pragma Priority) and applies to the task
in which it appears. The argument must be of type String, and provides a name to be used
for the task instance when the task is created. Note that this expression is not required to
be static, and in particular, it can contain references to task discriminants. This facility
can be used to provide different names for different tasks as they are created, as illustrated
in the example below.

The task name is recorded internally in the run-time structures and is accessible to tools
like the debugger. In addition the routine Ada.Task Identification.Image will return this
string, with a unique task address appended.

-- Example of the use of pragma Task_Name

with Ada.Task_Identification;
use Ada.Task_Identification;
with Text_IO; use Text_IO;
procedure t3 is

type Astring is access String;

task type Task_Typ (Name : access String) is

Chapter 2: Implementation Defined Pragmas 87

pragma Task_Name (Name.all);
end Task_Typ;

task body Task_Typ is
Nam : constant String := Image (Current_Task);

begin
Put_Line ("-->" & Nam (1 .. 14) & "<--");

end Task_Typ;

type Ptr_Task is access Task_Typ;
Task_Var : Ptr_Task;

begin
Task_Var :=
new Task_Typ (new String’("This is task 1"));

Task_Var :=
new Task_Typ (new String’("This is task 2"));

end;

2.174 Pragma Task Storage

Syntax:

pragma Task_Storage (
[Task_Type =>] LOCAL_NAME,
[Top_Guard =>] static_integer_EXPRESSION);

This pragma specifies the length of the guard area for tasks. The guard area is an additional
storage area allocated to a task. A value of zero means that either no guard area is created
or a minimal guard area is created, depending on the target. This pragma can appear
anywhere a Storage Size attribute definition clause is allowed for a task type.

2.175 Pragma Test Case

Syntax:

pragma Test_Case (
[Name =>] static_string_Expression
,[Mode =>] (Nominal | Robustness)
[, Requires => Boolean_Expression]
[, Ensures => Boolean_Expression]);

The Test Case pragma allows defining fine-grain specifications for use by testing tools. The
compiler checks the validity of the Test Case pragma, but its presence does not lead to any
modification of the code generated by the compiler.

Test Case pragmas may only appear immediately following the (separate) declaration of a
subprogram in a package declaration, inside a package spec unit. Only other pragmas may
intervene (that is appear between the subprogram declaration and a test case).

The compiler checks that boolean expressions given in Requires and Ensures are valid,
where the rules for Requires are the same as the rule for an expression in Precondition

Chapter 2: Implementation Defined Pragmas 88

and the rules for Ensures are the same as the rule for an expression in Postcondition. In
particular, attributes ’Old and ’Result can only be used within the Ensures expression. The
following is an example of use within a package spec:

package Math_Functions is
...
function Sqrt (Arg : Float) return Float;
pragma Test_Case (Name => "Test 1",

Mode => Nominal,
Requires => Arg < 10000,
Ensures => Sqrt’Result < 10);

...
end Math_Functions;

The meaning of a test case is that there is at least one context where Requires holds
such that, if the associated subprogram is executed in that context, then Ensures holds
when the subprogram returns. Mode Nominal indicates that the input context should also
satisfy the precondition of the subprogram, and the output context should also satisfy its
postcondition. Mode Robustness indicates that the precondition and postcondition of the
subprogram should be ignored for this test case.

2.176 Pragma Thread Local Storage

Syntax:
pragma Thread_Local_Storage ([Entity =>] LOCAL_NAME);

This pragma specifies that the specified entity, which must be a variable declared in a library
level package, is to be marked as "Thread Local Storage" (TLS). On systems supporting
this (which include Windows, Solaris, GNU/Linux and VxWorks 6), this causes each thread
(and hence each Ada task) to see a distinct copy of the variable.
The variable may not have default initialization, and if there is an explicit initialization,
it must be either null for an access variable, or a static expression for a scalar variable.
This provides a low level mechanism similar to that provided by the Ada.Task Attributes
package, but much more efficient and is also useful in writing interface code that will interact
with foreign threads.
If this pragma is used on a system where TLS is not supported, then an error message will
be generated and the program will be rejected.

2.177 Pragma Time Slice

Syntax:
pragma Time_Slice (static_duration_EXPRESSION);

For implementations of GNAT on operating systems where it is possible to supply a time
slice value, this pragma may be used for this purpose. It is ignored if it is used in a system
that does not allow this control, or if it appears in other than the main program unit.

2.178 Pragma Title

Syntax:

Chapter 2: Implementation Defined Pragmas 89

pragma Title (TITLING_OPTION [, TITLING OPTION]);

TITLING_OPTION ::=
[Title =>] STRING_LITERAL,

| [Subtitle =>] STRING_LITERAL

Syntax checked but otherwise ignored by GNAT. This is a listing control pragma used in
DEC Ada 83 implementations to provide a title and/or subtitle for the program listing.
The program listing generated by GNAT does not have titles or subtitles.
Unlike other pragmas, the full flexibility of named notation is allowed for this pragma,
i.e., the parameters may be given in any order if named notation is used, and named and
positional notation can be mixed following the normal rules for procedure calls in Ada.

2.179 Pragma Type Invariant

Syntax:
pragma Type_Invariant

([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);

The Type Invariant pragma is intended to be an exact replacement for the language-defined
Type Invariant aspect, and shares its restrictions and semantics. It differs from the language
defined Invariant pragma in that it does not permit a string parameter, and it is controlled
by the assertion identifier Type Invariant rather than Invariant.

2.180 Pragma Type Invariant Class

Syntax:
pragma Type_Invariant_Class

([Entity =>] type_LOCAL_NAME,
[Check =>] EXPRESSION);

The Type Invariant Class pragma is intended to be an exact replacement for the language-
defined Type Invariant’Class aspect, and shares its restrictions and semantics.
Note: This pragma is called Type Invariant Class rather than Type Invariant’Class be-
cause the latter would not be strictly conforming to the allowed syntax for pragmas. The
motivation for providing pragmas equivalent to the aspects is to allow a program to be
written using the pragmas, and then compiled if necessary using an Ada compiler that does
not recognize the pragmas or aspects, but is prepared to ignore the pragmas. The assertion
policy that controls this pragma is Type Invariant’Class, not Type Invariant Class.

2.181 Pragma Unchecked Union

Syntax:
pragma Unchecked_Union (first_subtype_LOCAL_NAME);

This pragma is used to specify a representation of a record type that is equivalent to a C
union. It was introduced as a GNAT implementation defined pragma in the GNAT Ada 95
mode. Ada 2005 includes an extended version of this pragma, making it language defined,
and GNAT fully implements this extended version in all language modes (Ada 83, Ada 95,
and Ada 2005). For full details, consult the Ada 2012 Reference Manual, section B.3.3.

Chapter 2: Implementation Defined Pragmas 90

2.182 Pragma Unevaluated Use Of Old

Syntax:

pragma Unevaluated_Use_Of_Old (Error | Warn | Allow);

This pragma controls the processing of attributes Old and Loop Entry. If either of these
attributes is used in a potentially unevaluated expression (e.g. the then or else parts of an
if expression), then normally this usage is considered illegal if the prefix of the attribute is
other than an entity name. The language requires this behavior for Old, and GNAT copies
the same rule for Loop Entry.

The reason for this rule is that otherwise, we can have a situation where we save the Old
value, and this results in an exception, even though we might not evaluate the attribute.
Consider this example:

package UnevalOld is
K : Character;
procedure U (A : String; C : Boolean) -- ERROR

with Post => (if C then A(1)’Old = K else True);
end;

If procedure U is called with a string with a lower bound of 2, and C false, then an exception
would be raised trying to evaluate A(1) on entry even though the value would not be actually
used.

Although the rule guarantees against this possibility, it is sometimes too restrictive. For
example if we know that the string has a lower bound of 1, then we will never raise an
exception. The pragma Unevaluated Use Of Old can be used to modify this behavior. If
the argument is Error then an error is given (this is the default RM behavior). If the
argument is Warn then the usage is allowed as legal but with a warning that an exception
might be raised. If the argument is Allow then the usage is allowed as legal without
generating a warning.

This pragma may appear as a configuration pragma, or in a declarative part or package
specification. In the latter case it applies to uses up to the end of the corresponding
statement sequence or sequence of package declarations.

2.183 Pragma Unimplemented Unit

Syntax:

pragma Unimplemented_Unit;

If this pragma occurs in a unit that is processed by the compiler, GNAT aborts with the
message xxx not implemented, where xxx is the name of the current compilation unit. This
pragma is intended to allow the compiler to handle unimplemented library units in a clean
manner.

The abort only happens if code is being generated. Thus you can use specs of unimplemented
packages in syntax or semantic checking mode.

2.184 Pragma Universal Aliasing

Syntax:

Chapter 2: Implementation Defined Pragmas 91

pragma Universal_Aliasing [([Entity =>] type_LOCAL_NAME)];

type LOCAL NAME must refer to a type declaration in the current declarative part. The
effect is to inhibit strict type-based aliasing optimization for the given type. In other
words, the effect is as though access types designating this type were subject to pragma
No Strict Aliasing. For a detailed description of the strict aliasing optimization, and the sit-
uations in which it must be suppressed, see the section on Optimization and Strict Aliasing
in the GNAT User’s Guide.

2.185 Pragma Universal Data

Syntax:
pragma Universal_Data [(library_unit_Name)];

This pragma is supported only for the AAMP target and is ignored for other targets.
The pragma specifies that all library-level objects (Counter 0 data) associated with the
library unit are to be accessed and updated using universal addressing (24-bit addresses for
AAMP5) rather than the default of 16-bit Data Environment (DENV) addressing. Use of
this pragma will generally result in less efficient code for references to global data associated
with the library unit, but allows such data to be located anywhere in memory. This pragma
is a library unit pragma, but can also be used as a configuration pragma (including use in
the gnat.adc file). The functionality of this pragma is also available by applying the -univ
switch on the compilations of units where universal addressing of the data is desired.

2.186 Pragma Unmodified

Syntax:
pragma Unmodified (LOCAL_NAME {, LOCAL_NAME});

This pragma signals that the assignable entities (variables, out parameters, in out parame-
ters) whose names are listed are deliberately not assigned in the current source unit. This
suppresses warnings about the entities being referenced but not assigned, and in addition
a warning will be generated if one of these entities is in fact assigned in the same unit as
the pragma (or in the corresponding body, or one of its subunits).
This is particularly useful for clearly signaling that a particular parameter is not modified,
even though the spec suggests that it might be.
For the variable case, warnings are never given for unreferenced variables whose name
contains one of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED in any
casing. Such names are typically to be used in cases where such warnings are expected.
Thus it is never necessary to use pragma Unmodified for such variables, though it is harmless
to do so.

2.187 Pragma Unreferenced

Syntax:
pragma Unreferenced (LOCAL_NAME {, LOCAL_NAME});
pragma Unreferenced (library_unit_NAME {, library_unit_NAME});

This pragma signals that the entities whose names are listed are deliberately not referenced
in the current source unit after the occurrence of the pragma. This suppresses warnings

Chapter 2: Implementation Defined Pragmas 92

about the entities being unreferenced, and in addition a warning will be generated if one of
these entities is in fact subsequently referenced in the same unit as the pragma (or in the
corresponding body, or one of its subunits).
This is particularly useful for clearly signaling that a particular parameter is not referenced
in some particular subprogram implementation and that this is deliberate. It can also be
useful in the case of objects declared only for their initialization or finalization side effects.
If LOCAL NAME identifies more than one matching homonym in the current scope, then
the entity most recently declared is the one to which the pragma applies. Note that in the
case of accept formals, the pragma Unreferenced may appear immediately after the keyword
do which allows the indication of whether or not accept formals are referenced or not to be
given individually for each accept statement.
The left hand side of an assignment does not count as a reference for the purpose of this
pragma. Thus it is fine to assign to an entity for which pragma Unreferenced is given.
Note that if a warning is desired for all calls to a given subprogram, regardless of whether
they occur in the same unit as the subprogram declaration, then this pragma should not
be used (calls from another unit would not be flagged); pragma Obsolescent can be used
instead for this purpose, see [Pragma Obsolescent], page 55.
The second form of pragma Unreferenced is used within a context clause. In this case the
arguments must be unit names of units previously mentioned in with clauses (similar to
the usage of pragma Elaborate All. The effect is to suppress warnings about unreferenced
units and unreferenced entities within these units.
For the variable case, warnings are never given for unreferenced variables whose name
contains one of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED in any
casing. Such names are typically to be used in cases where such warnings are expected.
Thus it is never necessary to use pragma Unreferenced for such variables, though it is
harmless to do so.

2.188 Pragma Unreferenced Objects

Syntax:
pragma Unreferenced_Objects (local_subtype_NAME {, local_subtype_NAME});

This pragma signals that for the types or subtypes whose names are listed, objects which
are declared with one of these types or subtypes may not be referenced, and if no references
appear, no warnings are given.
This is particularly useful for objects which are declared solely for their initialization and
finalization effect. Such variables are sometimes referred to as RAII variables (Resource
Acquisition Is Initialization). Using this pragma on the relevant type (most typically a
limited controlled type), the compiler will automatically suppress unwanted warnings about
these variables not being referenced.

2.189 Pragma Unreserve All Interrupts

Syntax:
pragma Unreserve_All_Interrupts;

Normally certain interrupts are reserved to the implementation. Any attempt to attach
an interrupt causes Program Error to be raised, as described in RM C.3.2(22). A typical

Chapter 2: Implementation Defined Pragmas 93

example is the SIGINT interrupt used in many systems for a Ctrl-C interrupt. Normally
this interrupt is reserved to the implementation, so that Ctrl-C can be used to interrupt
execution.
If the pragma Unreserve All Interrupts appears anywhere in any unit in a program, then
all such interrupts are unreserved. This allows the program to handle these interrupts,
but disables their standard functions. For example, if this pragma is used, then pressing
Ctrl-C will not automatically interrupt execution. However, a program can then handle
the SIGINT interrupt as it chooses.
For a full list of the interrupts handled in a specific implementation, see the source code
for the spec of Ada.Interrupts.Names in file a-intnam.ads. This is a target dependent file
that contains the list of interrupts recognized for a given target. The documentation in this
file also specifies what interrupts are affected by the use of the Unreserve All Interrupts
pragma.
For a more general facility for controlling what interrupts can be handled, see pragma
Interrupt State, which subsumes the functionality of the Unreserve All Interrupts pragma.

2.190 Pragma Unsuppress

Syntax:
pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);

This pragma undoes the effect of a previous pragma Suppress. If there is no corresponding
pragma Suppress in effect, it has no effect. The range of the effect is the same as for pragma
Suppress. The meaning of the arguments is identical to that used in pragma Suppress.
One important application is to ensure that checks are on in cases where code depends on
the checks for its correct functioning, so that the code will compile correctly even if the
compiler switches are set to suppress checks. For example, in a program that depends on
external names of tagged types and wants to ensure that the duplicated tag check occurs
even if all run-time checks are suppressed by a compiler switch, the following configuration
pragma will ensure this test is not suppressed:

pragma Unsuppress (Duplicated_Tag_Check);

This pragma is standard in Ada 2005. It is available in all earlier versions of Ada as an
implementation-defined pragma.
Note that in addition to the checks defined in the Ada RM, GNAT recogizes a number
of implementation-defined check names. See the description of pragma Suppress for full
details.

2.191 Pragma Use VADS Size

Syntax:
pragma Use_VADS_Size;

This is a configuration pragma. In a unit to which it applies, any use of the ’Size attribute is
automatically interpreted as a use of the ’VADS Size attribute. Note that this may result in
incorrect semantic processing of valid Ada 95 or Ada 2005 programs. This is intended to aid
in the handling of existing code which depends on the interpretation of Size as implemented
in the VADS compiler. See description of the VADS Size attribute for further details.

Chapter 2: Implementation Defined Pragmas 94

2.192 Pragma Unused

Syntax:

pragma Unused (LOCAL_NAME {, LOCAL_NAME});

This pragma signals that the assignable entities (variables, out parameters, and in out
parameters) whose names are listed deliberately do not get assigned or referenced in the
current source unit after the occurrence of the pragma in the current source unit. This
suppresses warnings about the entities that are unreferenced and/or not assigned, and, in
addition, a warning will be generated if one of these entities gets assigned or subsequently
referenced in the same unit as the pragma (in the corresponding body or one of its subunits).

This is particularly useful for clearly signaling that a particular parameter is not modified
or referenced, even though the spec suggests that it might be.

For the variable case, warnings are never given for unreferenced variables whose name
contains one of the substrings DISCARD, DUMMY, IGNORE, JUNK, UNUSED in any
casing. Such names are typically to be used in cases where such warnings are expected.
Thus it is never necessary to use pragma Unmodified for such variables, though it is harmless
to do so.

2.193 Pragma Validity Checks

Syntax:

pragma Validity_Checks (string_LITERAL | ALL_CHECKS | On | Off);

This pragma is used in conjunction with compiler switches to control the built-in validity
checking provided by GNAT. The compiler switches, if set provide an initial setting for the
switches, and this pragma may be used to modify these settings, or the settings may be
provided entirely by the use of the pragma. This pragma can be used anywhere that a
pragma is legal, including use as a configuration pragma (including use in the gnat.adc
file).

The form with a string literal specifies which validity options are to be activated. The
validity checks are first set to include only the default reference manual settings, and then
a string of letters in the string specifies the exact set of options required. The form of this
string is exactly as described for the -gnatVx compiler switch (see the GNAT User’s Guide
for details). For example the following two methods can be used to enable validity checking
for mode in and in out subprogram parameters:

*
pragma Validity_Checks ("im");

*
$ gcc -c -gnatVim ...

The form ALL CHECKS activates all standard checks (its use is equivalent to the use of
the gnatva switch.

The forms with Off and On can be used to temporarily disable validity checks as shown in
the following example:

pragma Validity_Checks ("c"); -- validity checks for copies
pragma Validity_Checks (Off); -- turn off validity checks

Chapter 2: Implementation Defined Pragmas 95

A := B; -- B will not be validity checked
pragma Validity_Checks (On); -- turn validity checks back on
A := C; -- C will be validity checked

2.194 Pragma Volatile

Syntax:
pragma Volatile (LOCAL_NAME);

This pragma is defined by the Ada Reference Manual, and the GNAT implementation is
fully conformant with this definition. The reason it is mentioned in this section is that a
pragma of the same name was supplied in some Ada 83 compilers, including DEC Ada 83.
The Ada 95 / Ada 2005 implementation of pragma Volatile is upwards compatible with the
implementation in DEC Ada 83.

2.195 Pragma Volatile Full Access

Syntax:
pragma Volatile_Full_Access (LOCAL_NAME);

This is similar in effect to pragma Volatile, except that any reference to the object is
guaranteed to be done only with instructions that read or write all the bits of the object.
Furthermore, if the object is of a composite type, then any reference to a component of the
object is guaranteed to read and/or write all the bits of the object.
The intention is that this be suitable for use with memory-mapped I/O devices on some
machines. Note that there are two important respects in which this is different from pragma
Atomic. First a reference to a Volatile Full Access object is not a sequential action in the
RM 9.10 sense and, therefore, does not create a synchronization point. Second, in the case
of pragma Atomic, there is no guarantee that all the bits will be accessed if the reference
is not to the whole object; the compiler is allowed (and generally will) access only part of
the object in this case.
It is not permissible to specify Atomic and Volatile Full Access for the same object.
It is not permissible to specify Volatile Full Access for a composite (record or array) type
or object that has at least one Aliased component.

2.196 Pragma Volatile Function

Syntax:
pragma Volatile_Function [(boolean_EXPRESSION)];

For the semantics of this pragma, see the entry for aspect Volatile Function in the SPARK
2014 Reference Manual, section 7.1.2.

2.197 Pragma Warning As Error

Syntax:
pragma Warning_As_Error (static_string_EXPRESSION);

This configuration pragma allows the programmer to specify a set of warnings that will be
treated as errors. Any warning which matches the pattern given by the pragma argument

Chapter 2: Implementation Defined Pragmas 96

will be treated as an error. This gives much more precise control that -gnatwe which treats
all warnings as errors.
The pattern may contain asterisks, which match zero or more characters in the message. For
example, you can use pragma Warning As Error ("bits of*unused") to treat the warning
message warning: 960 bits of "a" unused as an error. No other regular expression notations
are permitted. All characters other than asterisk in these three specific cases are treated
as literal characters in the match. The match is case insensitive, for example XYZ matches
xyz.
Note that the pattern matches if it occurs anywhere within the warning message string (it
is not necessary to put an asterisk at the start and the end of the message, since this is
implied).
Another possibility for the static string EXPRESSION which works whether or not error
tags are enabled (-gnatw.d) is to use the -gnatw tag string, enclosed in brackets, as shown
in the example below, to treat a class of warnings as errors.
The above use of patterns to match the message applies only to warning messages generated
by the front end. This pragma can also be applied to warnings provided by the back end
and mentioned in [Pragma Warnings], page 97. By using a single full -Wxxx switch in the
pragma, such warnings can also be treated as errors.
The pragma can appear either in a global configuration pragma file (e.g. gnat.adc), or at
the start of a file. Given a global configuration pragma file containing:

pragma Warning_As_Error ("[-gnatwj]");

which will treat all obsolescent feature warnings as errors, the following program compiles
as shown (compile options here are -gnatwa.d -gnatl -gnatj55).

1. pragma Warning_As_Error ("*never assigned*");
2. function Warnerr return String is
3. X : Integer;

|
>>> error: variable "X" is never read and

never assigned [-gnatwv] [warning-as-error]

4. Y : Integer;
|

>>> warning: variable "Y" is assigned but
never read [-gnatwu]

5. begin
6. Y := 0;
7. return %ABC%;

|
>>> error: use of "%" is an obsolescent

feature (RM J.2(4)), use """ instead
[-gnatwj] [warning-as-error]

8. end;

Chapter 2: Implementation Defined Pragmas 97

8 lines: No errors, 3 warnings (2 treated as errors)

Note that this pragma does not affect the set of warnings issued in any way, it merely
changes the effect of a matching warning if one is produced as a result of other warnings
options. As shown in this example, if the pragma results in a warning being treated as an
error, the tag is changed from "warning:" to "error:" and the string "[warning-as-error]" is
appended to the end of the message.

2.198 Pragma Warnings

Syntax:
pragma Warnings ([TOOL_NAME,] DETAILS [, REASON]);

DETAILS ::= On | Off
DETAILS ::= On | Off, local_NAME
DETAILS ::= static_string_EXPRESSION
DETAILS ::= On | Off, static_string_EXPRESSION

TOOL_NAME ::= GNAT | GNATProve

REASON ::= Reason => STRING_LITERAL {& STRING_LITERAL}

Note: in Ada 83 mode, a string literal may be used in place of a static string expression
(which does not exist in Ada 83).
Note if the second argument of DETAILS is a local NAME then the second form is always
understood. If the intention is to use the fourth form, then you can write NAME & "" to
force the intepretation as a static string EXPRESSION.
Note: if the first argument is a valid TOOL NAME, it will be interpreted that way. The
use of the TOOL NAME argument is relevant only to users of SPARK and GNATprove,
see last part of this section for details.
Normally warnings are enabled, with the output being controlled by the command line
switch. Warnings (Off) turns off generation of warnings until a Warnings (On) is encoun-
tered or the end of the current unit. If generation of warnings is turned off using this
pragma, then some or all of the warning messages are suppressed, regardless of the setting
of the command line switches.
The Reason parameter may optionally appear as the last argument in any of the forms of this
pragma. It is intended purely for the purposes of documenting the reason for the Warnings
pragma. The compiler will check that the argument is a static string but otherwise ignore
this argument. Other tools may provide specialized processing for this string.
The form with a single argument (or two arguments if Reason present), where the first
argument is ON or OFF may be used as a configuration pragma.
If the LOCAL NAME parameter is present, warnings are suppressed for the specified entity.
This suppression is effective from the point where it occurs till the end of the extended
scope of the variable (similar to the scope of Suppress). This form cannot be used as a
configuration pragma.
In the case where the first argument is other than ON or OFF, the third form with a single
static string EXPRESSION argument (and possible reason) provides more precise control

Chapter 2: Implementation Defined Pragmas 98

over which warnings are active. The string is a list of letters specifying which warnings
are to be activated and which deactivated. The code for these letters is the same as the
string used in the command line switch controlling warnings. For a brief summary, use the
gnatmake command with no arguments, which will generate usage information containing
the list of warnings switches supported. For full details see the section on Warning Message
Control in the GNAT User’s Guide. This form can also be used as a configuration pragma.
The warnings controlled by the -gnatw switch are generated by the front end of the compiler.
The GCC back end can provide additional warnings and they are controlled by the -W
switch. Such warnings can be identified by the appearance of a string of the form [-Wxxx]
in the message which designates the -Wxxx switch that controls the message. The form with
a single static string EXPRESSION argument also works for these warnings, but the string
must be a single full -Wxxx switch in this case. The above reference lists a few examples of
these additional warnings.
The specified warnings will be in effect until the end of the program or another pragma
Warnings is encountered. The effect of the pragma is cumulative. Initially the set of
warnings is the standard default set as possibly modified by compiler switches. Then each
pragma Warning modifies this set of warnings as specified. This form of the pragma may
also be used as a configuration pragma.
The fourth form, with an On|Off parameter and a string, is used to control individual
messages, based on their text. The string argument is a pattern that is used to match
against the text of individual warning messages (not including the initial "warning: " tag).
The pattern may contain asterisks, which match zero or more characters in the message.
For example, you can use pragma Warnings (Off, "bits of*unused") to suppress the warning
message warning: 960 bits of "a" unused. No other regular expression notations are per-
mitted. All characters other than asterisk in these three specific cases are treated as literal
characters in the match. The match is case insensitive, for example XYZ matches xyz.
Note that the pattern matches if it occurs anywhere within the warning message string (it
is not necessary to put an asterisk at the start and the end of the message, since this is
implied).
The above use of patterns to match the message applies only to warning messages generated
by the front end. This form of the pragma with a string argument can also be used to
control warnings provided by the back end and mentioned above. By using a single full
-Wxxx switch in the pragma, such warnings can be turned on and off.
There are two ways to use the pragma in this form. The OFF form can be used as a
configuration pragma. The effect is to suppress all warnings (if any) that match the pattern
string throughout the compilation (or match the -W switch in the back end case).
The second usage is to suppress a warning locally, and in this case, two pragmas must
appear in sequence:

pragma Warnings (Off, Pattern);
... code where given warning is to be suppressed
pragma Warnings (On, Pattern);

In this usage, the pattern string must match in the Off and On pragmas, and (if -gnatw.w
is given) at least one matching warning must be suppressed.
Note: to write a string that will match any warning, use the string "***". It will not
work to use a single asterisk or two asterisks since this looks like an operator name. This

Chapter 2: Implementation Defined Pragmas 99

form with three asterisks is similar in effect to specifying pragma Warnings (Off) except (if
-gnatw.w is given) that a matching pragma Warnings (On, "***") will be required. This
can be helpful in avoiding forgetting to turn warnings back on.
Note: the debug flag -gnatd.i (/NOWARNINGS PRAGMAS in VMS) can be used to cause
the compiler to entirely ignore all WARNINGS pragmas. This can be useful in checking
whether obsolete pragmas in existing programs are hiding real problems.
Note: pragma Warnings does not affect the processing of style messages. See separate entry
for pragma Style Checks for control of style messages.
Users of the formal verification tool GNATprove for the SPARK subset of Ada may use the
version of the pragma with a TOOL NAME parameter.
If present, TOOL NAME is the name of a tool, currently either GNAT for the compiler or
GNATprove for the formal verification tool. A given tool only takes into account pragma
Warnings that do not specify a tool name, or that specify the matching tool name. This
makes it possible to disable warnings selectively for each tool, and as a consequence to
detect useless pragma Warnings with switch -gnatw.w.

2.199 Pragma Weak External

Syntax:
pragma Weak_External ([Entity =>] LOCAL_NAME);

LOCAL NAME must refer to an object that is declared at the library level. This pragma
specifies that the given entity should be marked as a weak symbol for the linker. It is
equivalent to attribute ((weak)) in GNU C and causes LOCAL NAME to be emitted as
a weak symbol instead of a regular symbol, that is to say a symbol that does not have to
be resolved by the linker if used in conjunction with a pragma Import.
When a weak symbol is not resolved by the linker, its address is set to zero. This is useful in
writing interfaces to external modules that may or may not be linked in the final executable,
for example depending on configuration settings.
If a program references at run time an entity to which this pragma has been applied, and
the corresponding symbol was not resolved at link time, then the execution of the program
is erroneous. It is not erroneous to take the Address of such an entity, for example to guard
potential references, as shown in the example below.
Some file formats do not support weak symbols so not all target machines support this
pragma.

-- Example of the use of pragma Weak_External

package External_Module is
key : Integer;
pragma Import (C, key);
pragma Weak_External (key);
function Present return boolean;

end External_Module;

with System; use System;
package body External_Module is

Chapter 2: Implementation Defined Pragmas 100

function Present return boolean is
begin
return key’Address /= System.Null_Address;

end Present;
end External_Module;

2.200 Pragma Wide Character Encoding

Syntax:
pragma Wide_Character_Encoding (IDENTIFIER | CHARACTER_LITERAL);

This pragma specifies the wide character encoding to be used in program source text ap-
pearing subsequently. It is a configuration pragma, but may also be used at any point that
a pragma is allowed, and it is permissible to have more than one such pragma in a file,
allowing multiple encodings to appear within the same file.
The argument can be an identifier or a character literal. In the identifier case, it is one of
HEX, UPPER, SHIFT JIS, EUC, UTF8, or BRACKETS. In the character literal case it is
correspondingly one of the characters h, u, s, e, 8, or b.
Note that when the pragma is used within a file, it affects only the encoding within that
file, and does not affect withed units, specs, or subunits.

Chapter 3: Implementation Defined Aspects 101

3 Implementation Defined Aspects

Ada defines (throughout the Ada 2012 reference manual, summarized in Annex K) a set
of aspects that can be specified for certain entities. These language defined aspects are
implemented in GNAT in Ada 2012 mode and work as described in the Ada 2012 Reference
Manual.
In addition, Ada 2012 allows implementations to define additional aspects whose meaning is
defined by the implementation. GNAT provides a number of these implementation-defined
aspects which can be used to extend and enhance the functionality of the compiler. This
section of the GNAT reference manual describes these additional aspects.
Note that any program using these aspects may not be portable to other compilers (although
GNAT implements this set of aspects on all platforms). Therefore if portability to other
compilers is an important consideration, you should minimize the use of these aspects.
Note that for many of these aspects, the effect is essentially similar to the use of a pragma
or attribute specification with the same name applied to the entity. For example, if we
write:

type R is range 1 .. 100
with Value_Size => 10;

then the effect is the same as:
type R is range 1 .. 100;
for R’Value_Size use 10;

and if we write:
type R is new Integer

with Shared => True;

then the effect is the same as:
type R is new Integer;
pragma Shared (R);

In the documentation below, such cases are simply marked as being boolean aspects equiv-
alent to the corresponding pragma or attribute definition clause.

3.1 Aspect Abstract State

This aspect is equivalent to [pragma Abstract State], page 5.

3.2 Annotate

There are three forms of this aspect (where ID is an identifier, and ARG is a general
expression), corresponding to [pragma Annotate], page 8.

Annotate => ID
Equivalent to pragma Annotate (ID, Entity => Name);

Annotate => (ID)
Equivalent to pragma Annotate (ID, Entity => Name);

Annotate => (ID ,ID {, ARG})
Equivalent to pragma Annotate (ID, ID {, ARG}, Entity => Name);

Chapter 3: Implementation Defined Aspects 102

3.3 Aspect Async Readers

This boolean aspect is equivalent to [pragma Async Readers], page 12.

3.4 Aspect Async Writers

This boolean aspect is equivalent to [pragma Async Writers], page 13.

3.5 Aspect Constant After Elaboration

This aspect is equivalent to [pragma Constant After Elaboration], page 19.

3.6 Aspect Contract Cases

This aspect is equivalent to [pragma Contract Cases], page 19, the sequence of clauses being
enclosed in parentheses so that syntactically it is an aggregate.

3.7 Aspect Depends

This aspect is equivalent to [pragma Depends], page 25.

3.8 Aspect Default Initial Condition

This aspect is equivalent to [pragma Default Initial Condition], page 23.

3.9 Aspect Dimension

The Dimension aspect is used to specify the dimensions of a given subtype of a dimensioned
numeric type. The aspect also specifies a symbol used when doing formatted output of
dimensioned quantities. The syntax is:

with Dimension =>
([Symbol =>] SYMBOL, DIMENSION_VALUE {, DIMENSION_Value})

SYMBOL ::= STRING_LITERAL | CHARACTER_LITERAL

DIMENSION_VALUE ::=
RATIONAL

| others => RATIONAL
| DISCRETE_CHOICE_LIST => RATIONAL

RATIONAL ::= [-] NUMERIC_LITERAL [/ NUMERIC_LITERAL]

This aspect can only be applied to a subtype whose parent type has a Dimension Systen
aspect. The aspect must specify values for all dimensions of the system. The rational
values are the powers of the corresponding dimensions that are used by the compiler to
verify that physical (numeric) computations are dimensionally consistent. For example, the
computation of a force must result in dimensions (L => 1, M => 1, T => -2). For further
examples of the usage of this aspect, see package System.Dim.Mks. Note that when the
dimensioned type is an integer type, then any dimension value must be an integer literal.

Chapter 3: Implementation Defined Aspects 103

3.10 Aspect Dimension System

The Dimension System aspect is used to define a system of dimensions that will be used in
subsequent subtype declarations with Dimension aspects that reference this system. The
syntax is:

with Dimension_System => (DIMENSION {, DIMENSION});

DIMENSION ::= ([Unit_Name =>] IDENTIFIER,
[Unit_Symbol =>] SYMBOL,
[Dim_Symbol =>] SYMBOL)

SYMBOL ::= CHARACTER_LITERAL | STRING_LITERAL

This aspect is applied to a type, which must be a numeric derived type (typically a floating-
point type), that will represent values within the dimension system. Each DIMENSION
corresponds to one particular dimension. A maximum of 7 dimensions may be specified.
Unit Name is the name of the dimension (for example Meter). Unit Symbol is the short-
hand used for quantities of this dimension (for example m for Meter). Dim Symbol gives the
identification within the dimension system (typically this is a single letter, e.g. L standing
for length for unit name Meter). The Unit Symbol is used in formatted output of dimen-
sioned quantities. The Dim Symbol is used in error messages when numeric operations
have inconsistent dimensions.

GNAT provides the standard definition of the International MKS system in the run-time
package System.Dim.Mks. You can easily define similar packages for cgs units or British
units, and define conversion factors between values in different systems. The MKS system
is characterized by the following aspect:

type Mks_Type is new Long_Long_Float with
Dimension_System => (
(Unit_Name => Meter, Unit_Symbol => ’m’, Dim_Symbol => ’L’),
(Unit_Name => Kilogram, Unit_Symbol => "kg", Dim_Symbol => ’M’),
(Unit_Name => Second, Unit_Symbol => ’s’, Dim_Symbol => ’T’),
(Unit_Name => Ampere, Unit_Symbol => ’A’, Dim_Symbol => ’I’),
(Unit_Name => Kelvin, Unit_Symbol => ’K’, Dim_Symbol => ’@’),
(Unit_Name => Mole, Unit_Symbol => "mol", Dim_Symbol => ’N’),
(Unit_Name => Candela, Unit_Symbol => "cd", Dim_Symbol => ’J’));

Note that in the above type definition, we use the at symbol (@) to represent a theta
character (avoiding the use of extended Latin-1 characters in this context).

See section ’Performing Dimensionality Analysis in GNAT’ in the GNAT Users Guide for
detailed examples of use of the dimension system.

3.11 Aspect Disable Controlled

The aspect Disable Controlled is defined for controlled record types. If active, this aspect
causes suppression of all related calls to Initialize, Adjust, and Finalize. The intended use
is for conditional compilation, where for example you might want a record to be controlled
or not depending on whether some run-time check is enabled or suppressed.

Chapter 3: Implementation Defined Aspects 104

3.12 Aspect Effective Reads

This aspect is equivalent to [pragma Effective Reads], page 26.

3.13 Aspect Effective Writes

This aspect is equivalent to [pragma Effective Writes], page 26.

3.14 Aspect Extensions Visible

This aspect is equivalent to [pragma Extensions Visible], page 32.

3.15 Aspect Favor Top Level

This boolean aspect is equivalent to [pragma Favor Top Level], page 34.

3.16 Aspect Ghost

This aspect is equivalent to [pragma Ghost], page 35.

3.17 Aspect Global

This aspect is equivalent to [pragma Global], page 35.

3.18 Aspect Initial Condition

This aspect is equivalent to [pragma Initial Condition], page 41.

3.19 Aspect Initializes

This aspect is equivalent to [pragma Initializes], page 42.

3.20 Aspect Inline Always

This boolean aspect is equivalent to [pragma Inline Always], page 42.

3.21 Aspect Invariant

This aspect is equivalent to [pragma Invariant], page 45. It is a synonym for the lan-
guage defined aspect Type Invariant except that it is separately controllable using pragma
Assertion Policy.

3.22 Aspect Invariant’Class

This aspect is equivalent to [pragma Type Invariant Class], page 89. It is a synonym for
the language defined aspect Type Invariant’Class except that it is separately controllable
using pragma Assertion Policy.

Chapter 3: Implementation Defined Aspects 105

3.23 Aspect Iterable

This aspect provides a light-weight mechanism for loops and quantified expressions over
container types, without the overhead imposed by the tampering checks of standard Ada
2012 iterators. The value of the aspect is an aggregate with four named components: First,
Next, Has Element, and Element (the last one being optional). When only 3 components
are specified, only the for .. in form of iteration over cursors is available. When all 4
components are specified, both this form and the for .. of form of iteration over elements
are available. The following is a typical example of use:

type List is private with
Iterable => (First => First_Cursor,

Next => Advance,
Has_Element => Cursor_Has_Element,
[Element => Get_Element]);

* The value denoted by First must denote a primitive operation of the container type
that returns a Cursor, which must a be a type declared in the container package or
visible from it. For example:

function First_Cursor (Cont : Container) return Cursor;

* The value of Next is a primitive operation of the container type that takes both a
container and a cursor and yields a cursor. For example:

function Advance (Cont : Container; Position : Cursor) return Cursor;

* The value of Has Element is a primitive operation of the container type that takes
both a container and a cursor and yields a boolean. For example:

function Cursor_Has_Element (Cont : Container; Position : Cursor) return Boolean;

* The value of Element is a primitive operation of the container type that takes both a
container and a cursor and yields an Element Type, which must be a type declared in
the container package or visible from it. For example:

function Get_Element (Cont : Container; Position : Cursor) return Element_Type;

This aspect is used in the GNAT-defined formal container packages.

3.24 Aspect Linker Section

This aspect is equivalent to [pragma Linker Section], page 48.

3.25 Aspect Lock Free

This boolean aspect is equivalent to [pragma Lock Free], page 49.

3.26 Aspect Max Queue Length

This aspect is equivalent to pragma Max Queue Length.

3.27 Aspect No Elaboration Code All

This aspect is equivalent to [pragma No Elaboration Code All], page 52 for a program unit.

Chapter 3: Implementation Defined Aspects 106

3.28 Aspect No Tagged Streams

This aspect is equivalent to [pragma No Tagged Streams], page 54 with an argument spec-
ifying a root tagged type (thus this aspect can only be applied to such a type).

3.29 Aspect Object Size

This aspect is equivalent to [attribute Object Size], page 117.

3.30 Aspect Obsolescent

This aspect is equivalent to [pragma Obsolescent], page 55. Note that the evaluation of this
aspect happens at the point of occurrence, it is not delayed until the freeze point.

3.31 Aspect Part Of

This aspect is equivalent to [pragma Part Of], page 60.

3.32 Aspect Persistent BSS

This boolean aspect is equivalent to [pragma Persistent BSS], page 61.

3.33 Aspect Predicate

This aspect is equivalent to [pragma Predicate], page 66. It is thus similar to the language
defined aspects Dynamic Predicate and Static Predicate except that whether the resulting
predicate is static or dynamic is controlled by the form of the expression. It is also separately
controllable using pragma Assertion Policy.

3.34 Aspect Pure Function

This boolean aspect is equivalent to [pragma Pure Function], page 72.

3.35 Aspect Refined Depends

This aspect is equivalent to [pragma Refined Depends], page 73.

3.36 Aspect Refined Global

This aspect is equivalent to [pragma Refined Global], page 73.

3.37 Aspect Refined Post

This aspect is equivalent to [pragma Refined Post], page 74.

3.38 Aspect Refined State

This aspect is equivalent to [pragma Refined State], page 74.

3.39 Aspect Remote Access Type

This aspect is equivalent to [pragma Remote Access Type], page 75.

Chapter 3: Implementation Defined Aspects 107

3.40 Aspect Secondary Stack Size

This aspect is equivalent to [pragma Secondary Stack Size], page 77.

3.41 Aspect Scalar Storage Order

This aspect is equivalent to a [attribute Scalar Storage Order], page 120.

3.42 Aspect Shared

This boolean aspect is equivalent to [pragma Shared], page 77 and is thus a synonym for
aspect Atomic.

3.43 Aspect Simple Storage Pool

This aspect is equivalent to [attribute Simple Storage Pool], page 121.

3.44 Aspect Simple Storage Pool Type

This boolean aspect is equivalent to [pragma Simple Storage Pool Type], page 78.

3.45 Aspect SPARK Mode

This aspect is equivalent to [pragma SPARK Mode], page 81 and may be specified for either
or both of the specification and body of a subprogram or package.

3.46 Aspect Suppress Debug Info

This boolean aspect is equivalent to [pragma Suppress Debug Info], page 85.

3.47 Aspect Suppress Initialization

This boolean aspect is equivalent to [pragma Suppress Initialization], page 85.

3.48 Aspect Test Case

This aspect is equivalent to [pragma Test Case], page 87.

3.49 Aspect Thread Local Storage

This boolean aspect is equivalent to [pragma Thread Local Storage], page 88.

3.50 Aspect Universal Aliasing

This boolean aspect is equivalent to [pragma Universal Aliasing], page 90.

3.51 Aspect Universal Data

This aspect is equivalent to [pragma Universal Data], page 91.

3.52 Aspect Unmodified

This boolean aspect is equivalent to [pragma Unmodified], page 91.

Chapter 3: Implementation Defined Aspects 108

3.53 Aspect Unreferenced

This boolean aspect is equivalent to [pragma Unreferenced], page 91. Note that in the case
of formal parameters, it is not permitted to have aspects for a formal parameter, so in this
case the pragma form must be used.

3.54 Aspect Unreferenced Objects

This boolean aspect is equivalent to [pragma Unreferenced Objects], page 92.

3.55 Aspect Value Size

This aspect is equivalent to [attribute Value Size], page 129.

3.56 Aspect Volatile Full Access

This boolean aspect is equivalent to [pragma Volatile Full Access], page 95.

3.57 Aspect Volatile Function

This boolean aspect is equivalent to [pragma Volatile Function], page 95.

3.58 Aspect Warnings

This aspect is equivalent to the two argument form of [pragma Warnings], page 97, where
the first argument is ON or OFF and the second argument is the entity.

Chapter 4: Implementation Defined Attributes 109

4 Implementation Defined Attributes

Ada defines (throughout the Ada reference manual, summarized in Annex K), a set of
attributes that provide useful additional functionality in all areas of the language. These
language defined attributes are implemented in GNAT and work as described in the Ada
Reference Manual.
In addition, Ada allows implementations to define additional attributes whose meaning
is defined by the implementation. GNAT provides a number of these implementation-
dependent attributes which can be used to extend and enhance the functionality of the
compiler. This section of the GNAT reference manual describes these additional attributes.
It also describes additional implementation-dependent features of standard language-defined
attributes.
Note that any program using these attributes may not be portable to other compilers
(although GNAT implements this set of attributes on all platforms). Therefore if portability
to other compilers is an important consideration, you should minimize the use of these
attributes.

4.1 Attribute Abort Signal

Standard’Abort Signal (Standard is the only allowed prefix) provides the entity for the
special exception used to signal task abort or asynchronous transfer of control. Normally this
attribute should only be used in the tasking runtime (it is highly peculiar, and completely
outside the normal semantics of Ada, for a user program to intercept the abort exception).

4.2 Attribute Address Size

Standard’Address Size (Standard is the only allowed prefix) is a static constant giving
the number of bits in an Address. It is the same value as System.Address’Size, but has
the advantage of being static, while a direct reference to System.Address’Size is nonstatic
because Address is a private type.

4.3 Attribute Asm Input

The Asm Input attribute denotes a function that takes two parameters. The first is a
string, the second is an expression of the type designated by the prefix. The first (string)
argument is required to be a static expression, and is the constraint for the parameter, (e.g.,
what kind of register is required). The second argument is the value to be used as the input
argument. The possible values for the constant are the same as those used in the RTL, and
are dependent on the configuration file used to built the GCC back end. [Machine Code
Insertions], page 271

4.4 Attribute Asm Output

The Asm Output attribute denotes a function that takes two parameters. The first is
a string, the second is the name of a variable of the type designated by the attribute
prefix. The first (string) argument is required to be a static expression and designates the
constraint for the parameter (e.g., what kind of register is required). The second argument
is the variable to be updated with the result. The possible values for constraint are the

Chapter 4: Implementation Defined Attributes 110

same as those used in the RTL, and are dependent on the configuration file used to build
the GCC back end. If there are no output operands, then this argument may either be
omitted, or explicitly given as No Output Operands. [Machine Code Insertions], page 271

4.5 Attribute Atomic Always Lock Free

The prefix of the Atomic Always Lock Free attribute is a type. The result is a Boolean
value which is True if the type has discriminants, and False otherwise. The result indicate
whether atomic operations are supported by the target for the given type.

4.6 Attribute Bit

obj’Bit, where obj is any object, yields the bit offset within the storage unit (byte) that
contains the first bit of storage allocated for the object. The value of this attribute is of
the type Universal Integer, and is always a non-negative number not exceeding the value
of System.Storage Unit.
For an object that is a variable or a constant allocated in a register, the value is zero. (The
use of this attribute does not force the allocation of a variable to memory).
For an object that is a formal parameter, this attribute applies to either the matching actual
parameter or to a copy of the matching actual parameter.
For an access object the value is zero. Note that obj.all’Bit is subject to an Access Check
for the designated object. Similarly for a record component X.C’Bit is subject to a dis-
criminant check and X(I).Bit and X(I1..I2)’Bit are subject to index checks.
This attribute is designed to be compatible with the DEC Ada 83 definition and implemen-
tation of the Bit attribute.

4.7 Attribute Bit Position

R.C’Bit_Position, where R is a record object and C is one of the fields of the record
type, yields the bit offset within the record contains the first bit of storage allocated for the
object. The value of this attribute is of the type Universal Integer. The value depends only
on the field C and is independent of the alignment of the containing record R.

4.8 Attribute Code Address

The ’Address attribute may be applied to subprograms in Ada 95 and Ada 2005, but the
intended effect seems to be to provide an address value which can be used to call the
subprogram by means of an address clause as in the following example:

procedure K is ...

procedure L;
for L’Address use K’Address;
pragma Import (Ada, L);

A call to L is then expected to result in a call to K. In Ada 83, where there were no
access-to-subprogram values, this was a common work-around for getting the effect of an
indirect call. GNAT implements the above use of Address and the technique illustrated by
the example code works correctly.

Chapter 4: Implementation Defined Attributes 111

However, for some purposes, it is useful to have the address of the start of the generated
code for the subprogram. On some architectures, this is not necessarily the same as the
Address value described above. For example, the Address value may reference a subprogram
descriptor rather than the subprogram itself.
The ’Code Address attribute, which can only be applied to subprogram entities, always
returns the address of the start of the generated code of the specified subprogram, which
may or may not be the same value as is returned by the corresponding ’Address attribute.

4.9 Attribute Compiler Version

Standard’Compiler Version (Standard is the only allowed prefix) yields a static string iden-
tifying the version of the compiler being used to compile the unit containing the attribute
reference.

4.10 Attribute Constrained

In addition to the usage of this attribute in the Ada RM, GNAT also permits the use
of the ’Constrained attribute in a generic template for any type, including types without
discriminants. The value of this attribute in the generic instance when applied to a scalar
type or a record type without discriminants is always True. This usage is compatible with
older Ada compilers, including notably DEC Ada.

4.11 Attribute Default Bit Order

Standard’Default Bit Order (Standard is the only permissible prefix), provides the value
System.Default Bit Order as a Pos value (0 for High Order First, 1 for Low Order First).
This is used to construct the definition of Default Bit Order in package System.

4.12 Attribute Default Scalar Storage Order

Standard’Default Scalar Storage Order (Standard is the only permissible prefix),
provides the current value of the default scalar storage order (as specified using pragma
Default Scalar Storage Order, or equal to Default Bit Order if unspecified) as a
System.Bit Order value. This is a static attribute.

4.13 Attribute Deref

The attribute typ’Deref(expr) where expr is of type System.Address yields the variable of
type typ that is located at the given address. It is similar to (totyp (expr).all), where totyp
is an unchecked conversion from address to a named access-to-typ type, except that it yields
a variable, so it can be used on the left side of an assignment.

4.14 Attribute Descriptor Size

Nonstatic attribute Descriptor Size returns the size in bits of the descriptor allocated for a
type. The result is non-zero only for unconstrained array types and the returned value is
of type universal integer. In GNAT, an array descriptor contains bounds information and
is located immediately before the first element of the array.

type Unconstr_Array is array (Positive range <>) of Boolean;

Chapter 4: Implementation Defined Attributes 112

Put_Line ("Descriptor size = " & Unconstr_Array’Descriptor_Size’Img);

The attribute takes into account any additional padding due to type alignment. In the
example above, the descriptor contains two values of type Positive representing the low and
high bound. Since Positive has a size of 31 bits and an alignment of 4, the descriptor size
is 2 * Positive’Size + 2 or 64 bits.

4.15 Attribute Elaborated

The prefix of the ’Elaborated attribute must be a unit name. The value is a Boolean which
indicates whether or not the given unit has been elaborated. This attribute is primarily
intended for internal use by the generated code for dynamic elaboration checking, but it
can also be used in user programs. The value will always be True once elaboration of all
units has been completed. An exception is for units which need no elaboration, the value
is always False for such units.

4.16 Attribute Elab Body

This attribute can only be applied to a program unit name. It returns the entity for the
corresponding elaboration procedure for elaborating the body of the referenced unit. This
is used in the main generated elaboration procedure by the binder and is not normally used
in any other context. However, there may be specialized situations in which it is useful
to be able to call this elaboration procedure from Ada code, e.g., if it is necessary to do
selective re-elaboration to fix some error.

4.17 Attribute Elab Spec

This attribute can only be applied to a program unit name. It returns the entity for the
corresponding elaboration procedure for elaborating the spec of the referenced unit. This is
used in the main generated elaboration procedure by the binder and is not normally used in
any other context. However, there may be specialized situations in which it is useful to be
able to call this elaboration procedure from Ada code, e.g., if it is necessary to do selective
re-elaboration to fix some error.

4.18 Attribute Elab Subp Body

This attribute can only be applied to a library level subprogram name and is only allowed
in CodePeer mode. It returns the entity for the corresponding elaboration procedure for
elaborating the body of the referenced subprogram unit. This is used in the main generated
elaboration procedure by the binder in CodePeer mode only and is unrecognized otherwise.

4.19 Attribute Emax

The Emax attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.20 Attribute Enabled

The Enabled attribute allows an application program to check at compile time to see if
the designated check is currently enabled. The prefix is a simple identifier, referencing any

Chapter 4: Implementation Defined Attributes 113

predefined check name (other than All Checks) or a check name introduced by pragma
Check Name. If no argument is given for the attribute, the check is for the general state of
the check, if an argument is given, then it is an entity name, and the check indicates whether
an Suppress or Unsuppress has been given naming the entity (if not, then the argument is
ignored).
Note that instantiations inherit the check status at the point of the instantiation, so a useful
idiom is to have a library package that introduces a check name with pragma Check Name,
and then contains generic packages or subprograms which use the Enabled attribute to see
if the check is enabled. A user of this package can then issue a pragma Suppress or pragma
Unsuppress before instantiating the package or subprogram, controlling whether the check
will be present.

4.21 Attribute Enum Rep

For every enumeration subtype S, S’Enum_Rep denotes a function with the following spec:
function S’Enum_Rep (Arg : S’Base) return <Universal_Integer>;

It is also allowable to apply Enum Rep directly to an object of an enumeration type or to
a non-overloaded enumeration literal. In this case S’Enum_Rep is equivalent to typ’Enum_
Rep(S) where typ is the type of the enumeration literal or object.
The function returns the representation value for the given enumeration value. This will be
equal to value of the Pos attribute in the absence of an enumeration representation clause.
This is a static attribute (i.e.,:the result is static if the argument is static).
S’Enum_Rep can also be used with integer types and objects, in which case it simply returns
the integer value. The reason for this is to allow it to be used for (<>) discrete formal
arguments in a generic unit that can be instantiated with either enumeration types or
integer types. Note that if Enum Rep is used on a modular type whose upper bound
exceeds the upper bound of the largest signed integer type, and the argument is a variable,
so that the universal integer calculation is done at run time, then the call to Enum Rep
may raise Constraint Error.

4.22 Attribute Enum Val

For every enumeration subtype S, S’Enum_Val denotes a function with the following spec:
function S’Enum_Val (Arg : <Universal_Integer>) return S’Base;

The function returns the enumeration value whose representation matches the argument, or
raises Constraint Error if no enumeration literal of the type has the matching value. This
will be equal to value of the Val attribute in the absence of an enumeration representation
clause. This is a static attribute (i.e., the result is static if the argument is static).

4.23 Attribute Epsilon

The Epsilon attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.24 Attribute Fast Math

Standard’Fast Math (Standard is the only allowed prefix) yields a static Boolean value that
is True if pragma Fast Math is active, and False otherwise.

Chapter 4: Implementation Defined Attributes 114

4.25 Attribute Finalization Size

The prefix of attribute Finalization Size must be an object or a non-class-wide type. This
attribute returns the size of any hidden data reserved by the compiler to handle finalization-
related actions. The type of the attribute is universal integer.

Finalization Size yields a value of zero for a type with no controlled parts, an object whose
type has no controlled parts, or an object of a class-wide type whose tag denotes a type
with no controlled parts.

Note that only heap-allocated objects contain finalization data.

4.26 Attribute Fixed Value

For every fixed-point type S, S’Fixed_Value denotes a function with the following specifi-
cation:

function S’Fixed_Value (Arg : <Universal_Integer>) return S;

The value returned is the fixed-point value V such that:

V = Arg * S’Small

The effect is thus similar to first converting the argument to the integer type used to
represent S, and then doing an unchecked conversion to the fixed-point type. The difference
is that there are full range checks, to ensure that the result is in range. This attribute is
primarily intended for use in implementation of the input-output functions for fixed-point
values.

4.27 Attribute From Any

This internal attribute is used for the generation of remote subprogram stubs in the context
of the Distributed Systems Annex.

4.28 Attribute Has Access Values

The prefix of the Has Access Values attribute is a type. The result is a Boolean value which
is True if the is an access type, or is a composite type with a component (at any nesting
depth) that is an access type, and is False otherwise. The intended use of this attribute is
in conjunction with generic definitions. If the attribute is applied to a generic private type,
it indicates whether or not the corresponding actual type has access values.

4.29 Attribute Has Discriminants

The prefix of the Has Discriminants attribute is a type. The result is a Boolean value
which is True if the type has discriminants, and False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the attribute is applied to a generic
private type, it indicates whether or not the corresponding actual type has discriminants.

4.30 Attribute Img

The Img attribute differs from Image in that it is applied directly to an object, and yields
the same result as Image for the subtype of the object. This is convenient for debugging:

Chapter 4: Implementation Defined Attributes 115

Put_Line ("X = " & X’Img);

has the same meaning as the more verbose:
Put_Line ("X = " & T’Image (X));

where T is the (sub)type of the object X.
Note that technically, in analogy to Image, X’Img returns a parameterless function that
returns the appropriate string when called. This means that X’Img can be renamed as a
function-returning-string, or used in an instantiation as a function parameter.

4.31 Attribute Integer Value

For every integer type S, S’Integer_Value denotes a function with the following spec:
function S’Integer_Value (Arg : <Universal_Fixed>) return S;

The value returned is the integer value V, such that:
Arg = V * T’Small

where T is the type of Arg. The effect is thus similar to first doing an unchecked conversion
from the fixed-point type to its corresponding implementation type, and then converting the
result to the target integer type. The difference is that there are full range checks, to ensure
that the result is in range. This attribute is primarily intended for use in implementation
of the standard input-output functions for fixed-point values.

4.32 Attribute Invalid Value

For every scalar type S, S’Invalid Value returns an undefined value of the type. If possi-
ble this value is an invalid representation for the type. The value returned is identical to
the value used to initialize an otherwise uninitialized value of the type if pragma Initial-
ize Scalars is used, including the ability to modify the value with the binder -Sxx flag and
relevant environment variables at run time.

4.33 Attribute Iterable

Equivalent to Aspect Iterable.

4.34 Attribute Large

The Large attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.35 Attribute Library Level

P’Library Level, where P is an entity name, returns a Boolean value which is True if the
entity is declared at the library level, and False otherwise. Note that within a generic
instantition, the name of the generic unit denotes the instance, which means that this
attribute can be used to test if a generic is instantiated at the library level, as shown in this
example:

generic
...

package Gen is

Chapter 4: Implementation Defined Attributes 116

pragma Compile_Time_Error
(not Gen’Library_Level,
"Gen can only be instantiated at library level");

...
end Gen;

4.36 Attribute Lock Free

P’Lock Free, where P is a protected object, returns True if a pragma Lock Free applies to
P.

4.37 Attribute Loop Entry

Syntax:
X’Loop_Entry [(loop_name)]

The Loop Entry attribute is used to refer to the value that an expression had upon entry
to a given loop in much the same way that the Old attribute in a subprogram postcondition
can be used to refer to the value an expression had upon entry to the subprogram. The
relevant loop is either identified by the given loop name, or it is the innermost enclosing
loop when no loop name is given.
A Loop Entry attribute can only occur within a Loop Variant or Loop Invariant pragma.
A common use of Loop Entry is to compare the current value of objects with their initial
value at loop entry, in a Loop Invariant pragma.
The effect of using X’Loop Entry is the same as declaring a constant initialized with the
initial value of X at loop entry. This copy is not performed if the loop is not entered, or if
the corresponding pragmas are ignored or disabled.

4.38 Attribute Machine Size

This attribute is identical to the Object Size attribute. It is provided for compatibility with
the DEC Ada 83 attribute of this name.

4.39 Attribute Mantissa

The Mantissa attribute is provided for compatibility with Ada 83. See the Ada 83 reference
manual for an exact description of the semantics of this attribute.

4.40 Attribute Maximum Alignment

Standard’Maximum Alignment (Standard is the only permissible prefix) provides the max-
imum useful alignment value for the target. This is a static value that can be used to specify
the alignment for an object, guaranteeing that it is properly aligned in all cases.

4.41 Attribute Mechanism Code

function’Mechanism_Code yields an integer code for the mechanism used for the result of
function, and subprogram’Mechanism_Code (n) yields the mechanism used for formal pa-
rameter number n (a static integer value with 1 meaning the first parameter) of subprogram.
The code returned is:

Chapter 4: Implementation Defined Attributes 117

1
by copy (value)

2
by reference

4.42 Attribute Null Parameter

A reference T’Null_Parameter denotes an imaginary object of type or subtype T allocated
at machine address zero. The attribute is allowed only as the default expression of a formal
parameter, or as an actual expression of a subprogram call. In either case, the subprogram
must be imported.
The identity of the object is represented by the address zero in the argument list, indepen-
dent of the passing mechanism (explicit or default).
This capability is needed to specify that a zero address should be passed for a record or
other composite object passed by reference. There is no way of indicating this without the
Null Parameter attribute.

4.43 Attribute Object Size

The size of an object is not necessarily the same as the size of the type of an object. This is
because by default object sizes are increased to be a multiple of the alignment of the object.
For example, Natural’Size is 31, but by default objects of type Natural will have a size of
32 bits. Similarly, a record containing an integer and a character:

type Rec is record
I : Integer;
C : Character;

end record;

will have a size of 40 (that is Rec’Size will be 40). The alignment will be 4, because of the
integer field, and so the default size of record objects for this type will be 64 (8 bytes).
If the alignment of the above record is specified to be 1, then the object size will be 40 (5
bytes). This is true by default, and also an object size of 40 can be explicitly specified in
this case.
A consequence of this capability is that different object sizes can be given to subtypes that
would otherwise be considered in Ada to be statically matching. But it makes no sense to
consider such subtypes as statically matching. Consequently, in GNAT we add a rule to
the static matching rules that requires object sizes to match. Consider this example:

1. procedure BadAVConvert is
2. type R is new Integer;
3. subtype R1 is R range 1 .. 10;
4. subtype R2 is R range 1 .. 10;
5. for R1’Object_Size use 8;
6. for R2’Object_Size use 16;
7. type R1P is access all R1;
8. type R2P is access all R2;
9. R1PV : R1P := new R1’(4);

Chapter 4: Implementation Defined Attributes 118

10. R2PV : R2P;
11. begin
12. R2PV := R2P (R1PV);

|
>>> target designated subtype not compatible with

type "R1" defined at line 3

13. end;

In the absence of lines 5 and 6, types R1 and R2 statically match and hence the conversion
on line 12 is legal. But since lines 5 and 6 cause the object sizes to differ, GNAT considers
that types R1 and R2 are not statically matching, and line 12 generates the diagnostic
shown above.

Similar additional checks are performed in other contexts requiring statically matching
subtypes.

4.44 Attribute Old

In addition to the usage of Old defined in the Ada 2012 RM (usage within Post aspect),
GNAT also permits the use of this attribute in implementation defined pragmas Postcondi-
tion, Contract Cases and Test Case. Also usages of Old which would be illegal according
to the Ada 2012 RM definition are allowed under control of implementation defined pragma
Unevaluated Use Of Old.

4.45 Attribute Passed By Reference

type’Passed_By_Reference for any subtype type returns a value of type Boolean value
that is True if the type is normally passed by reference and False if the type is normally
passed by copy in calls. For scalar types, the result is always False and is static. For
non-scalar types, the result is nonstatic.

4.46 Attribute Pool Address

X’Pool_Address for any object X returns the address of X within its storage pool. This is
the same as X’Address, except that for an unconstrained array whose bounds are allocated
just before the first component, X’Pool_Address returns the address of those bounds,
whereas X’Address returns the address of the first component.

Here, we are interpreting ’storage pool’ broadly to mean wherever the object is
allocated, which could be a user-defined storage pool, the global heap, on the stack, or
in a static memory area. For an object created by new, Ptr.all’Pool_Address is what is
passed to Allocate and returned from Deallocate.

4.47 Attribute Range Length

type’Range_Length for any discrete type type yields the number of values represented by
the subtype (zero for a null range). The result is static for static subtypes. Range Length
applied to the index subtype of a one dimensional array always gives the same result as
Length applied to the array itself.

Chapter 4: Implementation Defined Attributes 119

4.48 Attribute Restriction Set

This attribute allows compile time testing of restrictions that are currently in effect. It
is primarily intended for specializing code in the run-time based on restrictions that are
active (e.g. don’t need to save fpt registers if restriction No Floating Point is known to be
in effect), but can be used anywhere.

There are two forms:

System’Restriction_Set (partition_boolean_restriction_NAME)
System’Restriction_Set (No_Dependence => library_unit_NAME);

In the case of the first form, the only restriction names allowed are parameterless restric-
tions that are checked for consistency at bind time. For a complete list see the subtype
System.Rident.Partition Boolean Restrictions.

The result returned is True if the restriction is known to be in effect, and False if the
restriction is known not to be in effect. An important guarantee is that the value of a
Restriction Set attribute is known to be consistent throughout all the code of a partition.

This is trivially achieved if the entire partition is compiled with a consistent set of restriction
pragmas. However, the compilation model does not require this. It is possible to compile
one set of units with one set of pragmas, and another set of units with another set of
pragmas. It is even possible to compile a spec with one set of pragmas, and then WITH the
same spec with a different set of pragmas. Inconsistencies in the actual use of the restriction
are checked at bind time.

In order to achieve the guarantee of consistency for the Restriction Set pragma, we consider
that a use of the pragma that yields False is equivalent to a violation of the restriction.

So for example if you write

if System’Restriction_Set (No_Floating_Point) then
...

else
...

end if;

And the result is False, so that the else branch is executed, you can assume that this
restriction is not set for any unit in the partition. This is checked by considering this use of
the restriction pragma to be a violation of the restriction No Floating Point. This means
that no other unit can attempt to set this restriction (if some unit does attempt to set it,
the binder will refuse to bind the partition).

Technical note: The restriction name and the unit name are intepreted entirely syntactically,
as in the corresponding Restrictions pragma, they are not analyzed semantically, so they
do not have a type.

4.49 Attribute Result

function’Result can only be used with in a Postcondition pragma for a function. The
prefix must be the name of the corresponding function. This is used to refer to the result
of the function in the postcondition expression. For a further discussion of the use of this
attribute and examples of its use, see the description of pragma Postcondition.

Chapter 4: Implementation Defined Attributes 120

4.50 Attribute Safe Emax

The Safe Emax attribute is provided for compatibility with Ada 83. See the Ada 83 refer-
ence manual for an exact description of the semantics of this attribute.

4.51 Attribute Safe Large

The Safe Large attribute is provided for compatibility with Ada 83. See the Ada 83 refer-
ence manual for an exact description of the semantics of this attribute.

4.52 Attribute Safe Small

The Safe Small attribute is provided for compatibility with Ada 83. See the Ada 83 refer-
ence manual for an exact description of the semantics of this attribute.

4.53 Attribute Scalar Storage Order

For every array or record type S, the representation attribute Scalar Storage Order denotes
the order in which storage elements that make up scalar components are ordered within S.
The value given must be a static expression of type System.Bit Order. The following is an
example of the use of this feature:

-- Component type definitions

subtype Yr_Type is Natural range 0 .. 127;
subtype Mo_Type is Natural range 1 .. 12;
subtype Da_Type is Natural range 1 .. 31;

-- Record declaration

type Date is record
Years_Since_1980 : Yr_Type;
Month : Mo_Type;
Day_Of_Month : Da_Type;

end record;

-- Record representation clause

for Date use record
Years_Since_1980 at 0 range 0 .. 6;
Month at 0 range 7 .. 10;
Day_Of_Month at 0 range 11 .. 15;

end record;

-- Attribute definition clauses

for Date’Bit_Order use System.High_Order_First;
for Date’Scalar_Storage_Order use System.High_Order_First;
-- If Scalar_Storage_Order is specified, it must be consistent with

Chapter 4: Implementation Defined Attributes 121

-- Bit_Order, so it’s best to always define the latter explicitly if
-- the former is used.

Other properties are as for standard representation attribute Bit Order, as defined by Ada
RM 13.5.3(4). The default is System.Default Bit Order.
For a record type T, if T’Scalar_Storage_Order is specified explicitly, it shall be equal to
T’Bit_Order. Note: this means that if a Scalar Storage Order attribute definition clause
is not confirming, then the type’s Bit Order shall be specified explicitly and set to the same
value.
Derived types inherit an explicitly set scalar storage order from their parent types. This
may be overridden for the derived type by giving an explicit scalar storage order for the
derived type. For a record extension, the derived type must have the same scalar storage
order as the parent type.
A component of a record or array type that is a bit-packed array, or that does not start on
a byte boundary, must have the same scalar storage order as the enclosing record or array
type.
No component of a type that has an explicit Scalar Storage Order attribute definition may
be aliased.
A confirming Scalar Storage Order attribute definition clause (i.e. with a value equal to
System.Default Bit Order) has no effect.
If the opposite storage order is specified, then whenever the value of a scalar component of
an object of type S is read, the storage elements of the enclosing machine scalar are first
reversed (before retrieving the component value, possibly applying some shift and mask
operatings on the enclosing machine scalar), and the opposite operation is done for writes.
In that case, the restrictions set forth in 13.5.1(10.3/2) for scalar components are relaxed.
Instead, the following rules apply:

* the underlying storage elements are those at positions (position + first bit
/ storage element size) .. (position + (last bit + storage element size - 1) /
storage element size)

* the sequence of underlying storage elements shall have a size no greater than the largest
machine scalar

* the enclosing machine scalar is defined as the smallest machine scalar starting at a
position no greater than position + first bit / storage element size and covering stor-
age elements at least up to position + (last bit + storage element size - 1) / stor-
age element size

* the position of the component is interpreted relative to that machine scalar.

If no scalar storage order is specified for a type (either directly, or by inheritance in the case
of a derived type), then the default is normally the native ordering of the target, but this
default can be overridden using pragma Default Scalar Storage Order.
Note that if a component of T is itself of a record or array type, the specfied
Scalar Storage Order does not apply to that nested type: an explicit attribute definition
clause must be provided for the component type as well if desired.
Note that the scalar storage order only affects the in-memory data representation. It has
no effect on the representation used by stream attributes.

Chapter 4: Implementation Defined Attributes 122

4.54 Attribute Simple Storage Pool

For every nonformal, nonderived access-to-object type Acc, the representation attribute
Simple Storage Pool may be specified via an attribute definition clause (or by specifying
the equivalent aspect):

My_Pool : My_Simple_Storage_Pool_Type;

type Acc is access My_Data_Type;

for Acc’Simple_Storage_Pool use My_Pool;

The name given in an attribute definition clause for the Simple Storage Pool attribute shall
denote a variable of a ’simple storage pool type’ (see pragma Simple Storage Pool Type).
The use of this attribute is only allowed for a prefix denoting a type for which it has been
specified. The type of the attribute is the type of the variable specified as the simple storage
pool of the access type, and the attribute denotes that variable.
It is illegal to specify both Storage Pool and Simple Storage Pool for the same access type.
If the Simple Storage Pool attribute has been specified for an access type, then applying
the Storage Pool attribute to the type is flagged with a warning and its evaluation raises
the exception Program Error.
If the Simple Storage Pool attribute has been specified for an access type S, then the
evaluation of the attribute S’Storage_Size returns the result of calling Storage_Size
(S’Simple_Storage_Pool), which is intended to indicate the number of storage elements
reserved for the simple storage pool. If the Storage Size function has not been defined for
the simple storage pool type, then this attribute returns zero.
If an access type S has a specified simple storage pool of type SSP, then the evaluation of an
allocator for that access type calls the primitive Allocate procedure for type SSP, passing
S’Simple_Storage_Pool as the pool parameter. The detailed semantics of such allocators
is the same as those defined for allocators in section 13.11 of the Ada Reference Manual,
with the term simple storage pool substituted for storage pool.
If an access type S has a specified simple storage pool of type SSP, then a call to an instance
of the Ada.Unchecked Deallocation for that access type invokes the primitive Deallocate
procedure for type SSP, passing S’Simple_Storage_Pool as the pool parameter. The
detailed semantics of such unchecked deallocations is the same as defined in section 13.11.2
of the Ada Reference Manual, except that the term ’simple storage pool’ is substituted for
’storage pool’.

4.55 Attribute Small

The Small attribute is defined in Ada 95 (and Ada 2005) only for fixed-point types. GNAT
also allows this attribute to be applied to floating-point types for compatibility with Ada 83.
See the Ada 83 reference manual for an exact description of the semantics of this attribute
when applied to floating-point types.

4.56 Attribute Storage Unit

Standard’Storage Unit (Standard is the only permissible prefix) provides the same value as
System.Storage Unit.

Chapter 4: Implementation Defined Attributes 123

4.57 Attribute Stub Type

The GNAT implementation of remote access-to-classwide types is organized as described
in AARM section E.4 (20.t): a value of an RACW type (designating a remote object) is
represented as a normal access value, pointing to a "stub" object which in turn contains the
necessary information to contact the designated remote object. A call on any dispatching
operation of such a stub object does the remote call, if necessary, using the information in
the stub object to locate the target partition, etc.
For a prefix T that denotes a remote access-to-classwide type, T’Stub Type denotes the
type of the corresponding stub objects.
By construction, the layout of T’Stub Type is identical to that of type RACW Stub Type
declared in the internal implementation-defined unit System.Partition Interface. Use of this
attribute will create an implicit dependency on this unit.

4.58 Attribute System Allocator Alignment

Standard’System Allocator Alignment (Standard is the only permissible prefix) provides
the observable guaranted to be honored by the system allocator (malloc). This is a static
value that can be used in user storage pools based on malloc either to reject allocation with
alignment too large or to enable a realignment circuitry if the alignment request is larger
than this value.

4.59 Attribute Target Name

Standard’Target Name (Standard is the only permissible prefix) provides a static string
value that identifies the target for the current compilation. For GCC implementations, this
is the standard gcc target name without the terminating slash (for example, GNAT 5.0 on
windows yields "i586-pc-mingw32msv").

4.60 Attribute To Address

The System’To Address (System is the only permissible prefix) denotes a function identical
to System.Storage Elements.To Address except that it is a static attribute. This means that
if its argument is a static expression, then the result of the attribute is a static expression.
This means that such an expression can be used in contexts (e.g., preelaborable packages)
which require a static expression and where the function call could not be used (since the
function call is always nonstatic, even if its argument is static). The argument must be in
the range -(2**(m-1) .. 2**m-1, where m is the memory size (typically 32 or 64). Negative
values are intepreted in a modular manner (e.g., -1 means the same as 16#FFFF FFFF#
on a 32 bits machine).

4.61 Attribute To Any

This internal attribute is used for the generation of remote subprogram stubs in the context
of the Distributed Systems Annex.

4.62 Attribute Type Class

type’Type_Class for any type or subtype type yields the value of the type class for the full
type of type. If type is a generic formal type, the value is the value for the corresponding

Chapter 4: Implementation Defined Attributes 124

actual subtype. The value of this attribute is of type System.Aux_DEC.Type_Class, which
has the following definition:

type Type_Class is
(Type_Class_Enumeration,
Type_Class_Integer,
Type_Class_Fixed_Point,
Type_Class_Floating_Point,
Type_Class_Array,
Type_Class_Record,
Type_Class_Access,
Type_Class_Task,
Type_Class_Address);

Protected types yield the value Type Class Task, which thus applies to all concurrent types.
This attribute is designed to be compatible with the DEC Ada 83 attribute of the same
name.

4.63 Attribute Type Key

The Type Key attribute is applicable to a type or subtype and yields a value of type
Standard.String containing encoded information about the type or subtype. This provides
improved compatibility with other implementations that support this attribute.

4.64 Attribute TypeCode

This internal attribute is used for the generation of remote subprogram stubs in the context
of the Distributed Systems Annex.

4.65 Attribute Unconstrained Array

The Unconstrained Array attribute can be used with a prefix that denotes any type or
subtype. It is a static attribute that yields True if the prefix designates an unconstrained
array, and False otherwise. In a generic instance, the result is still static, and yields the
result of applying this test to the generic actual.

4.66 Attribute Universal Literal String

The prefix of Universal Literal String must be a named number. The static result is the
string consisting of the characters of the number as defined in the original source. This
allows the user program to access the actual text of named numbers without intermediate
conversions and without the need to enclose the strings in quotes (which would preclude
their use as numbers).
For example, the following program prints the first 50 digits of pi:

with Text_IO; use Text_IO;
with Ada.Numerics;
procedure Pi is
begin

Put (Ada.Numerics.Pi’Universal_Literal_String);
end;

Chapter 4: Implementation Defined Attributes 125

4.67 Attribute Unrestricted Access

The Unrestricted Access attribute is similar to Access except that all accessibility and
aliased view checks are omitted. This is a user-beware attribute.

For objects, it is similar to Address, for which it is a desirable replacement where the value
desired is an access type. In other words, its effect is similar to first applying the Address
attribute and then doing an unchecked conversion to a desired access type.

For subprograms, P’Unrestricted Access may be used where P’Access would be illegal, to
construct a value of a less-nested named access type that designates a more-nested sub-
program. This value may be used in indirect calls, so long as the more-nested subprogram
still exists; once the subprogram containing it has returned, such calls are erroneous. For
example:

package body P is

type Less_Nested is not null access procedure;
Global : Less_Nested;

procedure P1 is
begin

Global.all;
end P1;

procedure P2 is
Local_Var : Integer;

procedure More_Nested is
begin

... Local_Var ...
end More_Nested;

begin
Global := More_Nested’Unrestricted_Access;
P1;

end P2;

end P;

When P1 is called from P2, the call via Global is OK, but if P1 were called after P2 returns,
it would be an erroneous use of a dangling pointer.

For objects, it is possible to use Unrestricted Access for any type. However, if the result is
of an access-to-unconstrained array subtype, then the resulting pointer has the same scope
as the context of the attribute, and must not be returned to some enclosing scope. For
instance, if a function uses Unrestricted Access to create an access-to-unconstrained-array
and returns that value to the caller, the result will involve dangling pointers. In addition, it
is only valid to create pointers to unconstrained arrays using this attribute if the pointer has
the normal default ’fat’ representation where a pointer has two components, one points to
the array and one points to the bounds. If a size clause is used to force ’thin’ representation

Chapter 4: Implementation Defined Attributes 126

for a pointer to unconstrained where there is only space for a single pointer, then the
resulting pointer is not usable.
In the simple case where a direct use of Unrestricted Access attempts to make a thin pointer
for a non-aliased object, the compiler will reject the use as illegal, as shown in the following
example:

with System; use System;
procedure SliceUA2 is

type A is access all String;
for A’Size use Standard’Address_Size;

procedure P (Arg : A) is
begin

null;
end P;

X : String := "hello world!";
X2 : aliased String := "hello world!";

AV : A := X’Unrestricted_Access; -- ERROR
|

>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object

begin
P (X’Unrestricted_Access); -- ERROR

|
>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object

P (X(7 .. 12)’Unrestricted_Access); -- ERROR
|

>>> illegal use of Unrestricted_Access attribute
>>> attempt to generate thin pointer to unaliased object

P (X2’Unrestricted_Access); -- OK
end;

but other cases cannot be detected by the compiler, and are considered to be erroneous.
Consider the following example:

with System; use System;
with System; use System;
procedure SliceUA is

type AF is access all String;

type A is access all String;
for A’Size use Standard’Address_Size;

Chapter 4: Implementation Defined Attributes 127

procedure P (Arg : A) is
begin

if Arg’Length /= 6 then
raise Program_Error;

end if;
end P;

X : String := "hello world!";
Y : AF := X (7 .. 12)’Unrestricted_Access;

begin
P (A (Y));

end;

A normal unconstrained array value or a constrained array object marked as aliased has
the bounds in memory just before the array, so a thin pointer can retrieve both the data
and the bounds. But in this case, the non-aliased object X does not have the bounds before
the string. If the size clause for type A were not present, then the pointer would be a fat
pointer, where one component is a pointer to the bounds, and all would be well. But with
the size clause present, the conversion from fat pointer to thin pointer in the call loses the
bounds, and so this is erroneous, and the program likely raises a Program Error exception.

In general, it is advisable to completely avoid mixing the use of thin pointers and the use of
Unrestricted Access where the designated type is an unconstrained array. The use of thin
pointers should be restricted to cases of porting legacy code that implicitly assumes the size
of pointers, and such code should not in any case be using this attribute.

Another erroneous situation arises if the attribute is applied to a constant. The resulting
pointer can be used to access the constant, but the effect of trying to modify a constant in
this manner is not well-defined. Consider this example:

P : constant Integer := 4;
type R is access all Integer;
RV : R := P’Unrestricted_Access;
..
RV.all := 3;

Here we attempt to modify the constant P from 4 to 3, but the compiler may or may not
notice this attempt, and subsequent references to P may yield either the value 3 or the value
4 or the assignment may blow up if the compiler decides to put P in read-only memory.
One particular case where Unrestricted Access can be used in this way is to modify the
value of an IN parameter:

procedure K (S : in String) is
type R is access all Character;
RV : R := S (3)’Unrestricted_Access;

begin
RV.all := ’a’;

end;

Chapter 4: Implementation Defined Attributes 128

In general this is a risky approach. It may appear to "work" but such uses of Unre-
stricted Access are potentially non-portable, even from one version of GNAT to another,
so are best avoided if possible.

4.68 Attribute Update

The Update attribute creates a copy of an array or record value with one or more modified
components. The syntax is:

PREFIX’Update (RECORD_COMPONENT_ASSOCIATION_LIST)
PREFIX’Update (ARRAY_COMPONENT_ASSOCIATION {, ARRAY_COMPONENT_ASSOCIATION })
PREFIX’Update (MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION

{, MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION })

MULTIDIMENSIONAL_ARRAY_COMPONENT_ASSOCIATION ::= INDEX_EXPRESSION_LIST_LIST => EXPRESSION
INDEX_EXPRESSION_LIST_LIST ::= INDEX_EXPRESSION_LIST {| INDEX_EXPRESSION_LIST }
INDEX_EXPRESSION_LIST ::= (EXPRESSION {, EXPRESSION })

where PREFIX is the name of an array or record object, the association list in parentheses
does not contain an others choice and the box symbol <> may not appear in any expression.
The effect is to yield a copy of the array or record value which is unchanged apart from
the components mentioned in the association list, which are changed to the indicated value.
The original value of the array or record value is not affected. For example:

type Arr is Array (1 .. 5) of Integer;
...
Avar1 : Arr := (1,2,3,4,5);
Avar2 : Arr := Avar1’Update (2 => 10, 3 .. 4 => 20);

yields a value for Avar2 of 1,10,20,20,5 with Avar1 begin unmodified. Similarly:
type Rec is A, B, C : Integer;
...
Rvar1 : Rec := (A => 1, B => 2, C => 3);
Rvar2 : Rec := Rvar1’Update (B => 20);

yields a value for Rvar2 of (A => 1, B => 20, C => 3), with Rvar1 being unmodifed. Note
that the value of the attribute reference is computed completely before it is used. This
means that if you write:

Avar1 := Avar1’Update (1 => 10, 2 => Function_Call);

then the value of Avar1 is not modified if Function Call raises an exception, unlike the
effect of a series of direct assignments to elements of Avar1. In general this requires that
two extra complete copies of the object are required, which should be kept in mind when
considering efficiency.
The Update attribute cannot be applied to prefixes of a limited type, and cannot reference
discriminants in the case of a record type. The accessibility level of an Update attribute
result object is defined as for an aggregate.
In the record case, no component can be mentioned more than once. In the array case, two
overlapping ranges can appear in the association list, in which case the modifications are
processed left to right.
Multi-dimensional arrays can be modified, as shown by this example:

Chapter 4: Implementation Defined Attributes 129

A : array (1 .. 10, 1 .. 10) of Integer;
..
A := A’Update ((1, 2) => 20, (3, 4) => 30);

which changes element (1,2) to 20 and (3,4) to 30.

4.69 Attribute Valid Scalars

The ’Valid Scalars attribute is intended to make it easier to check the validity of scalar
subcomponents of composite objects. It is defined for any prefix X that denotes an object.
The value of this attribute is of the predefined type Boolean. X’Valid Scalars yields True
if and only if evaluation of P’Valid yields True for every scalar part P of X or if X has no
scalar parts. It is not specified in what order the scalar parts are checked, nor whether any
more are checked after any one of them is determined to be invalid. If the prefix X is of
a class-wide type T’Class (where T is the associated specific type), or if the prefix X is of
a specific tagged type T, then only the scalar parts of components of T are traversed; in
other words, components of extensions of T are not traversed even if T’Class (X)’Tag /=
T’Tag . The compiler will issue a warning if it can be determined at compile time that the
prefix of the attribute has no scalar parts (e.g., if the prefix is of an access type, an interface
type, an undiscriminated task type, or an undiscriminated protected type).

For scalar types, Valid Scalars is equivalent to Valid. The use of this attribute is not
permitted for Unchecked Union types for which in general it is not possible to determine
the values of the discriminants.

Note: Valid Scalars can generate a lot of code, especially in the case of a large variant
record. If the attribute is called in many places in the same program applied to objects
of the same type, it can reduce program size to write a function with a single use of the
attribute, and then call that function from multiple places.

4.70 Attribute VADS Size

The ’VADS Size attribute is intended to make it easier to port legacy code which relies on
the semantics of ’Size as implemented by the VADS Ada 83 compiler. GNAT makes a best
effort at duplicating the same semantic interpretation. In particular, ’VADS Size applied
to a predefined or other primitive type with no Size clause yields the Object Size (for
example, Natural’Size is 32 rather than 31 on typical machines). In addition ’VADS Size
applied to an object gives the result that would be obtained by applying the attribute to
the corresponding type.

4.71 Attribute Value Size

type’Value_Size is the number of bits required to represent a value of the given subtype.
It is the same as type’Size, but, unlike Size, may be set for non-first subtypes.

4.72 Attribute Wchar T Size

Standard’Wchar T Size (Standard is the only permissible prefix) provides the size in bits
of the C wchar t type primarily for constructing the definition of this type in package
Interfaces.C. The result is a static constant.

Chapter 4: Implementation Defined Attributes 130

4.73 Attribute Word Size

Standard’Word Size (Standard is the only permissible prefix) provides the value
System.Word Size. The result is a static constant.

Chapter 5: Standard and Implementation Defined Restrictions 131

5 Standard and Implementation Defined
Restrictions

All Ada Reference Manual-defined Restriction identifiers are implemented:

* language-defined restrictions (see 13.12.1)

* tasking restrictions (see D.7)

* high integrity restrictions (see H.4)

GNAT implements additional restriction identifiers. All restrictions, whether language de-
fined or GNAT-specific, are listed in the following.

5.1 Partition-Wide Restrictions

There are two separate lists of restriction identifiers. The first set requires consistency
throughout a partition (in other words, if the restriction identifier is used for any compilation
unit in the partition, then all compilation units in the partition must obey the restriction).

5.1.1 Immediate Reclamation

[RM H.4] This restriction ensures that, except for storage occupied by objects created by
allocators and not deallocated via unchecked deallocation, any storage reserved at run time
for an object is immediately reclaimed when the object no longer exists.

5.1.2 Max Asynchronous Select Nesting

[RM D.7] Specifies the maximum dynamic nesting level of asynchronous selects. Violations
of this restriction with a value of zero are detected at compile time. Violations of this
restriction with values other than zero cause Storage Error to be raised.

5.1.3 Max Entry Queue Length

[RM D.7] This restriction is a declaration that any protected entry compiled in the scope
of the restriction has at most the specified number of tasks waiting on the entry at any
one time, and so no queue is required. Note that this restriction is checked at run time.
Violation of this restriction results in the raising of Program Error exception at the point
of the call.

The restriction Max Entry Queue Depth is recognized as a synonym for
Max Entry Queue Length. This is retained for historical compatibility purposes
(and a warning will be generated for its use if warnings on obsolescent features are
activated).

5.1.4 Max Protected Entries

[RM D.7] Specifies the maximum number of entries per protected type. The bounds of
every entry family of a protected unit shall be static, or shall be defined by a discriminant
of a subtype whose corresponding bound is static.

5.1.5 Max Select Alternatives

[RM D.7] Specifies the maximum number of alternatives in a selective accept.

Chapter 5: Standard and Implementation Defined Restrictions 132

5.1.6 Max Storage At Blocking

[RM D.7] Specifies the maximum portion (in storage elements) of a task’s Storage Size that
can be retained by a blocked task. A violation of this restriction causes Storage Error to
be raised.

5.1.7 Max Task Entries

[RM D.7] Specifies the maximum number of entries per task. The bounds of every entry
family of a task unit shall be static, or shall be defined by a discriminant of a subtype whose
corresponding bound is static.

5.1.8 Max Tasks

[RM D.7] Specifies the maximum number of task that may be created, not counting the
creation of the environment task. Violations of this restriction with a value of zero are
detected at compile time. Violations of this restriction with values other than zero cause
Storage Error to be raised.

5.1.9 No Abort Statements

[RM D.7] There are no abort statements, and there are no calls to Task Identification.Abort Task.

5.1.10 No Access Parameter Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator as the actual parameter to an access parameter.

5.1.11 No Access Subprograms

[RM H.4] This restriction ensures at compile time that there are no declarations of access-
to-subprogram types.

5.1.12 No Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator.

5.1.13 No Anonymous Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator of anonymous access type.

5.1.14 No Asynchronous Control

[RM J.13] This restriction ensures at compile time that there are no semantic dependences
on the predefined package Asynchronous Task Control.

5.1.15 No Calendar

[GNAT] This restriction ensures at compile time that there are no semantic dependences
on package Calendar.

5.1.16 No Coextensions

[RM H.4] This restriction ensures at compile time that there are no coextensions. See 3.10.2.

Chapter 5: Standard and Implementation Defined Restrictions 133

5.1.17 No Default Initialization

[GNAT] This restriction prohibits any instance of default initialization of variables. The
binder implements a consistency rule which prevents any unit compiled without the restric-
tion from with’ing a unit with the restriction (this allows the generation of initialization
procedures to be skipped, since you can be sure that no call is ever generated to an ini-
tialization procedure in a unit with the restriction active). If used in conjunction with
Initialize Scalars or Normalize Scalars, the effect is to prohibit all cases of variables de-
clared without a specific initializer (including the case of OUT scalar parameters).

5.1.18 No Delay

[RM H.4] This restriction ensures at compile time that there are no delay statements and
no semantic dependences on package Calendar.

5.1.19 No Dependence

[RM 13.12.1] This restriction ensures at compile time that there are no dependences on a
library unit.

5.1.20 No Direct Boolean Operators

[GNAT] This restriction ensures that no logical operators (and/or/xor) are used on operands
of type Boolean (or any type derived from Boolean). This is intended for use in safety critical
programs where the certification protocol requires the use of short-circuit (and then, or else)
forms for all composite boolean operations.

5.1.21 No Dispatch

[RM H.4] This restriction ensures at compile time that there are no occurrences of T’Class,
for any (tagged) subtype T.

5.1.22 No Dispatching Calls

[GNAT] This restriction ensures at compile time that the code generated by the compiler
involves no dispatching calls. The use of this restriction allows the safe use of record ex-
tensions, classwide membership tests and other classwide features not involving implicit
dispatching. This restriction ensures that the code contains no indirect calls through a
dispatching mechanism. Note that this includes internally-generated calls created by the
compiler, for example in the implementation of class-wide objects assignments. The mem-
bership test is allowed in the presence of this restriction, because its implementation requires
no dispatching. This restriction is comparable to the official Ada restriction No Dispatch
except that it is a bit less restrictive in that it allows all classwide constructs that do not
imply dispatching. The following example indicates constructs that violate this restriction.

package Pkg is
type T is tagged record
Data : Natural;

end record;
procedure P (X : T);

type DT is new T with record
More_Data : Natural;

Chapter 5: Standard and Implementation Defined Restrictions 134

end record;
procedure Q (X : DT);

end Pkg;

with Pkg; use Pkg;
procedure Example is

procedure Test (O : T’Class) is
N : Natural := O’Size;-- Error: Dispatching call
C : T’Class := O; -- Error: implicit Dispatching Call

begin
if O in DT’Class then -- OK : Membership test

Q (DT (O)); -- OK : Type conversion plus direct call
else

P (O); -- Error: Dispatching call
end if;

end Test;

Obj : DT;
begin

P (Obj); -- OK : Direct call
P (T (Obj)); -- OK : Type conversion plus direct call
P (T’Class (Obj)); -- Error: Dispatching call

Test (Obj); -- OK : Type conversion

if Obj in T’Class then -- OK : Membership test
null;

end if;
end Example;

5.1.23 No Dynamic Attachment

[RM D.7] This restriction ensures that there is no call to any of the operations defined
in package Ada.Interrupts (Is Reserved, Is Attached, Current Handler, Attach Handler,
Exchange Handler, Detach Handler, and Reference).

The restriction No Dynamic Interrupts is recognized as a synonym for
No Dynamic Attachment. This is retained for historical compatibility purposes
(and a warning will be generated for its use if warnings on obsolescent features are
activated).

5.1.24 No Dynamic Priorities

[RM D.7] There are no semantic dependencies on the package Dynamic Priorities.

5.1.25 No Entry Calls In Elaboration Code

[GNAT] This restriction ensures at compile time that no task or protected entry calls are
made during elaboration code. As a result of the use of this restriction, the compiler can

Chapter 5: Standard and Implementation Defined Restrictions 135

assume that no code past an accept statement in a task can be executed at elaboration
time.

5.1.26 No Enumeration Maps

[GNAT] This restriction ensures at compile time that no operations requiring enumeration
maps are used (that is Image and Value attributes applied to enumeration types).

5.1.27 No Exception Handlers

[GNAT] This restriction ensures at compile time that there are no explicit exception han-
dlers. It also indicates that no exception propagation will be provided. In this mode,
exceptions may be raised but will result in an immediate call to the last chance handler, a
routine that the user must define with the following profile:

procedure Last_Chance_Handler
(Source_Location : System.Address; Line : Integer);

pragma Export (C, Last_Chance_Handler,
"__gnat_last_chance_handler");

The parameter is a C null-terminated string representing a message to be associated with the
exception (typically the source location of the raise statement generated by the compiler).
The Line parameter when nonzero represents the line number in the source program where
the raise occurs.

5.1.28 No Exception Propagation

[GNAT] This restriction guarantees that exceptions are never propagated to an outer sub-
program scope. The only case in which an exception may be raised is when the handler
is statically in the same subprogram, so that the effect of a raise is essentially like a goto
statement. Any other raise statement (implicit or explicit) will be considered unhandled.
Exception handlers are allowed, but may not contain an exception occurrence identifier (ex-
ception choice). In addition, use of the package GNAT.Current Exception is not permitted,
and reraise statements (raise with no operand) are not permitted.

5.1.29 No Exception Registration

[GNAT] This restriction ensures at compile time that no stream operations for types Excep-
tion Id or Exception Occurrence are used. This also makes it impossible to pass exceptions
to or from a partition with this restriction in a distributed environment. If this restric-
tion is active, the generated code is simplified by omitting the otherwise-required global
registration of exceptions when they are declared.

5.1.30 No Exceptions

[RM H.4] This restriction ensures at compile time that there are no raise statements and
no exception handlers.

5.1.31 No Finalization

[GNAT] This restriction disables the language features described in chapter 7.6 of the Ada
2005 RM as well as all form of code generation performed by the compiler to support these
features. The following types are no longer considered controlled when this restriction is in
effect:

Chapter 5: Standard and Implementation Defined Restrictions 136

* Ada.Finalization.Controlled

* Ada.Finalization.Limited Controlled

* Derivations from Controlled or Limited Controlled

* Class-wide types
* Protected types
* Task types
* Array and record types with controlled components

The compiler no longer generates code to initialize, finalize or adjust an object or a nested
component, either declared on the stack or on the heap. The deallocation of a controlled
object no longer finalizes its contents.

5.1.32 No Fixed Point

[RM H.4] This restriction ensures at compile time that there are no occurrences of fixed
point types and operations.

5.1.33 No Floating Point

[RM H.4] This restriction ensures at compile time that there are no occurrences of floating
point types and operations.

5.1.34 No Implicit Conditionals

[GNAT] This restriction ensures that the generated code does not contain any implicit
conditionals, either by modifying the generated code where possible, or by rejecting any
construct that would otherwise generate an implicit conditional. Note that this check does
not include run time constraint checks, which on some targets may generate implicit con-
ditionals as well. To control the latter, constraint checks can be suppressed in the normal
manner. Constructs generating implicit conditionals include comparisons of composite ob-
jects and the Max/Min attributes.

5.1.35 No Implicit Dynamic Code

[GNAT] This restriction prevents the compiler from building ’trampolines’. This is a struc-
ture that is built on the stack and contains dynamic code to be executed at run time. On
some targets, a trampoline is built for the following features: Access, Unrestricted Access,
or Address of a nested subprogram; nested task bodies; primitive operations of nested
tagged types. Trampolines do not work on machines that prevent execution of stack data.
For example, on windows systems, enabling DEP (data execution protection) will cause
trampolines to raise an exception. Trampolines are also quite slow at run time.
On many targets, trampolines have been largely eliminated. Look at the version of sys-
tem.ads for your target — if it has Always Compatible Rep equal to False, then trampolines
are largely eliminated. In particular, a trampoline is built for the following features: Address
of a nested subprogram; Access or Unrestricted Access of a nested subprogram, but only
if pragma Favor Top Level applies, or the access type has a foreign-language convention;
primitive operations of nested tagged types.

5.1.36 No Implicit Heap Allocations

[RM D.7] No constructs are allowed to cause implicit heap allocation.

Chapter 5: Standard and Implementation Defined Restrictions 137

5.1.37 No Implicit Protected Object Allocations

[GNAT] No constructs are allowed to cause implicit heap allocation of a protected object.

5.1.38 No Implicit Task Allocations

[GNAT] No constructs are allowed to cause implicit heap allocation of a task.

5.1.39 No Initialize Scalars

[GNAT] This restriction ensures that no unit in the partition is compiled with pragma
Initialize Scalars. This allows the generation of more efficient code, and in particular elim-
inates dummy null initialization routines that are otherwise generated for some record and
array types.

5.1.40 No IO

[RM H.4] This restriction ensures at compile time that there are no dependences on any of
the library units Sequential IO, Direct IO, Text IO, Wide Text IO, Wide Wide Text IO,
or Stream IO.

5.1.41 No Local Allocators

[RM H.4] This restriction ensures at compile time that there are no occurrences of an
allocator in subprograms, generic subprograms, tasks, and entry bodies.

5.1.42 No Local Protected Objects

[RM D.7] This restriction ensures at compile time that protected objects are only declared
at the library level.

5.1.43 No Local Timing Events

[RM D.7] All objects of type Ada.Timing Events.Timing Event are declared at the library
level.

5.1.44 No Long Long Integers

[GNAT] This partition-wide restriction forbids any explicit reference to type Stan-
dard.Long Long Integer, and also forbids declaring range types whose implicit base type
is Long Long Integer, and modular types whose size exceeds Long Integer’Size.

5.1.45 No Multiple Elaboration

[GNAT] When this restriction is active, we are not requesting control-flow preservation with
-fpreserve-control-flow, and the static elaboration model is used, the compiler is allowed to
suppress the elaboration counter normally associated with the unit, even if the unit has
elaboration code. This counter is typically used to check for access before elaboration and
to control multiple elaboration attempts. If the restriction is used, then the situations in
which multiple elaboration is possible, including non-Ada main programs and Stand Alone
libraries, are not permitted and will be diagnosed by the binder.

5.1.46 No Nested Finalization

[RM D.7] All objects requiring finalization are declared at the library level.

Chapter 5: Standard and Implementation Defined Restrictions 138

5.1.47 No Protected Type Allocators

[RM D.7] This restriction ensures at compile time that there are no allocator expressions
that attempt to allocate protected objects.

5.1.48 No Protected Types

[RM H.4] This restriction ensures at compile time that there are no declarations of protected
types or protected objects.

5.1.49 No Recursion

[RM H.4] A program execution is erroneous if a subprogram is invoked as part of its exe-
cution.

5.1.50 No Reentrancy

[RM H.4] A program execution is erroneous if a subprogram is executed by two tasks at the
same time.

5.1.51 No Relative Delay

[RM D.7] This restriction ensures at compile time that there are no delay relative statements
and prevents expressions such as delay 1.23; from appearing in source code.

5.1.52 No Requeue Statements

[RM D.7] This restriction ensures at compile time that no requeue statements are permitted
and prevents keyword requeue from being used in source code.

The restriction No Requeue is recognized as a synonym for No Requeue Statements. This
is retained for historical compatibility purposes (and a warning will be generated for its use
if warnings on oNobsolescent features are activated).

5.1.53 No Secondary Stack

[GNAT] This restriction ensures at compile time that the generated code does not contain
any reference to the secondary stack. The secondary stack is used to implement func-
tions returning unconstrained objects (arrays or records) on some targets. Suppresses the
allocation of secondary stacks for tasks (excluding the environment task) at run time.

5.1.54 No Select Statements

[RM D.7] This restriction ensures at compile time no select statements of any kind are
permitted, that is the keyword select may not appear.

5.1.55 No Specific Termination Handlers

[RM D.7] There are no calls to Ada.Task Termination.Set Specific Handler or to
Ada.Task Termination.Specific Handler.

5.1.56 No Specification of Aspect

[RM 13.12.1] This restriction checks at compile time that no aspect specification, attribute
definition clause, or pragma is given for a given aspect.

Chapter 5: Standard and Implementation Defined Restrictions 139

5.1.57 No Standard Allocators After Elaboration

[RM D.7] Specifies that an allocator using a standard storage pool should never be evalu-
ated at run time after the elaboration of the library items of the partition has completed.
Otherwise, Storage Error is raised.

5.1.58 No Standard Storage Pools

[GNAT] This restriction ensures at compile time that no access types use the standard
default storage pool. Any access type declared must have an explicit Storage Pool attribute
defined specifying a user-defined storage pool.

5.1.59 No Stream Optimizations

[GNAT] This restriction affects the performance of stream operations on types String,
Wide String and Wide Wide String. By default, the compiler uses block reads and writes
when manipulating String objects due to their supperior performance. When this restriction
is in effect, the compiler performs all IO operations on a per-character basis.

5.1.60 No Streams

[GNAT] This restriction ensures at compile/bind time that there are no stream objects
created and no use of stream attributes. This restriction does not forbid dependences on
the package Ada.Streams. So it is permissible to with Ada.Streams (or another package
that does so itself) as long as no actual stream objects are created and no stream attributes
are used.
Note that the use of restriction allows optimization of tagged types, since they do not
need to worry about dispatching stream operations. To take maximum advantage of this
space-saving optimization, any unit declaring a tagged type should be compiled with the
restriction, though this is not required.

5.1.61 No Task Allocators

[RM D.7] There are no allocators for task types or types containing task subcomponents.

5.1.62 No Task At Interrupt Priority

[GNAT] This restriction ensures at compile time that there is no Interrupt Priority aspect
or pragma for a task or a task type. As a consequence, the tasks are always created with a
priority below that an interrupt priority.

5.1.63 No Task Attributes Package

[GNAT] This restriction ensures at compile time that there are no implicit or explicit
dependencies on the package Ada.Task Attributes.
The restriction No Task Attributes is recognized as a synonym for No Task Attributes Package.
This is retained for historical compatibility purposes (and a warning will be generated for
its use if warnings on obsolescent features are activated).

5.1.64 No Task Hierarchy

[RM D.7] All (non-environment) tasks depend directly on the environment task of the
partition.

Chapter 5: Standard and Implementation Defined Restrictions 140

5.1.65 No Task Termination

[RM D.7] Tasks that terminate are erroneous.

5.1.66 No Tasking

[GNAT] This restriction prevents the declaration of tasks or task types throughout the
partition. It is similar in effect to the use of Max Tasks => 0 except that violations are
caught at compile time and cause an error message to be output either by the compiler or
binder.

5.1.67 No Terminate Alternatives

[RM D.7] There are no selective accepts with terminate alternatives.

5.1.68 No Unchecked Access

[RM H.4] This restriction ensures at compile time that there are no occurrences of the
Unchecked Access attribute.

5.1.69 No Unchecked Conversion

[RM J.13] This restriction ensures at compile time that there are no semantic dependences
on the predefined generic function Unchecked Conversion.

5.1.70 No Unchecked Deallocation

[RM J.13] This restriction ensures at compile time that there are no semantic dependences
on the predefined generic procedure Unchecked Deallocation.

5.1.71 No Use Of Entity

[GNAT] This restriction ensures at compile time that there are no references to the entity
given in the form

No_Use_Of_Entity => Name

where Name is the fully qualified entity, for example
No_Use_Of_Entity => Ada.Text_IO.Put_Line

5.1.72 Pure Barriers

[GNAT] This restriction ensures at compile time that protected entry barriers are restricted
to:

* simple variables defined in the private part of the protected type/object,
* constant declarations,
* named numbers,
* enumeration literals,
* integer literals,
* real literals,
* character literals,
* implicitly defined comparison operators,
* uses of the Standard."not" operator,

Chapter 5: Standard and Implementation Defined Restrictions 141

* short-circuit operator

This restriction is a relaxation of the Simple Barriers restriction, but still ensures absence
of side effects, exceptions, and recursion during the evaluation of the barriers.

5.1.73 Simple Barriers

[RM D.7] This restriction ensures at compile time that barriers in entry declarations for
protected types are restricted to either static boolean expressions or references to simple
boolean variables defined in the private part of the protected type. No other form of entry
barriers is permitted.

The restriction Boolean Entry Barriers is recognized as a synonym for Simple Barriers.
This is retained for historical compatibility purposes (and a warning will be generated for
its use if warnings on obsolescent features are activated).

5.1.74 Static Priorities

[GNAT] This restriction ensures at compile time that all priority expressions are static, and
that there are no dependences on the package Ada.Dynamic Priorities.

5.1.75 Static Storage Size

[GNAT] This restriction ensures at compile time that any expression appearing in a Stor-
age Size pragma or attribute definition clause is static.

5.2 Program Unit Level Restrictions

The second set of restriction identifiers does not require partition-wide consistency. The
restriction may be enforced for a single compilation unit without any effect on any of the
other compilation units in the partition.

5.2.1 No Elaboration Code

[GNAT] This restriction ensures at compile time that no elaboration code is generated. Note
that this is not the same condition as is enforced by pragma Preelaborate. There are cases
in which pragma Preelaborate still permits code to be generated (e.g., code to initialize a
large array to all zeroes), and there are cases of units which do not meet the requirements
for pragma Preelaborate, but for which no elaboration code is generated. Generally, it
is the case that preelaborable units will meet the restrictions, with the exception of large
aggregates initialized with an others clause, and exception declarations (which generate
calls to a run-time registry procedure). This restriction is enforced on a unit by unit basis,
it need not be obeyed consistently throughout a partition.

In the case of aggregates with others, if the aggregate has a dynamic size, there is no
way to eliminate the elaboration code (such dynamic bounds would be incompatible with
Preelaborate in any case). If the bounds are static, then use of this restriction actually
modifies the code choice of the compiler to avoid generating a loop, and instead generate
the aggregate statically if possible, no matter how many times the data for the others clause
must be repeatedly generated.

It is not possible to precisely document the constructs which are compatible with this
restriction, since, unlike most other restrictions, this is not a restriction on the source

Chapter 5: Standard and Implementation Defined Restrictions 142

code, but a restriction on the generated object code. For example, if the source contains a
declaration:

Val : constant Integer := X;

where X is not a static constant, it may be possible, depending on complex optimization
circuitry, for the compiler to figure out the value of X at compile time, in which case this
initialization can be done by the loader, and requires no initialization code. It is not possible
to document the precise conditions under which the optimizer can figure this out.
Note that this the implementation of this restriction requires full code generation. If it is
used in conjunction with "semantics only" checking, then some cases of violations may be
missed.
When this restriction is active, we are not requesting control-flow preservation with -
fpreserve-control-flow, and the static elaboration model is used, the compiler is allowed
to suppress the elaboration counter normally associated with the unit. This counter is
typically used to check for access before elaboration and to control multiple elaboration
attempts.

5.2.2 No Dynamic Sized Objects

[GNAT] This restriction disallows certain constructs that might lead to the creation of
dynamic-sized composite objects (or array or discriminated type). An array subtype indi-
cation is illegal if the bounds are not static or references to discriminants of an enclosing
type. A discriminated subtype indication is illegal if the type has discriminant-dependent
array components or a variant part, and the discriminants are not static. In addition, array
and record aggregates are illegal in corresponding cases. Note that this restriction does
not forbid access discriminants. It is often a good idea to combine this restriction with
No Secondary Stack.

5.2.3 No Entry Queue

[GNAT] This restriction is a declaration that any protected entry compiled in the scope
of the restriction has at most one task waiting on the entry at any one time, and so no
queue is required. This restriction is not checked at compile time. A program execution is
erroneous if an attempt is made to queue a second task on such an entry.

5.2.4 No Implementation Aspect Specifications

[RM 13.12.1] This restriction checks at compile time that no GNAT-defined aspects are
present. With this restriction, the only aspects that can be used are those defined in the
Ada Reference Manual.

5.2.5 No Implementation Attributes

[RM 13.12.1] This restriction checks at compile time that no GNAT-defined attributes are
present. With this restriction, the only attributes that can be used are those defined in the
Ada Reference Manual.

5.2.6 No Implementation Identifiers

[RM 13.12.1] This restriction checks at compile time that no implementation-defined iden-
tifiers (marked with pragma Implementation Defined) occur within language-defined pack-
ages.

Chapter 5: Standard and Implementation Defined Restrictions 143

5.2.7 No Implementation Pragmas

[RM 13.12.1] This restriction checks at compile time that no GNAT-defined pragmas are
present. With this restriction, the only pragmas that can be used are those defined in the
Ada Reference Manual.

5.2.8 No Implementation Restrictions

[GNAT] This restriction checks at compile time that no GNAT-defined restriction identifiers
(other than No Implementation Restrictions itself) are present. With this restriction, the
only other restriction identifiers that can be used are those defined in the Ada Reference
Manual.

5.2.9 No Implementation Units

[RM 13.12.1] This restriction checks at compile time that there is no mention in the context
clause of any implementation-defined descendants of packages Ada, Interfaces, or System.

5.2.10 No Implicit Aliasing

[GNAT] This restriction, which is not required to be partition-wide consistent, requires an
explicit aliased keyword for an object to which ’Access, ’Unchecked Access, or ’Address
is applied, and forbids entirely the use of the ’Unrestricted Access attribute for objects.
Note: the reason that Unrestricted Access is forbidden is that it would require the pre-
fix to be aliased, and in such cases, it can always be replaced by the standard attribute
Unchecked Access which is preferable.

5.2.11 No Implicit Loops

[GNAT] This restriction ensures that the generated code of the unit marked with this
restriction does not contain any implicit for loops, either by modifying the generated code
where possible, or by rejecting any construct that would otherwise generate an implicit
for loop. If this restriction is active, it is possible to build large array aggregates with all
static components without generating an intermediate temporary, and without generating a
loop to initialize individual components. Otherwise, a loop is created for arrays larger than
about 5000 scalar components. Note that if this restriction is set in the spec of a package,
it will not apply to its body.

5.2.12 No Obsolescent Features

[RM 13.12.1] This restriction checks at compile time that no obsolescent features are used,
as defined in Annex J of the Ada Reference Manual.

5.2.13 No Wide Characters

[GNAT] This restriction ensures at compile time that no uses of the types Wide Character
or Wide String or corresponding wide wide types appear, and that no wide or wide wide
string or character literals appear in the program (that is literals representing characters
not in type Character).

5.2.14 SPARK 05

[GNAT] This restriction checks at compile time that some constructs forbidden in SPARK
2005 are not present. Error messages related to SPARK restriction have the form:

Chapter 5: Standard and Implementation Defined Restrictions 144

violation of restriction "SPARK_05" at <source-location>
<error message>

The restriction SPARK is recognized as a synonym for SPARK 05. This is retained for
historical compatibility purposes (and an unconditional warning will be generated for its
use, advising replacement by SPARK).
This is not a replacement for the semantic checks performed by the SPARK Examiner tool,
as the compiler currently only deals with code, not SPARK 2005 annotations, and does not
guarantee catching all cases of constructs forbidden by SPARK 2005.
Thus it may well be the case that code which passes the compiler with the SPARK restriction
is rejected by the SPARK Examiner, e.g. due to the different visibility rules of the Examiner
based on SPARK 2005 inherit annotations.
This restriction can be useful in providing an initial filter for code developed using SPARK
2005, or in examining legacy code to see how far it is from meeting SPARK restrictions.
The list below summarizes the checks that are performed when this restriction is in force:

* No block statements
* No case statements with only an others clause
* Exit statements in loops must respect the SPARK 2005 language restrictions
* No goto statements
* Return can only appear as last statement in function
* Function must have return statement
* Loop parameter specification must include subtype mark
* Prefix of expanded name cannot be a loop statement
* Abstract subprogram not allowed
* User-defined operators not allowed
* Access type parameters not allowed
* Default expressions for parameters not allowed
* Default expressions for record fields not allowed
* No tasking constructs allowed
* Label needed at end of subprograms and packages
* No mixing of positional and named parameter association
* No access types as result type
* No unconstrained arrays as result types
* No null procedures
* Initial and later declarations must be in correct order (declaration can’t come after

body)
* No attributes on private types if full declaration not visible
* No package declaration within package specification
* No controlled types
* No discriminant types
* No overloading

Chapter 5: Standard and Implementation Defined Restrictions 145

* Selector name cannot be operator symbol (i.e. operator symbol cannot be prefixed)
* Access attribute not allowed
* Allocator not allowed
* Result of catenation must be String
* Operands of catenation must be string literal, static char or another catenation
* No conditional expressions
* No explicit dereference
* Quantified expression not allowed
* Slicing not allowed
* No exception renaming
* No generic renaming
* No object renaming
* No use clause
* Aggregates must be qualified
* Nonstatic choice in array aggregates not allowed
* The only view conversions which are allowed as in-out parameters are conversions of a

tagged type to an ancestor type
* No mixing of positional and named association in aggregate, no multi choice
* AND, OR and XOR for arrays only allowed when operands have same static bounds
* Fixed point operands to * or / must be qualified or converted
* Comparison operators not allowed for Booleans or arrays (except strings)
* Equality not allowed for arrays with non-matching static bounds (except strings)
* Conversion / qualification not allowed for arrays with non-matching static bounds
* Subprogram declaration only allowed in package spec (unless followed by import)
* Access types not allowed
* Incomplete type declaration not allowed
* Object and subtype declarations must respect SPARK restrictions
* Digits or delta constraint not allowed
* Decimal fixed point type not allowed
* Aliasing of objects not allowed
* Modular type modulus must be power of 2
* Base not allowed on subtype mark
* Unary operators not allowed on modular types (except not)
* Untagged record cannot be null
* No class-wide operations
* Initialization expressions must respect SPARK restrictions
* Nonstatic ranges not allowed except in iteration schemes
* String subtypes must have lower bound of 1
* Subtype of Boolean cannot have constraint

Chapter 5: Standard and Implementation Defined Restrictions 146

* At most one tagged type or extension per package
* Interface is not allowed
* Character literal cannot be prefixed (selector name cannot be character literal)
* Record aggregate cannot contain ’others’
* Component association in record aggregate must contain a single choice
* Ancestor part cannot be a type mark
* Attributes ’Image, ’Width and ’Value not allowed
* Functions may not update globals
* Subprograms may not contain direct calls to themselves (prevents recursion within

unit)
* Call to subprogram not allowed in same unit before body has been seen (prevents

recursion within unit)

The following restrictions are enforced, but note that they are actually more strict that the
latest SPARK 2005 language definition:

* No derived types other than tagged type extensions
* Subtype of unconstrained array must have constraint

This list summarises the main SPARK 2005 language rules that are not currently checked
by the SPARK 05 restriction:

* SPARK annotations are treated as comments so are not checked at all
* Based real literals not allowed
* Objects cannot be initialized at declaration by calls to user-defined functions
* Objects cannot be initialized at declaration by assignments from variables
* Objects cannot be initialized at declaration by assignments from indexed/selected com-

ponents
* Ranges shall not be null
* A fixed point delta expression must be a simple expression
* Restrictions on where renaming declarations may be placed
* Externals of mode ’out’ cannot be referenced
* Externals of mode ’in’ cannot be updated
* Loop with no iteration scheme or exits only allowed as last statement in main program

or task
* Subprogram cannot have parent unit name
* SPARK 2005 inherited subprogram must be prefixed with overriding
* External variables (or functions that reference them) may not be passed as actual

parameters
* Globals must be explicitly mentioned in contract
* Deferred constants cannot be completed by pragma Import
* Package initialization cannot read/write variables from other packages
* Prefix not allowed for entities that are directly visible

Chapter 5: Standard and Implementation Defined Restrictions 147

* Identifier declaration can’t override inherited package name
* Cannot use Standard or other predefined packages as identifiers
* After renaming, cannot use the original name
* Subprograms can only be renamed to remove package prefix
* Pragma import must be immediately after entity it names
* No mutual recursion between multiple units (this can be checked with gnatcheck)

Note that if a unit is compiled in Ada 95 mode with the SPARK restriction, violations will
be reported for constructs forbidden in SPARK 95, instead of SPARK 2005.

Chapter 6: Implementation Advice 148

6 Implementation Advice

The main text of the Ada Reference Manual describes the required behavior of all Ada
compilers, and the GNAT compiler conforms to these requirements.
In addition, there are sections throughout the Ada Reference Manual headed by the phrase
’Implementation advice’. These sections are not normative, i.e., they do not specify re-
quirements that all compilers must follow. Rather they provide advice on generally desir-
able behavior. They are not requirements, because they describe behavior that cannot be
provided on all systems, or may be undesirable on some systems.
As far as practical, GNAT follows the implementation advice in the Ada Reference Manual.
Each such RM section corresponds to a section in this chapter whose title specifies the
RM section number and paragraph number and the subject of the advice. The contents
of each section consists of the RM text within quotation marks, followed by the GNAT
interpretation of the advice. Most often, this simply says ’followed’, which means that
GNAT follows the advice. However, in a number of cases, GNAT deliberately deviates from
this advice, in which case the text describes what GNAT does and why.

6.1 RM 1.1.3(20): Error Detection

"If an implementation detects the use of an unsupported Specialized
Needs Annex feature at run time, it should raise Program Error if feasi-
ble."

Not relevant. All specialized needs annex features are either supported, or diagnosed at
compile time.

6.2 RM 1.1.3(31): Child Units

"If an implementation wishes to provide implementation-defined exten-
sions to the functionality of a language-defined library unit, it should
normally do so by adding children to the library unit."

Followed.

6.3 RM 1.1.5(12): Bounded Errors

"If an implementation detects a bounded error or erroneous execution, it
should raise Program Error."

Followed in all cases in which the implementation detects a bounded error or erroneous
execution. Not all such situations are detected at runtime.

6.4 RM 2.8(16): Pragmas

"Normally, implementation-defined pragmas should have no semantic ef-
fect for error-free programs; that is, if the implementation-defined prag-
mas are removed from a working program, the program should still be
legal, and should still have the same semantics."

The following implementation defined pragmas are exceptions to this rule:

Chapter 6: Implementation Advice 149

Pragma Explanation

Abort Defer Affects semantics

Ada 83 Affects legality

Assert Affects semantics

CPP Class Affects semantics

CPP Constructor Affects semantics

Debug Affects semantics

Interface Name Affects semantics

Machine Attribute Affects semantics

Unimplemented Unit Affects legality

Unchecked Union Affects semantics

In each of the above cases, it is essential to the purpose of the pragma that this advice not
be followed. For details see [Implementation Defined Pragmas], page 4.

6.5 RM 2.8(17-19): Pragmas

"Normally, an implementation should not define pragmas that can make
an illegal program legal, except as follows:

* A pragma used to complete a declaration, such as a pragma Import;
* A pragma used to configure the environment by adding, removing,

or replacing library items."

See [RM 2.8(16); Pragmas], page 148.

6.6 RM 3.5.2(5): Alternative Character Sets

"If an implementation supports a mode with alternative interpretations
for Character and Wide Character, the set of graphic characters of Char-
acter should nevertheless remain a proper subset of the set of graphic
characters of Wide Character. Any character set ’localizations’ should
be reflected in the results of the subprograms defined in the language-
defined package Characters.Handling (see A.3) available in such a mode.
In a mode with an alternative interpretation of Character, the imple-
mentation should also support a corresponding change in what is a legal
identifier letter."

Not all wide character modes follow this advice, in particular the JIS and IEC modes reflect
standard usage in Japan, and in these encoding, the upper half of the Latin-1 set is not

Chapter 6: Implementation Advice 150

part of the wide-character subset, since the most significant bit is used for wide character
encoding. However, this only applies to the external forms. Internally there is no such
restriction.

6.7 RM 3.5.4(28): Integer Types

"An implementation should support Long Integer in addition to Integer
if the target machine supports 32-bit (or longer) arithmetic. No other
named integer subtypes are recommended for package Standard. Instead,
appropriate named integer subtypes should be provided in the library
package Interfaces (see B.2)."

Long Integer is supported. Other standard integer types are supported so this advice is
not fully followed. These types are supported for convenient interface to C, and so that all
hardware types of the machine are easily available.

6.8 RM 3.5.4(29): Integer Types

"An implementation for a two’s complement machine should support
modular types with a binary modulus up to System.Max_Int*2+2.
An implementation should support a non-binary modules up to
Integer’Last."

Followed.

6.9 RM 3.5.5(8): Enumeration Values

"For the evaluation of a call on S’Pos for an enumeration subtype, if
the value of the operand does not correspond to the internal code for any
enumeration literal of its type (perhaps due to an un-initialized variable),
then the implementation should raise Program Error. This is particu-
larly important for enumeration types with noncontiguous internal codes
specified by an enumeration representation clause."

Followed.

6.10 RM 3.5.7(17): Float Types

"An implementation should support Long Float in addition to Float if
the target machine supports 11 or more digits of precision. No other
named floating point subtypes are recommended for package Standard.
Instead, appropriate named floating point subtypes should be provided
in the library package Interfaces (see B.2)."

Short Float and Long Long Float are also provided. The former provides improved com-
patibility with other implementations supporting this type. The latter corresponds to the
highest precision floating-point type supported by the hardware. On most machines, this
will be the same as Long Float, but on some machines, it will correspond to the IEEE
extended form. The notable case is all ia32 (x86) implementations, where Long Long Float
corresponds to the 80-bit extended precision format supported in hardware on this proces-
sor. Note that the 128-bit format on SPARC is not supported, since this is a software rather
than a hardware format.

Chapter 6: Implementation Advice 151

6.11 RM 3.6.2(11): Multidimensional Arrays

"An implementation should normally represent multidimensional arrays
in row-major order, consistent with the notation used for multidimen-
sional array aggregates (see 4.3.3). However, if a pragma Convention
(Fortran, ...) applies to a multidimensional array type, then column-
major order should be used instead (see B.5, Interfacing with Fortran)."

Followed.

6.12 RM 9.6(30-31): Duration’Small

"Whenever possible in an implementation, the value of Duration’Small
should be no greater than 100 microseconds."

Followed. (Duration’Small = 10**(-9)).

"The time base for delay relative statements should be monotonic; it
need not be the same time base as used for Calendar.Clock."

Followed.

6.13 RM 10.2.1(12): Consistent Representation

"In an implementation, a type declared in a pre-elaborated package
should have the same representation in every elaboration of a given
version of the package, whether the elaborations occur in distinct
executions of the same program, or in executions of distinct programs
or partitions that include the given version."

Followed, except in the case of tagged types. Tagged types involve implicit pointers to a
local copy of a dispatch table, and these pointers have representations which thus depend
on a particular elaboration of the package. It is not easy to see how it would be possible to
follow this advice without severely impacting efficiency of execution.

6.14 RM 11.4.1(19): Exception Information

"Exception Message by default and Exception Information should
produce information useful for debugging. Exception Message
should be short, about one line. Exception Information can be
long. Exception Message should not include the Exception Name.
Exception Information should include both the Exception Name and
the Exception Message."

Followed. For each exception that doesn’t have a specified Exception Message, the compiler
generates one containing the location of the raise statement. This location has the form
’file name:line’, where file name is the short file name (without path information) and line
is the line number in the file. Note that in the case of the Zero Cost Exception mechanism,
these messages become redundant with the Exception Information that contains a full back-
trace of the calling sequence, so they are disabled. To disable explicitly the generation of
the source location message, use the Pragma Discard Names.

Chapter 6: Implementation Advice 152

6.15 RM 11.5(28): Suppression of Checks

"The implementation should minimize the code executed for checks that
have been suppressed."

Followed.

6.16 RM 13.1 (21-24): Representation Clauses

"The recommended level of support for all representation items is quali-
fied as follows:
An implementation need not support representation items containing
nonstatic expressions, except that an implementation should support a
representation item for a given entity if each nonstatic expression in the
representation item is a name that statically denotes a constant declared
before the entity."

Followed. In fact, GNAT goes beyond the recommended level of support by allowing non-
static expressions in some representation clauses even without the need to declare constants
initialized with the values of such expressions. For example:

X : Integer;
Y : Float;
for Y’Address use X’Address;>>

"An implementation need not support a specification for the ‘Size‘
for a given composite subtype, nor the size or storage place for an
object (including a component) of a given composite subtype, unless the
constraints on the subtype and its composite subcomponents (if any) are
all static constraints."

Followed. Size Clauses are not permitted on nonstatic components, as described above.
"An aliased component, or a component whose type is by-reference,
should always be allocated at an addressable location."

Followed.

6.17 RM 13.2(6-8): Packed Types

"If a type is packed, then the implementation should try to minimize
storage allocated to objects of the type, possibly at the expense of speed
of accessing components, subject to reasonable complexity in addressing
calculations.
The recommended level of support pragma Pack is:
For a packed record type, the components should be packed as tightly
as possible subject to the Sizes of the component subtypes, and subject
to any record representation clause that applies to the type; the imple-
mentation may, but need not, reorder components or cross aligned word
boundaries to improve the packing. A component whose Size is greater
than the word size may be allocated an integral number of words."

Chapter 6: Implementation Advice 153

Followed. Tight packing of arrays is supported for all component sizes up to 64-bits. If
the array component size is 1 (that is to say, if the component is a boolean type or an
enumeration type with two values) then values of the type are implicitly initialized to zero.
This happens both for objects of the packed type, and for objects that have a subcomponent
of the packed type.

"An implementation should support Address clauses for imported sub-
programs."

Followed.

6.18 RM 13.3(14-19): Address Clauses

"For an array X, X’Address should point at the first component of the
array, and not at the array bounds."

Followed.

"The recommended level of support for the Address attribute is:

X’Address should produce a useful result if X is an object that is aliased
or of a by-reference type, or is an entity whose Address has been speci-
fied."

Followed. A valid address will be produced even if none of those conditions have been met.
If necessary, the object is forced into memory to ensure the address is valid.

"An implementation should support Address clauses for imported sub-
programs."

Followed.

"Objects (including subcomponents) that are aliased or of a by-reference
type should be allocated on storage element boundaries."

Followed.

"If the Address of an object is specified, or it is imported or exported,
then the implementation should not perform optimizations based on as-
sumptions of no aliases."

Followed.

6.19 RM 13.3(29-35): Alignment Clauses

"The recommended level of support for the Alignment attribute for sub-
types is:

An implementation should support specified Alignments that are factors
and multiples of the number of storage elements per word, subject to the
following:"

Followed.

"An implementation need not support specified Alignments for combina-
tions of Sizes and Alignments that cannot be easily loaded and stored by
available machine instructions."

Followed.

Chapter 6: Implementation Advice 154

"An implementation need not support specified Alignments that are
greater than the maximum Alignment the implementation ever returns
by default."

Followed.
"The recommended level of support for the Alignment attribute for ob-
jects is:
Same as above, for subtypes, but in addition:"

Followed.
"For stand-alone library-level objects of statically constrained subtypes,
the implementation should support all alignments supported by the target
linker. For example, page alignment is likely to be supported for such
objects, but not for subtypes."

Followed.

6.20 RM 13.3(42-43): Size Clauses

"The recommended level of support for the Size attribute of objects is:
A Size clause should be supported for an object if the specified Size is at
least as large as its subtype’s Size, and corresponds to a size in storage
elements that is a multiple of the object’s Alignment (if the Alignment
is nonzero)."

Followed.

6.21 RM 13.3(50-56): Size Clauses

"If the Size of a subtype is specified, and allows for efficient independent
addressability (see 9.10) on the target architecture, then the Size of the
following objects of the subtype should equal the Size of the subtype:
Aliased objects (including components)."

Followed.
"Size clause on a composite subtype should not affect the internal layout
of components."

Followed. But note that this can be overridden by use of the implementation pragma
Implicit Packing in the case of packed arrays.

"The recommended level of support for the Size attribute of subtypes is:
The Size (if not specified) of a static discrete or fixed point subtype
should be the number of bits needed to represent each value belonging
to the subtype using an unbiased representation, leaving space for a sign
bit only if the subtype contains negative values. If such a subtype is a
first subtype, then an implementation should support a specified Size for
it that reflects this representation."

Followed.
"For a subtype implemented with levels of indirection, the Size should
include the size of the pointers, but not the size of what they point at."

Followed.

Chapter 6: Implementation Advice 155

6.22 RM 13.3(71-73): Component Size Clauses

"The recommended level of support for the Component Size attribute is:
An implementation need not support specified Component Sizes that are
less than the Size of the component subtype."

Followed.
"An implementation should support specified Component Sizes that are
factors and multiples of the word size. For such Component Sizes, the
array should contain no gaps between components. For other Compo-
nent Sizes (if supported), the array should contain no gaps between com-
ponents when packing is also specified; the implementation should forbid
this combination in cases where it cannot support a no-gaps representa-
tion."

Followed.

6.23 RM 13.4(9-10): Enumeration Representation Clauses

"The recommended level of support for enumeration representation
clauses is:
An implementation need not support enumeration representation clauses
for boolean types, but should at minimum support the internal codes in
the range System.Min Int .. System.Max Int."

Followed.

6.24 RM 13.5.1(17-22): Record Representation Clauses

"The recommended level of support for record representation clauses is:
An implementation should support storage places that can be extracted
with a load, mask, shift sequence of machine code, and set with a load,
shift, mask, store sequence, given the available machine instructions and
run-time model."

Followed.
"A storage place should be supported if its size is equal to the Size of the
component subtype, and it starts and ends on a boundary that obeys the
Alignment of the component subtype."

Followed.
"If the default bit ordering applies to the declaration of a given type,
then for a component whose subtype’s Size is less than the word size,
any storage place that does not cross an aligned word boundary should
be supported."

Followed.
"An implementation may reserve a storage place for the tag field of a
tagged type, and disallow other components from overlapping that place."

Followed. The storage place for the tag field is the beginning of the tagged record, and its
size is Address’Size. GNAT will reject an explicit component clause for the tag field.

Chapter 6: Implementation Advice 156

"An implementation need not support a component clause for a com-
ponent of an extension part if the storage place is not after the storage
places of all components of the parent type, whether or not those storage
places had been specified."

Followed. The above advice on record representation clauses is followed, and all mentioned
features are implemented.

6.25 RM 13.5.2(5): Storage Place Attributes

"If a component is represented using some form of pointer (such as an
offset) to the actual data of the component, and this data is contiguous
with the rest of the object, then the storage place attributes should reflect
the place of the actual data, not the pointer. If a component is allocated
discontinuously from the rest of the object, then a warning should be
generated upon reference to one of its storage place attributes."

Followed. There are no such components in GNAT.

6.26 RM 13.5.3(7-8): Bit Ordering

"The recommended level of support for the non-default bit ordering is:
If Word Size = Storage Unit, then the implementation should support
the non-default bit ordering in addition to the default bit ordering."

Followed. Word size does not equal storage size in this implementation. Thus non-default
bit ordering is not supported.

6.27 RM 13.7(37): Address as Private

"Address should be of a private type."
Followed.

6.28 RM 13.7.1(16): Address Operations

"Operations in System and its children should reflect the target envi-
ronment semantics as closely as is reasonable. For example, on most
machines, it makes sense for address arithmetic to ’wrap around’. Oper-
ations that do not make sense should raise Program Error."

Followed. Address arithmetic is modular arithmetic that wraps around. No operation raises
Program Error, since all operations make sense.

6.29 RM 13.9(14-17): Unchecked Conversion

"The Size of an array object should not include its bounds; hence, the
bounds should not be part of the converted data."

Followed.
"The implementation should not generate unnecessary run-time checks
to ensure that the representation of S is a representation of the target
type. It should take advantage of the permission to return by reference

Chapter 6: Implementation Advice 157

when possible. Restrictions on unchecked conversions should be avoided
unless required by the target environment."

Followed. There are no restrictions on unchecked conversion. A warning is generated if the
source and target types do not have the same size since the semantics in this case may be
target dependent.

"The recommended level of support for unchecked conversions is:

Unchecked conversions should be supported and should be reversible in
the cases where this clause defines the result. To enable meaningful
use of unchecked conversion, a contiguous representation should be used
for elementary subtypes, for statically constrained array subtypes whose
component subtype is one of the subtypes described in this paragraph,
and for record subtypes without discriminants whose component subtypes
are described in this paragraph."

Followed.

6.30 RM 13.11(23-25): Implicit Heap Usage

"An implementation should document any cases in which it dynamically
allocates heap storage for a purpose other than the evaluation of an al-
locator."

Followed, the only other points at which heap storage is dynamically allocated are as follows:

* At initial elaboration time, to allocate dynamically sized global objects.
* To allocate space for a task when a task is created.
* To extend the secondary stack dynamically when needed. The secondary stack is used

for returning variable length results.

"A default (implementation-provided) storage pool for an access-to-
constant type should not have overhead to support deallocation of
individual objects."

Followed.

"A storage pool for an anonymous access type should be created at the
point of an allocator for the type, and be reclaimed when the designated
object becomes inaccessible."

Followed.

6.31 RM 13.11.2(17): Unchecked Deallocation

"For a standard storage pool, Free should actually reclaim the storage."

Followed.

6.32 RM 13.13.2(17): Stream Oriented Attributes

"If a stream element is the same size as a storage element, then the normal
in-memory representation should be used by Read and Write for scalar
objects. Otherwise, Read and Write should use the smallest number of

Chapter 6: Implementation Advice 158

stream elements needed to represent all values in the base range of the
scalar type."

Followed. By default, GNAT uses the interpretation suggested by AI-195, which specifies
using the size of the first subtype. However, such an implementation is based on direct
binary representations and is therefore target- and endianness-dependent. To address this
issue, GNAT also supplies an alternate implementation of the stream attributes Read and
Write, which uses the target-independent XDR standard representation for scalar types.
The XDR implementation is provided as an alternative body of the Sys-
tem.Stream Attributes package, in the file s-stratt-xdr.adb in the GNAT
library. There is no s-stratt-xdr.ads file. In order to install the XDR implementation,
do the following:

* Replace the default implementation of the System.Stream Attributes package with the
XDR implementation. For example on a Unix platform issue the commands:

$ mv s-stratt.adb s-stratt-default.adb
$ mv s-stratt-xdr.adb s-stratt.adb

* Rebuild the GNAT run-time library as documented in the GNAT and Libraries section
of the GNAT User’s Guide.

6.33 RM A.1(52): Names of Predefined Numeric Types

"If an implementation provides additional named predefined integer
types, then the names should end with Integer as in Long_Integer. If
an implementation provides additional named predefined floating point
types, then the names should end with Float as in Long_Float."

Followed.

6.34 RM A.3.2(49): Ada.Characters.Handling

"If an implementation provides a localized definition of Charac-
ter or Wide Character, then the effects of the subprograms in
Characters.Handling should reflect the localizations. See also 3.5.2."

Followed. GNAT provides no such localized definitions.

6.35 RM A.4.4(106): Bounded-Length String Handling

"Bounded string objects should not be implemented by implicit pointers
and dynamic allocation."

Followed. No implicit pointers or dynamic allocation are used.

6.36 RM A.5.2(46-47): Random Number Generation

"Any storage associated with an object of type Generator should be
reclaimed on exit from the scope of the object."

Followed.
"If the generator period is sufficiently long in relation to the number of
distinct initiator values, then each possible value of Initiator passed to

Chapter 6: Implementation Advice 159

Reset should initiate a sequence of random numbers that does not, in a
practical sense, overlap the sequence initiated by any other value. If this
is not possible, then the mapping between initiator values and generator
states should be a rapidly varying function of the initiator value."

Followed. The generator period is sufficiently long for the first condition here to hold true.

6.37 RM A.10.7(23): Get Immediate

"The Get Immediate procedures should be implemented with unbuffered
input. For a device such as a keyboard, input should be available if a
key has already been typed, whereas for a disk file, input should always
be available except at end of file. For a file associated with a keyboard-
like device, any line-editing features of the underlying operating system
should be disabled during the execution of Get Immediate."

Followed on all targets except VxWorks. For VxWorks, there is no way to provide this
functionality that does not result in the input buffer being flushed before the Get Immediate
call. A special unit Interfaces.Vxworks.IO is provided that contains routines to enable this
functionality.

6.38 RM B.1(39-41): Pragma Export

"If an implementation supports pragma Export to a given language, then
it should also allow the main subprogram to be written in that language.
It should support some mechanism for invoking the elaboration of the Ada
library units included in the system, and for invoking the finalization of
the environment task. On typical systems, the recommended mechanism
is to provide two subprograms whose link names are adainit and adafinal.
adainit should contain the elaboration code for library units. adafinal
should contain the finalization code. These subprograms should have no
effect the second and subsequent time they are called."

Followed.
"Automatic elaboration of pre-elaborated packages should be provided
when pragma Export is supported."

Followed when the main program is in Ada. If the main program is in a foreign language,
then adainit must be called to elaborate pre-elaborated packages.

"For each supported convention L other than Intrinsic, an implemen-
tation should support Import and Export pragmas for objects of L-
compatible types and for subprograms, and pragma Convention for L-
eligible types and for subprograms, presuming the other language has
corresponding features. Pragma Convention need not be supported for
scalar types."

Followed.

6.39 RM B.2(12-13): Package Interfaces

"For each implementation-defined convention identifier, there should be
a child package of package Interfaces with the corresponding name. This

Chapter 6: Implementation Advice 160

package should contain any declarations that would be useful for interfac-
ing to the language (implementation) represented by the convention. Any
declarations useful for interfacing to any language on the given hardware
architecture should be provided directly in Interfaces."

Followed.

"An implementation supporting an interface to C, COBOL, or Fortran
should provide the corresponding package or packages described in the
following clauses."

Followed. GNAT provides all the packages described in this section.

6.40 RM B.3(63-71): Interfacing with C

"An implementation should support the following interface correspon-
dences between Ada and C."

Followed.

"An Ada procedure corresponds to a void-returning C function."

Followed.

"An Ada function corresponds to a non-void C function."

Followed.

"An Ada in scalar parameter is passed as a scalar argument to a C
function."

Followed.

"An Ada in parameter of an access-to-object type with designated type
T is passed as a t* argument to a C function, where t is the C type
corresponding to the Ada type T."

Followed.

"An Ada access T parameter, or an Ada out or in out parameter of an
elementary type T, is passed as a t* argument to a C function, where t is
the C type corresponding to the Ada type T. In the case of an elementary
out or in out parameter, a pointer to a temporary copy is used to preserve
by-copy semantics."

Followed.

"An Ada parameter of a record type T, of any mode, is passed as a t*
argument to a C function, where t is the C structure corresponding to
the Ada type T."

Followed. This convention may be overridden by the use of the C Pass By Copy pragma,
or Convention, or by explicitly specifying the mechanism for a given call using an extended
import or export pragma.

"An Ada parameter of an array type with component type T, of any
mode, is passed as a t* argument to a C function, where t is the C type
corresponding to the Ada type T."

Followed.

Chapter 6: Implementation Advice 161

"An Ada parameter of an access-to-subprogram type is passed as a
pointer to a C function whose prototype corresponds to the designated
subprogram’s specification."

Followed.

6.41 RM B.4(95-98): Interfacing with COBOL

"An Ada implementation should support the following interface corre-
spondences between Ada and COBOL."

Followed.

"An Ada access T parameter is passed as a BY REFERENCE data item of
the COBOL type corresponding to T."

Followed.

"An Ada in scalar parameter is passed as a BY CONTENT data item of the
corresponding COBOL type."

Followed.

"Any other Ada parameter is passed as a BY REFERENCE data item of the
COBOL type corresponding to the Ada parameter type; for scalars, a
local copy is used if necessary to ensure by-copy semantics."

Followed.

6.42 RM B.5(22-26): Interfacing with Fortran

"An Ada implementation should support the following interface corre-
spondences between Ada and Fortran:"

Followed.

"An Ada procedure corresponds to a Fortran subroutine."

Followed.

"An Ada function corresponds to a Fortran function."

Followed.

"An Ada parameter of an elementary, array, or record type T is passed
as a T argument to a Fortran procedure, where T is the Fortran type
corresponding to the Ada type T, and where the INTENT attribute of
the corresponding dummy argument matches the Ada formal parameter
mode; the Fortran implementation’s parameter passing conventions are
used. For elementary types, a local copy is used if necessary to ensure
by-copy semantics."

Followed.

"An Ada parameter of an access-to-subprogram type is passed as a refer-
ence to a Fortran procedure whose interface corresponds to the designated
subprogram’s specification."

Followed.

Chapter 6: Implementation Advice 162

6.43 RM C.1(3-5): Access to Machine Operations

"The machine code or intrinsic support should allow access to all opera-
tions normally available to assembly language programmers for the target
environment, including privileged instructions, if any."

Followed.

"The interfacing pragmas (see Annex B) should support interface to as-
sembler; the default assembler should be associated with the convention
identifier Assembler."

Followed.

"If an entity is exported to assembly language, then the implementation
should allocate it at an addressable location, and should ensure that it is
retained by the linking process, even if not otherwise referenced from the
Ada code. The implementation should assume that any call to a machine
code or assembler subprogram is allowed to read or update every object
that is specified as exported."

Followed.

6.44 RM C.1(10-16): Access to Machine Operations

"The implementation should ensure that little or no overhead is associ-
ated with calling intrinsic and machine-code subprograms."

Followed for both intrinsics and machine-code subprograms.

"It is recommended that intrinsic subprograms be provided for conve-
nient access to any machine operations that provide special capabilities
or efficiency and that are not otherwise available through the language
constructs."

Followed. A full set of machine operation intrinsic subprograms is provided.

"Atomic read-modify-write operations—e.g., test and set, compare and
swap, decrement and test, enqueue/dequeue."

Followed on any target supporting such operations.

"Standard numeric functions—e.g.:, sin, log."

Followed on any target supporting such operations.

"String manipulation operations—e.g.:, translate and test."

Followed on any target supporting such operations.

"Vector operations—e.g.:, compare vector against thresholds."

Followed on any target supporting such operations.

"Direct operations on I/O ports."

Followed on any target supporting such operations.

Chapter 6: Implementation Advice 163

6.45 RM C.3(28): Interrupt Support

"If the Ceiling Locking policy is not in effect, the implementation should
provide means for the application to specify which interrupts are to be
blocked during protected actions, if the underlying system allows for a
finer-grain control of interrupt blocking."

Followed. The underlying system does not allow for finer-grain control of interrupt blocking.

6.46 RM C.3.1(20-21): Protected Procedure Handlers

"Whenever possible, the implementation should allow interrupt handlers
to be called directly by the hardware."

Followed on any target where the underlying operating system permits such direct calls.
"Whenever practical, violations of any implementation-defined restric-
tions should be detected before run time."

Followed. Compile time warnings are given when possible.

6.47 RM C.3.2(25): Package Interrupts

"If implementation-defined forms of interrupt handler procedures are sup-
ported, such as protected procedures with parameters, then for each such
form of a handler, a type analogous to Parameterless Handler should be
specified in a child package of Interrupts, with the same operations as in
the predefined package Interrupts."

Followed.

6.48 RM C.4(14): Pre-elaboration Requirements

"It is recommended that pre-elaborated packages be implemented in such
a way that there should be little or no code executed at run time for
the elaboration of entities not already covered by the Implementation
Requirements."

Followed. Executable code is generated in some cases, e.g., loops to initialize large arrays.

6.49 RM C.5(8): Pragma Discard Names

"If the pragma applies to an entity, then the implementation should re-
duce the amount of storage used for storing names associated with that
entity."

Followed.

6.50 RM C.7.2(30): The Package Task Attributes

"Some implementations are targeted to domains in which memory use at
run time must be completely deterministic. For such implementations, it
is recommended that the storage for task attributes will be pre-allocated
statically and not from the heap. This can be accomplished by either
placing restrictions on the number and the size of the task’s attributes,

Chapter 6: Implementation Advice 164

or by using the pre-allocated storage for the first N attribute objects, and
the heap for the others. In the latter case, N should be documented."

Not followed. This implementation is not targeted to such a domain.

6.51 RM D.3(17): Locking Policies

"The implementation should use names that end with _Locking for lock-
ing policies defined by the implementation."

Followed. Two implementation-defined locking policies are defined, whose names (Inheri-
tance Locking and Concurrent Readers Locking) follow this suggestion.

6.52 RM D.4(16): Entry Queuing Policies

"Names that end with _Queuing should be used for all implementation-
defined queuing policies."

Followed. No such implementation-defined queuing policies exist.

6.53 RM D.6(9-10): Preemptive Abort

"Even though the abort statement is included in the list of potentially
blocking operations (see 9.5.1), it is recommended that this statement
be implemented in a way that never requires the task executing the
abort statement to block."

Followed.

"On a multi-processor, the delay associated with aborting a task on an-
other processor should be bounded; the implementation should use peri-
odic polling, if necessary, to achieve this."

Followed.

6.54 RM D.7(21): Tasking Restrictions

"When feasible, the implementation should take advantage of the speci-
fied restrictions to produce a more efficient implementation."

GNAT currently takes advantage of these restrictions by providing an optimized run time
when the Ravenscar profile and the GNAT restricted run time set of restrictions are speci-
fied. See pragma Profile (Ravenscar) and pragma Profile (Restricted) for more details.

6.55 RM D.8(47-49): Monotonic Time

"When appropriate, implementations should provide configuration mech-
anisms to change the value of Tick."

Such configuration mechanisms are not appropriate to this implementation and are thus
not supported.

"It is recommended that Calendar.Clock and Real Time.Clock be imple-
mented as transformations of the same time base."

Followed.

Chapter 6: Implementation Advice 165

"It is recommended that the best time base which exists in the underlying
system be available to the application through Clock. Best may mean
highest accuracy or largest range."

Followed.

6.56 RM E.5(28-29): Partition Communication Subsystem

"Whenever possible, the PCS on the called partition should allow for
multiple tasks to call the RPC-receiver with different messages and should
allow them to block until the corresponding subprogram body returns."

Followed by GLADE, a separately supplied PCS that can be used with GNAT.
"The Write operation on a stream of type Params Stream Type should
raise Storage Error if it runs out of space trying to write the Item into
the stream."

Followed by GLADE, a separately supplied PCS that can be used with GNAT.

6.57 RM F(7): COBOL Support

"If COBOL (respectively, C) is widely supported in the target envi-
ronment, implementations supporting the Information Systems Annex
should provide the child package Interfaces.COBOL (respectively, Inter-
faces.C) specified in Annex B and should support a convention identifier
of COBOL (respectively, C) in the interfacing pragmas (see Annex B),
thus allowing Ada programs to interface with programs written in that
language."

Followed.

6.58 RM F.1(2): Decimal Radix Support

"Packed decimal should be used as the internal representation for objects
of subtype S when S’Machine Radix = 10."

Not followed. GNAT ignores S’Machine Radix and always uses binary representations.

6.59 RM G: Numerics

"If Fortran (respectively, C) is widely supported in the target environ-
ment, implementations supporting the Numerics Annex should provide
the child package Interfaces.Fortran (respectively, Interfaces.C) specified
in Annex B and should support a convention identifier of Fortran (re-
spectively, C) in the interfacing pragmas (see Annex B), thus allowing
Ada programs to interface with programs written in that language."

Followed.

6.60 RM G.1.1(56-58): Complex Types

"Because the usual mathematical meaning of multiplication of a complex
operand and a real operand is that of the scaling of both components

Chapter 6: Implementation Advice 166

of the former by the latter, an implementation should not perform this
operation by first promoting the real operand to complex type and then
performing a full complex multiplication. In systems that, in the future,
support an Ada binding to IEC 559:1989, the latter technique will not
generate the required result when one of the components of the complex
operand is infinite. (Explicit multiplication of the infinite component
by the zero component obtained during promotion yields a NaN that
propagates into the final result.) Analogous advice applies in the case of
multiplication of a complex operand and a pure-imaginary operand, and
in the case of division of a complex operand by a real or pure-imaginary
operand."

Not followed.

"Similarly, because the usual mathematical meaning of addition of a com-
plex operand and a real operand is that the imaginary operand remains
unchanged, an implementation should not perform this operation by first
promoting the real operand to complex type and then performing a full
complex addition. In implementations in which the Signed Zeros at-
tribute of the component type is True (and which therefore conform to
IEC 559:1989 in regard to the handling of the sign of zero in predefined
arithmetic operations), the latter technique will not generate the required
result when the imaginary component of the complex operand is a neg-
atively signed zero. (Explicit addition of the negative zero to the zero
obtained during promotion yields a positive zero.) Analogous advice ap-
plies in the case of addition of a complex operand and a pure-imaginary
operand, and in the case of subtraction of a complex operand and a real
or pure-imaginary operand."

Not followed.

"Implementations in which Real’Signed Zeros is True should attempt to
provide a rational treatment of the signs of zero results and result com-
ponents. As one example, the result of the Argument function should
have the sign of the imaginary component of the parameter X when the
point represented by that parameter lies on the positive real axis; as an-
other, the sign of the imaginary component of the Compose From Polar
function should be the same as (respectively, the opposite of) that of the
Argument parameter when that parameter has a value of zero and the
Modulus parameter has a nonnegative (respectively, negative) value."

Followed.

6.61 RM G.1.2(49): Complex Elementary Functions

"Implementations in which Complex Types.Real’Signed Zeros is True
should attempt to provide a rational treatment of the signs of zero results
and result components. For example, many of the complex elementary
functions have components that are odd functions of one of the parameter
components; in these cases, the result component should have the sign of
the parameter component at the origin. Other complex elementary func-

Chapter 6: Implementation Advice 167

tions have zero components whose sign is opposite that of a parameter
component at the origin, or is always positive or always negative."

Followed.

6.62 RM G.2.4(19): Accuracy Requirements

"The versions of the forward trigonometric functions without a Cycle pa-
rameter should not be implemented by calling the corresponding version
with a Cycle parameter of 2.0*Numerics.Pi, since this will not provide
the required accuracy in some portions of the domain. For the same
reason, the version of Log without a Base parameter should not be im-
plemented by calling the corresponding version with a Base parameter of
Numerics.e."

Followed.

6.63 RM G.2.6(15): Complex Arithmetic Accuracy

"The version of the Compose From Polar function without a Cycle pa-
rameter should not be implemented by calling the corresponding version
with a Cycle parameter of 2.0*Numerics.Pi, since this will not provide
the required accuracy in some portions of the domain."

Followed.

6.64 RM H.6(15/2): Pragma Partition Elaboration Policy

"If the partition elaboration policy is Sequential and the Environment
task becomes permanently blocked during elaboration then the partition
is deadlocked and it is recommended that the partition be immediately
terminated."

Not followed.

Chapter 7: Implementation Defined Characteristics 168

7 Implementation Defined Characteristics

In addition to the implementation dependent pragmas and attributes, and the implementa-
tion advice, there are a number of other Ada features that are potentially implementation
dependent and are designated as implementation-defined. These are mentioned throughout
the Ada Reference Manual, and are summarized in Annex M.
A requirement for conforming Ada compilers is that they provide documentation describing
how the implementation deals with each of these issues. In this chapter you will find each
point in Annex M listed, followed by a description of how GNAT handles the implementation
dependence.
You can use this chapter as a guide to minimizing implementation dependent features in
your programs if portability to other compilers and other operating systems is an important
consideration. The numbers in each entry below correspond to the paragraph numbers in
the Ada Reference Manual.

* "Whether or not each recommendation given in Implementation Advice is followed.
See 1.1.2(37)."

See [Implementation Advice], page 147.
* "Capacity limitations of the implementation. See 1.1.3(3)."

The complexity of programs that can be processed is limited only by the total amount of
available virtual memory, and disk space for the generated object files.

* "Variations from the standard that are impractical to avoid given the implementation’s
execution environment. See 1.1.3(6)."

There are no variations from the standard.
* "Which code statements cause external interactions. See 1.1.3(10)."

Any code statement can potentially cause external interactions.
* "The coded representation for the text of an Ada program. See 2.1(4)."

See separate section on source representation.
* "The control functions allowed in comments. See 2.1(14)."

See separate section on source representation.
* "The representation for an end of line. See 2.2(2)."

See separate section on source representation.
* "Maximum supported line length and lexical element length. See 2.2(15)."

The maximum line length is 255 characters and the maximum length of a lexical element
is also 255 characters. This is the default setting if not overridden by the use of compiler
switch -gnaty (which sets the maximum to 79) or -gnatyMnn which allows the maximum
line length to be specified to be any value up to 32767. The maximum length of a lexical
element is the same as the maximum line length.

* "Implementation defined pragmas. See 2.8(14)."

See [Implementation Defined Pragmas], page 4.
* "Effect of pragma Optimize. See 2.8(27)."

Chapter 7: Implementation Defined Characteristics 169

Pragma Optimize, if given with a Time or Space parameter, checks that the optimization
flag is set, and aborts if it is not.

* "The sequence of characters of the value returned by S’Image when some of the graphic
characters of S’Wide_Image are not defined in Character. See 3.5(37)."

The sequence of characters is as defined by the wide character encoding method used for
the source. See section on source representation for further details.

* "The predefined integer types declared in Standard. See 3.5.4(25)."

Type Representation

Short Short Integer 8 bit signed

Short Integer (Short) 16 bit signed

Integer 32 bit signed

Long Integer 64 bit signed (on most 64 bit targets, depending
on the C definition of long). 32 bit signed (all other
targets)

Long Long Integer 64 bit signed

* "Any nonstandard integer types and the operators defined for them. See 3.5.4(26)."

There are no nonstandard integer types.
* "Any nonstandard real types and the operators defined for them. See 3.5.6(8)."

There are no nonstandard real types.
* "What combinations of requested decimal precision and range are supported for floating

point types. See 3.5.7(7)."

The precision and range is as defined by the IEEE standard.
* "The predefined floating point types declared in Standard. See 3.5.7(16)."

Type Representation

Short Float 32 bit IEEE short

Float (Short) 32 bit IEEE short

Long Float 64 bit IEEE long

Long Long Float 64 bit IEEE long (80 bit IEEE long on x86 processors)

* "The small of an ordinary fixed point type. See 3.5.9(8)."

Fine Delta is 2**(-63)

Chapter 7: Implementation Defined Characteristics 170

* "What combinations of small, range, and digits are supported for fixed point types.
See 3.5.9(10)."

Any combinations are permitted that do not result in a small less than Fine Delta and
do not result in a mantissa larger than 63 bits. If the mantissa is larger than 53 bits on
machines where Long Long Float is 64 bits (true of all architectures except ia32), then the
output from Text IO is accurate to only 53 bits, rather than the full mantissa. This is
because floating-point conversions are used to convert fixed point.

* "The result of Tags.Expanded Name for types declared within an unnamed
block statement. See 3.9(10)."

Block numbers of the form B‘nnn‘, where nnn is a decimal integer are allocated.
* "Implementation-defined attributes. See 4.1.4(12)."

See [Implementation Defined Attributes], page 108.
* "Any implementation-defined time types. See 9.6(6)."

There are no implementation-defined time types.
* "The time base associated with relative delays."

See 9.6(20). The time base used is that provided by the C library function gettimeofday.
* "The time base of the type Calendar.Time. See 9.6(23)."

The time base used is that provided by the C library function gettimeofday.
* "The time zone used for package Calendar operations. See 9.6(24)."

The time zone used by package Calendar is the current system time zone setting for local
time, as accessed by the C library function localtime.

* "Any limit on delay until statements of select statements. See 9.6(29)."

There are no such limits.
* "Whether or not two non-overlapping parts of a composite object are independently

addressable, in the case where packing, record layout, or Component Size is specified
for the object. See 9.10(1)."

Separate components are independently addressable if they do not share overlapping storage
units.

* "The representation for a compilation. See 10.1(2)."

A compilation is represented by a sequence of files presented to the compiler in a single
invocation of the gcc command.

* "Any restrictions on compilations that contain multiple compilation units. See
10.1(4)."

No single file can contain more than one compilation unit, but any sequence of files can be
presented to the compiler as a single compilation.

* "The mechanisms for creating an environment and for adding and replacing compilation
units. See 10.1.4(3)."

See separate section on compilation model.
* "The manner of explicitly assigning library units to a partition. See 10.2(2)."

Chapter 7: Implementation Defined Characteristics 171

If a unit contains an Ada main program, then the Ada units for the partition are determined
by recursive application of the rules in the Ada Reference Manual section 10.2(2-6). In
other words, the Ada units will be those that are needed by the main program, and then
this definition of need is applied recursively to those units, and the partition contains the
transitive closure determined by this relationship. In short, all the necessary units are
included, with no need to explicitly specify the list. If additional units are required, e.g.,
by foreign language units, then all units must be mentioned in the context clause of one of
the needed Ada units.
If the partition contains no main program, or if the main program is in a language other
than Ada, then GNAT provides the binder options -z and -n respectively, and in this case
a list of units can be explicitly supplied to the binder for inclusion in the partition (all units
needed by these units will also be included automatically). For full details on the use of
these options, refer to the GNAT Make Program gnatmake in the GNAT User’s Guide.

* "The implementation-defined means, if any, of specifying which compilation units are
needed by a given compilation unit. See 10.2(2)."

The units needed by a given compilation unit are as defined in the Ada Reference Manual
section 10.2(2-6). There are no implementation-defined pragmas or other implementation-
defined means for specifying needed units.

* "The manner of designating the main subprogram of a partition. See 10.2(7)."

The main program is designated by providing the name of the corresponding ALI file as the
input parameter to the binder.

* "The order of elaboration of library items. See 10.2(18)."

The first constraint on ordering is that it meets the requirements of Chapter 10 of the
Ada Reference Manual. This still leaves some implementation dependent choices, which
are resolved by first elaborating bodies as early as possible (i.e., in preference to specs
where there is a choice), and second by evaluating the immediate with clauses of a unit to
determine the probably best choice, and third by elaborating in alphabetical order of unit
names where a choice still remains.

* "Parameter passing and function return for the main subprogram. See 10.2(21)."

The main program has no parameters. It may be a procedure, or a function
returning an integer type. In the latter case, the returned integer value is the return
code of the program (overriding any value that may have been set by a call to
Ada.Command Line.Set Exit Status).

* "The mechanisms for building and running partitions. See 10.2(24)."

GNAT itself supports programs with only a single partition. The GNATDIST tool provided
with the GLADE package (which also includes an implementation of the PCS) provides a
completely flexible method for building and running programs consisting of multiple parti-
tions. See the separate GLADE manual for details.

* "The details of program execution, including program termination. See 10.2(25)."

See separate section on compilation model.
* "The semantics of any non-active partitions supported by the implementation. See

10.2(28)."

Chapter 7: Implementation Defined Characteristics 172

Passive partitions are supported on targets where shared memory is provided by the oper-
ating system. See the GLADE reference manual for further details.

* "The information returned by Exception Message. See 11.4.1(10)."

Exception message returns the null string unless a specific message has been passed by the
program.

* "The result of Exceptions.Exception Name for types declared within an unnamed
block statement. See 11.4.1(12)."

Blocks have implementation defined names of the form B‘nnn‘ where nnn is an integer.
* "The information returned by Exception Information. See 11.4.1(13)."

Exception Information returns a string in the following format:
Exception_Name: nnnnn
Message: mmmmm
PID: ppp
Load address: 0xhhhh
Call stack traceback locations:
0xhhhh 0xhhhh 0xhhhh ... 0xhhh

where
* nnnn is the fully qualified name of the exception in all upper case

letters. This line is always present.
* mmmm is the message (this line present only if message is non-null)
* ppp is the Process Id value as a decimal integer (this line is present

only if the Process Id is nonzero). Currently we are not making use
of this field.

* The Load address line, the Call stack traceback locations line and
the following values are present only if at least one traceback location
was recorded. The Load address indicates the address at which the
main executable was loaded; this line may not be present if operating
system hasn’t relocated the main executable. The values are given in
C style format, with lower case letters for a-f, and only as many digits
present as are necessary. The line terminator sequence at the end of
each line, including the last line is a single LF character (16#0A#).

* "Implementation-defined check names. See 11.5(27)."

The implementation defined check names include Alignment Check, Atomic Synchronization,
Duplicated Tag Check, Container Checks, Tampering Check, Predicate Check, and
Validity Check. In addition, a user program can add implementation-defined check names
by means of the pragma Check Name. See the description of pragma Suppress for full
details.

* "The interpretation of each aspect of representation. See 13.1(20)."

See separate section on data representations.
* "Any restrictions placed upon representation items. See 13.1(20)."

See separate section on data representations.

Chapter 7: Implementation Defined Characteristics 173

* "The meaning of Size for indefinite subtypes. See 13.3(48)."

Size for an indefinite subtype is the maximum possible size, except that for the case of a
subprogram parameter, the size of the parameter object is the actual size.

* "The default external representation for a type tag. See 13.3(75)."

The default external representation for a type tag is the fully expanded name of the type
in upper case letters.

* "What determines whether a compilation unit is the same in two different partitions.
See 13.3(76)."

A compilation unit is the same in two different partitions if and only if it derives from the
same source file.

* "Implementation-defined components. See 13.5.1(15)."

The only implementation defined component is the tag for a tagged type, which contains a
pointer to the dispatching table.

* "If Word Size = Storage Unit, the default bit ordering. See 13.5.3(5)."

Word Size (32) is not the same as Storage Unit (8) for this implementation, so no non-
default bit ordering is supported. The default bit ordering corresponds to the natural
endianness of the target architecture.

* "The contents of the visible part of package System and its language-defined children.
See 13.7(2)."

See the definition of these packages in files system.ads and s-stoele.ads. Note that two
declarations are added to package System.

Max_Priority : constant Positive := Priority’Last;
Max_Interrupt_Priority : constant Positive := Interrupt_Priority’Last;

* "The contents of the visible part of package System.Machine Code, and the meaning
of code statements. See 13.8(7)."

See the definition and documentation in file s-maccod.ads.
* "The effect of unchecked conversion. See 13.9(11)."

Unchecked conversion between types of the same size results in an uninterpreted transmis-
sion of the bits from one type to the other. If the types are of unequal sizes, then in the
case of discrete types, a shorter source is first zero or sign extended as necessary, and a
shorter target is simply truncated on the left. For all non-discrete types, the source is first
copied if necessary to ensure that the alignment requirements of the target are met, then a
pointer is constructed to the source value, and the result is obtained by dereferencing this
pointer after converting it to be a pointer to the target type. Unchecked conversions where
the target subtype is an unconstrained array are not permitted. If the target alignment
is greater than the source alignment, then a copy of the result is made with appropriate
alignment

* "The semantics of operations on invalid representations. See 13.9.2(10-11)."

For assignments and other operations where the use of invalid values cannot result in er-
roneous behavior, the compiler ignores the possibility of invalid values. An exception is
raised at the point where an invalid value would result in erroneous behavior. For example
executing:

Chapter 7: Implementation Defined Characteristics 174

procedure invalidvals is
X : Integer := -1;
Y : Natural range 1 .. 10;
for Y’Address use X’Address;
Z : Natural range 1 .. 10;
A : array (Natural range 1 .. 10) of Integer;

begin
Z := Y; -- no exception
A (Z) := 3; -- exception raised;

end;

As indicated, an exception is raised on the array assignment, but not on the simple assign-
ment of the invalid negative value from Y to Z.

* "The manner of choosing a storage pool for an access type when Storage Pool is not
specified for the type. See 13.11(17)."

There are 3 different standard pools used by the compiler when Storage Pool is not specified
depending whether the type is local to a subprogram or defined at the library level and
whether Storage Size‘is specified or not. See documentation in the runtime library units
‘System.Pool Global, System.Pool Size and System.Pool Local in files s-poosiz.ads, s-
pooglo.ads and s-pooloc.ads for full details on the default pools used.

* "Whether or not the implementation provides user-accessible names for the standard
pool type(s). See 13.11(17)."

See documentation in the sources of the run time mentioned in the previous paragraph. All
these pools are accessible by means of with’ing these units.

* "The meaning of Storage Size. See 13.11(18)."

Storage Size is measured in storage units, and refers to the total space available for an
access type collection, or to the primary stack space for a task.

* "Implementation-defined aspects of storage pools. See 13.11(22)."

See documentation in the sources of the run time mentioned in the paragraph about stan-
dard storage pools above for details on GNAT-defined aspects of storage pools.

* "The set of restrictions allowed in a pragma Restrictions. See 13.12(7)."

See [Standard and Implementation Defined Restrictions], page 130.

* "The consequences of violating limitations on Restrictions pragmas. See 13.12(9)."

Restrictions that can be checked at compile time result in illegalities if violated. Currently
there are no other consequences of violating restrictions.

* "The representation used by the Read and Write attributes of elementary types in
terms of stream elements. See 13.13.2(9)."

The representation is the in-memory representation of the base type of the type, using
the number of bits corresponding to the type’Size value, and the natural ordering of the
machine.

* "The names and characteristics of the numeric subtypes declared in the visible part of
package Standard. See A.1(3)."

Chapter 7: Implementation Defined Characteristics 175

See items describing the integer and floating-point types supported.
* "The string returned by Character Set Version. See A.3.5(3)."

Ada.Wide Characters.Handling.Character Set Version returns the string "Unicode 4.0",
referring to version 4.0 of the Unicode specification.

* "The accuracy actually achieved by the elementary functions. See A.5.1(1)."

The elementary functions correspond to the functions available in the C library. Only fast
math mode is implemented.

* "The sign of a zero result from some of the operators or functions in Numer-
ics.Generic Elementary Functions, when Float Type’Signed Zeros is True. See
A.5.1(46)."

The sign of zeroes follows the requirements of the IEEE 754 standard on floating-point.
* "The value of Numerics.Float Random.Max Image Width. See A.5.2(27)."

Maximum image width is 6864, see library file s-rannum.ads.
* "The value of Numerics.Discrete Random.Max Image Width. See A.5.2(27)."

Maximum image width is 6864, see library file s-rannum.ads.
* "The algorithms for random number generation. See A.5.2(32)."

The algorithm is the Mersenne Twister, as documented in the source file s-rannum.adb.
This version of the algorithm has a period of 2**19937-1.

* "The string representation of a random number generator’s state. See A.5.2(38)."

The value returned by the Image function is the concatenation of the fixed-width decimal
representations of the 624 32-bit integers of the state vector.

* "The minimum time interval between calls to the time-dependent Reset procedure that
are guaranteed to initiate different random number sequences. See A.5.2(45)."

The minimum period between reset calls to guarantee distinct series of random numbers is
one microsecond.

* "The values of the Model Mantissa, Model Emin, Model Epsilon, Model, Safe First,
and Safe Last attributes, if the Numerics Annex is not supported. See A.5.3(72)."

Run the compiler with -gnatS to produce a listing of package Standard, has the values of
all numeric attributes.

* "Any implementation-defined characteristics of the input-output packages. See
A.7(14)."

There are no special implementation defined characteristics for these packages.
* "The value of Buffer Size in Storage IO. See A.9(10)."

All type representations are contiguous, and the Buffer Size is the value of type’Size
rounded up to the next storage unit boundary.

* "External files for standard input, standard output, and standard error See A.10(5)."

These files are mapped onto the files provided by the C streams libraries. See source file
i-cstrea.ads for further details.

* "The accuracy of the value produced by Put. See A.10.9(36)."

Chapter 7: Implementation Defined Characteristics 176

If more digits are requested in the output than are represented by the precision of the value,
zeroes are output in the corresponding least significant digit positions.

* "The meaning of Argument Count, Argument, and Command Name. See A.15(1)."

These are mapped onto the argv and argc parameters of the main program in the natural
manner.

* "The interpretation of the Form parameter in procedure Create Directory. See
A.16(56)."

The Form parameter is not used.

* "The interpretation of the Form parameter in procedure Create Path. See A.16(60)."

The Form parameter is not used.

* "The interpretation of the Form parameter in procedure Copy File. See A.16(68)."

The Form parameter is case-insensitive. Two fields are recognized in the Form parameter:

preserve=<value>
mode=<value>

<value> starts immediately after the character ’=’ and ends with the character immediately
preceding the next comma (’,’) or with the last character of the parameter.

The only possible values for preserve= are:

Value Meaning

no attributes Do not try to preserve any file attributes. This is the default if no preserve= is
found in Form.

all attributes Try to preserve all file attributes (timestamps, access rights).

timestamps Preserve the timestamp of the copied file, but not the other file attributes.

The only possible values for mode= are:

Value Meaning

copy Only do the copy if the destination file does not already exist. If it already exists, Copy File fails.

overwrite Copy the file in all cases. Overwrite an already existing destination file.

append Append the original file to the destination file. If the destination file does not exist, the destination
file is a copy of the source file. When mode=append, the field preserve=, if it exists, is not taken
into account.

If the Form parameter includes one or both of the fields and the value or values are incorrect,
Copy file fails with Use Error.

Examples of correct Forms:

Chapter 7: Implementation Defined Characteristics 177

Form => "preserve=no_attributes,mode=overwrite" (the default)
Form => "mode=append"
Form => "mode=copy, preserve=all_attributes"

Examples of incorrect Forms:
Form => "preserve=junk"
Form => "mode=internal, preserve=timestamps"

* "The interpretation of the Pattern parameter, when not the null string, in the
Start Search and Search procedures. See A.16(104) and A.16(112)."

When the Pattern parameter is not the null string, it is interpreted according to the syntax
of regular expressions as defined in the GNAT.Regexp package.
See [GNAT.Regexp (g-regexp.ads)], page 259.

* "Implementation-defined convention names. See B.1(11)."

The following convention names are supported

Convention Name Interpretation

Ada Ada

Ada Pass By Copy Allowed for any types except by-reference types such as limited records. Compatible with con-
vention Ada, but causes any parameters with this convention to be passed by copy.

Ada Pass By Reference Allowed for any types except by-copy types such as scalars. Compatible with convention Ada,
but causes any parameters with this convention to be passed by reference.

Assembler Assembly language

Asm Synonym for Assembler

Assembly Synonym for Assembler

C C

C Pass By Copy Allowed only for record types, like C, but also notes that record is to be passed by copy rather
than reference.

COBOL COBOL

C Plus Plus (or CPP) C++

Default Treated the same as C

External Treated the same as C

Fortran Fortran

Chapter 7: Implementation Defined Characteristics 178

Intrinsic For support of pragma Import with convention Intrinsic, see separate section on Intrinsic Sub-
programs.

Stdcall Stdcall (used for Windows implementations only). This convention correspond to the WINAPI
(previously called Pascal convention) C/C++ convention under Windows. A routine with this
convention cleans the stack before exit. This pragma cannot be applied to a dispatching call.

DLL Synonym for Stdcall

Win32 Synonym for Stdcall

Stubbed Stubbed is a special convention used to indicate that the body of the subprogram will be entirely
ignored. Any call to the subprogram is converted into a raise of the Program Error exception. If a
pragma Import specifies convention stubbed then no body need be present at all. This convention
is useful during development for the inclusion of subprograms whose body has not yet been written.
In addition, all otherwise unrecognized convention names are also treated as being synonymous
with convention C. In all implementations except for VMS, use of such other names results in a
warning. In VMS implementations, these names are accepted silently.

* "The meaning of link names. See B.1(36)."

Link names are the actual names used by the linker.
* "The manner of choosing link names when neither the link name nor the address of an

imported or exported entity is specified. See B.1(36)."

The default linker name is that which would be assigned by the relevant external language,
interpreting the Ada name as being in all lower case letters.

* "The effect of pragma Linker Options. See B.1(37)."

The string passed to Linker Options is presented uninterpreted as an argument to the link
command, unless it contains ASCII.NUL characters. NUL characters if they appear act as
argument separators, so for example

pragma Linker_Options ("-labc" & ASCII.NUL & "-ldef");

causes two separate arguments -labc and -ldef to be passed to the linker. The order of
linker options is preserved for a given unit. The final list of options passed to the linker
is in reverse order of the elaboration order. For example, linker options for a body always
appear before the options from the corresponding package spec.

* "The contents of the visible part of package Interfaces and its language-defined descen-
dants. See B.2(1)."

See files with prefix i- in the distributed library.
* "Implementation-defined children of package Interfaces. The contents of the visible

part of package Interfaces. See B.2(11)."

See files with prefix i- in the distributed library.
* "The types Floating, Long Floating, Binary, Long Binary, Decimal Element, and

COBOL Character; and the initialization of the variables Ada To COBOL and
COBOL To Ada, in Interfaces.COBOL. See B.4(50)."

Chapter 7: Implementation Defined Characteristics 179

COBOL Ada

Floating Float

Long Floating (Floating) Long Float

Binary Integer

Long Binary Long Long Integer

Decimal Element Character

COBOL Character Character

For initialization, see the file i-cobol.ads in the distributed library.
* "Support for access to machine instructions. See C.1(1)."

See documentation in file s-maccod.ads in the distributed library.
* "Implementation-defined aspects of access to machine operations. See C.1(9)."

See documentation in file s-maccod.ads in the distributed library.
* "Implementation-defined aspects of interrupts. See C.3(2)."

Interrupts are mapped to signals or conditions as appropriate. See definition of unit
Ada.Interrupt Names in source file a-intnam.ads for details on the interrupts supported
on a particular target.

* "Implementation-defined aspects of pre-elaboration. See C.4(13)."

GNAT does not permit a partition to be restarted without reloading, except under control
of the debugger.

* "The semantics of pragma Discard Names. See C.5(7)."

Pragma Discard Names causes names of enumeration literals to be suppressed. In the
presence of this pragma, the Image attribute provides the image of the Pos of the literal,
and Value accepts Pos values.

* "The result of the Task Identification.Image attribute. See C.7.1(7)."

The result of this attribute is a string that identifies the object or component that denotes
a given task. If a variable Var has a task type, the image for this task will have the
form Var ‘XXXXXXXX‘, where the suffix is the hexadecimal representation of the virtual
address of the corresponding task control block. If the variable is an array of tasks, the
image of each task will have the form of an indexed component indicating the position of
a given task in the array, e.g., Group(5) ‘XXXXXXX‘. If the task is a component of a
record, the image of the task will have the form of a selected component. These rules are
fully recursive, so that the image of a task that is a subcomponent of a composite object
corresponds to the expression that designates this task.
If a task is created by an allocator, its image depends on the context. If the allocator is
part of an object declaration, the rules described above are used to construct its image, and

Chapter 7: Implementation Defined Characteristics 180

this image is not affected by subsequent assignments. If the allocator appears within an
expression, the image includes only the name of the task type.
If the configuration pragma Discard Names is present, or if the restriction
No Implicit Heap Allocation is in effect, the image reduces to the numeric suffix, that is to
say the hexadecimal representation of the virtual address of the control block of the task.

* "The value of Current Task when in a protected entry or interrupt handler. See
C.7.1(17)."

Protected entries or interrupt handlers can be executed by any convenient thread, so the
value of Current Task is undefined.

* "The effect of calling Current Task from an entry body or interrupt handler. See
C.7.1(19)."

The effect of calling Current Task from an entry body or interrupt handler is to return the
identification of the task currently executing the code.

* "Implementation-defined aspects of Task Attributes. See C.7.2(19)."

There are no implementation-defined aspects of Task Attributes.
* "Values of all Metrics. See D(2)."

The metrics information for GNAT depends on the performance of the underlying operating
system. The sources of the run-time for tasking implementation, together with the output
from -gnatG can be used to determine the exact sequence of operating systems calls made
to implement various tasking constructs. Together with appropriate information on the
performance of the underlying operating system, on the exact target in use, this information
can be used to determine the required metrics.

* "The declarations of Any Priority and Priority. See D.1(11)."

See declarations in file system.ads.
* "Implementation-defined execution resources. See D.1(15)."

There are no implementation-defined execution resources.
* "Whether, on a multiprocessor, a task that is waiting for access to a protected object

keeps its processor busy. See D.2.1(3)."

On a multi-processor, a task that is waiting for access to a protected object does not keep
its processor busy.

* "The affect of implementation defined execution resources on task dispatching. See
D.2.1(9)."

Tasks map to threads in the threads package used by GNAT. Where possible and appro-
priate, these threads correspond to native threads of the underlying operating system.

* "Implementation-defined policy identifiers allowed in a pragma Task Dispatching Policy.
See D.2.2(3)."

There are no implementation-defined policy-identifiers allowed in this pragma.
* "Implementation-defined aspects of priority inversion. See D.2.2(16)."

Execution of a task cannot be preempted by the implementation processing of delay expi-
rations for lower priority tasks.

Chapter 7: Implementation Defined Characteristics 181

* "Implementation-defined task dispatching. See D.2.2(18)."

The policy is the same as that of the underlying threads implementation.
* "Implementation-defined policy identifiers allowed in a pragma Locking Policy. See

D.3(4)."

The two implementation defined policies permitted in GNAT are Inheritance Locking and
Conccurent Readers Locking. On targets that support the Inheritance Locking policy,
locking is implemented by inheritance, i.e., the task owning the lock operates at a pri-
ority equal to the highest priority of any task currently requesting the lock. On targets that
support the Conccurent Readers Locking policy, locking is implemented with a read/write
lock allowing multiple propected object functions to enter concurrently.

* "Default ceiling priorities. See D.3(10)."

The ceiling priority of protected objects of the type System.Interrupt Priority’Last as de-
scribed in the Ada Reference Manual D.3(10),

* "The ceiling of any protected object used internally by the implementation. See
D.3(16)."

The ceiling priority of internal protected objects is System.Priority’Last.
* "Implementation-defined queuing policies. See D.4(1)."

There are no implementation-defined queuing policies.
* "On a multiprocessor, any conditions that cause the completion of an aborted construct

to be delayed later than what is specified for a single processor. See D.6(3)."

The semantics for abort on a multi-processor is the same as on a single processor, there are
no further delays.

* "Any operations that implicitly require heap storage allocation. See D.7(8)."

The only operation that implicitly requires heap storage allocation is task creation.
* "What happens when a task terminates in the presence of pragma

No Task Termination. See D.7(15)."

Execution is erroneous in that case.
* "Implementation-defined aspects of pragma Restrictions. See D.7(20)."

There are no such implementation-defined aspects.
* "Implementation-defined aspects of package Real Time. See D.8(17)."

There are no implementation defined aspects of package Real Time.
* "Implementation-defined aspects of delay statements. See D.9(8)."

Any difference greater than one microsecond will cause the task to be delayed (see D.9(7)).
* "The upper bound on the duration of interrupt blocking caused by the implementation.

See D.12(5)."

The upper bound is determined by the underlying operating system. In no cases is it more
than 10 milliseconds.

* "The means for creating and executing distributed programs. See E(5)."

Chapter 7: Implementation Defined Characteristics 182

The GLADE package provides a utility GNATDIST for creating and executing distributed
programs. See the GLADE reference manual for further details.

* "Any events that can result in a partition becoming inaccessible. See E.1(7)."

See the GLADE reference manual for full details on such events.
* "The scheduling policies, treatment of priorities, and management of shared resources

between partitions in certain cases. See E.1(11)."

See the GLADE reference manual for full details on these aspects of multi-partition execu-
tion.

* "Events that cause the version of a compilation unit to change. See E.3(5)."

Editing the source file of a compilation unit, or the source files of any units on which it
is dependent in a significant way cause the version to change. No other actions cause the
version number to change. All changes are significant except those which affect only layout,
capitalization or comments.

* "Whether the execution of the remote subprogram is immediately aborted as a result
of cancellation. See E.4(13)."

See the GLADE reference manual for details on the effect of abort in a distributed appli-
cation.

* "Implementation-defined aspects of the PCS. See E.5(25)."

See the GLADE reference manual for a full description of all implementation defined aspects
of the PCS.

* "Implementation-defined interfaces in the PCS. See E.5(26)."

See the GLADE reference manual for a full description of all implementation defined inter-
faces.

* "The values of named numbers in the package Decimal. See F.2(7)."

Named Number Value

Max Scale +18

Min Scale -18

Min Delta 1.0E-18

Max Delta 1.0E+18

Max Decimal Digits 18

* "The value of Max Picture Length in the package Text IO.Editing. See F.3.3(16)."

64
* "The value of Max Picture Length in the package Wide Text IO.Editing. See

F.3.4(5)."

Chapter 7: Implementation Defined Characteristics 183

64
* "The accuracy actually achieved by the complex elementary functions and by other

complex arithmetic operations. See G.1(1)."

Standard library functions are used for the complex arithmetic operations. Only fast math
mode is currently supported.

* "The sign of a zero result (or a component thereof) from any operator or function in
Numerics.Generic Complex Types, when Real’Signed Zeros is True. See G.1.1(53)."

The signs of zero values are as recommended by the relevant implementation advice.
* "The sign of a zero result (or a component thereof) from any operator or function in

Numerics.Generic Complex Elementary Functions, when Real’Signed Zeros is True.
See G.1.2(45)."

The signs of zero values are as recommended by the relevant implementation advice.
* "Whether the strict mode or the relaxed mode is the default. See G.2(2)."

The strict mode is the default. There is no separate relaxed mode. GNAT provides a highly
efficient implementation of strict mode.

* "The result interval in certain cases of fixed-to-float conversion. See G.2.1(10)."

For cases where the result interval is implementation dependent, the accuracy is that pro-
vided by performing all operations in 64-bit IEEE floating-point format.

* "The result of a floating point arithmetic operation in overflow situations, when the
Machine Overflows attribute of the result type is False. See G.2.1(13)."

Infinite and NaN values are produced as dictated by the IEEE floating-point standard. Note
that on machines that are not fully compliant with the IEEE floating-point standard, such
as Alpha, the -mieee compiler flag must be used for achieving IEEE conforming behavior
(although at the cost of a significant performance penalty), so infinite and NaN values are
properly generated.

* "The result interval for division (or exponentiation by a negative exponent), when
the floating point hardware implements division as multiplication by a reciprocal. See
G.2.1(16)."

Not relevant, division is IEEE exact.
* "The definition of close result set, which determines the accuracy of certain fixed point

multiplications and divisions. See G.2.3(5)."

Operations in the close result set are performed using IEEE long format floating-point
arithmetic. The input operands are converted to floating-point, the operation is done in
floating-point, and the result is converted to the target type.

* "Conditions on a universal real operand of a fixed point multiplication or division for
which the result shall be in the perfect result set. See G.2.3(22)."

The result is only defined to be in the perfect result set if the result can be computed by a
single scaling operation involving a scale factor representable in 64-bits.

* "The result of a fixed point arithmetic operation in overflow situations, when the
Machine Overflows attribute of the result type is False. See G.2.3(27)."

Chapter 7: Implementation Defined Characteristics 184

Not relevant, Machine Overflows is True for fixed-point types.
* "The result of an elementary function reference in overflow situations, when the Ma-

chine Overflows attribute of the result type is False. See G.2.4(4)."

IEEE infinite and Nan values are produced as appropriate.
* "The value of the angle threshold, within which certain elementary functions, complex

arithmetic operations, and complex elementary functions yield results conforming to a
maximum relative error bound. See G.2.4(10)."

Information on this subject is not yet available.
* "The accuracy of certain elementary functions for parameters beyond the angle thresh-

old. See G.2.4(10)."

Information on this subject is not yet available.
* "The result of a complex arithmetic operation or complex elementary function reference

in overflow situations, when the Machine Overflows attribute of the corresponding real
type is False. See G.2.6(5)."

IEEE infinite and Nan values are produced as appropriate.
* "The accuracy of certain complex arithmetic operations and certain complex elemen-

tary functions for parameters (or components thereof) beyond the angle threshold. See
G.2.6(8)."

Information on those subjects is not yet available.
* "Information regarding bounded errors and erroneous execution. See H.2(1)."

Information on this subject is not yet available.
* "Implementation-defined aspects of pragma Inspection Point. See H.3.2(8)."

Pragma Inspection Point ensures that the variable is live and can be examined by the
debugger at the inspection point.

* "Implementation-defined aspects of pragma Restrictions. See H.4(25)."

There are no implementation-defined aspects of pragma Restrictions. The use of pragma
Restrictions [No Exceptions] has no effect on the generated code. Checks must suppressed
by use of pragma Suppress.

* "Any restrictions on pragma Restrictions. See H.4(27)."

There are no restrictions on pragma Restrictions.

Chapter 8: Intrinsic Subprograms 185

8 Intrinsic Subprograms

GNAT allows a user application program to write the declaration:

pragma Import (Intrinsic, name);

providing that the name corresponds to one of the implemented intrinsic subprograms in
GNAT, and that the parameter profile of the referenced subprogram meets the requirements.
This chapter describes the set of implemented intrinsic subprograms, and the requirements
on parameter profiles. Note that no body is supplied; as with other uses of pragma Import,
the body is supplied elsewhere (in this case by the compiler itself). Note that any use of this
feature is potentially non-portable, since the Ada standard does not require Ada compilers
to implement this feature.

8.1 Intrinsic Operators

All the predefined numeric operators in package Standard in pragma Import (Intrinsic,..)
declarations. In the binary operator case, the operands must have the same size. The
operand or operands must also be appropriate for the operator. For example, for addition,
the operands must both be floating-point or both be fixed-point, and the right operand for
"**" must have a root type of Standard.Integer’Base. You can use an intrinsic operator
declaration as in the following example:

type Int1 is new Integer;
type Int2 is new Integer;

function "+" (X1 : Int1; X2 : Int2) return Int1;
function "+" (X1 : Int1; X2 : Int2) return Int2;
pragma Import (Intrinsic, "+");

This declaration would permit ’mixed mode’ arithmetic on items of the differing types Int1
and Int2. It is also possible to specify such operators for private types, if the full views are
appropriate arithmetic types.

8.2 Compilation Date

This intrinsic subprogram is used in the implementation of the library package
GNAT.Source Info. The only useful use of the intrinsic import in this case is
the one in this unit, so an application program should simply call the function
GNAT.Source Info.Compilation Date to obtain the date of the current compilation (in
local time format MMM DD YYYY).

8.3 Compilation Time

This intrinsic subprogram is used in the implementation of the library package
GNAT.Source Info. The only useful use of the intrinsic import in this case is
the one in this unit, so an application program should simply call the function
GNAT.Source Info.Compilation Time to obtain the time of the current compilation (in
local time format HH:MM:SS).

Chapter 8: Intrinsic Subprograms 186

8.4 Enclosing Entity

This intrinsic subprogram is used in the implementation of the library package
GNAT.Source Info. The only useful use of the intrinsic import in this case is
the one in this unit, so an application program should simply call the function
GNAT.Source Info.Enclosing Entity to obtain the name of the current subprogram,
package, task, entry, or protected subprogram.

8.5 Exception Information

This intrinsic subprogram is used in the implementation of the library package
GNAT.Current Exception. The only useful use of the intrinsic import in this case
is the one in this unit, so an application program should simply call the function
GNAT.Current Exception.Exception Information to obtain the exception information
associated with the current exception.

8.6 Exception Message

This intrinsic subprogram is used in the implementation of the library package
GNAT.Current Exception. The only useful use of the intrinsic import in this case
is the one in this unit, so an application program should simply call the function
GNAT.Current Exception.Exception Message to obtain the message associated with the
current exception.

8.7 Exception Name

This intrinsic subprogram is used in the implementation of the library package
GNAT.Current Exception. The only useful use of the intrinsic import in this case
is the one in this unit, so an application program should simply call the function
GNAT.Current Exception.Exception Name to obtain the name of the current exception.

8.8 File

This intrinsic subprogram is used in the implementation of the library package
GNAT.Source Info. The only useful use of the intrinsic import in this case is the one in
this unit, so an application program should simply call the function GNAT.Source Info.File
to obtain the name of the current file.

8.9 Line

This intrinsic subprogram is used in the implementation of the library package
GNAT.Source Info. The only useful use of the intrinsic import in this case is the one in this
unit, so an application program should simply call the function GNAT.Source Info.Line to
obtain the number of the current source line.

8.10 Shifts and Rotates

In standard Ada, the shift and rotate functions are available only for the predefined modular
types in package Interfaces. However, in GNAT it is possible to define these functions for
any integer type (signed or modular), as in this example:

Chapter 8: Intrinsic Subprograms 187

function Shift_Left
(Value : T;
Amount : Natural) return T;

The function name must be one of Shift Left, Shift Right, Shift Right Arithmetic, Ro-
tate Left, or Rotate Right. T must be an integer type. T’Size must be 8, 16, 32 or 64 bits;
if T is modular, the modulus must be 2**8, 2**16, 2**32 or 2**64. The result type must be
the same as the type of Value. The shift amount must be Natural. The formal parameter
names can be anything.
A more convenient way of providing these shift operators is to use the Pro-
vide Shift Operators pragma, which provides the function declarations and corresponding
pragma Import’s for all five shift functions.

8.11 Source Location

This intrinsic subprogram is used in the implementation of the library routine
GNAT.Source Info. The only useful use of the intrinsic import in this case is
the one in this unit, so an application program should simply call the function
GNAT.Source Info.Source Location to obtain the current source file location.

Chapter 9: Representation Clauses and Pragmas 188

9 Representation Clauses and Pragmas

This section describes the representation clauses accepted by GNAT, and their effect on the
representation of corresponding data objects.

GNAT fully implements Annex C (Systems Programming). This means that all the im-
plementation advice sections in chapter 13 are fully implemented. However, these sections
only require a minimal level of support for representation clauses. GNAT provides much
more extensive capabilities, and this section describes the additional capabilities provided.

9.1 Alignment Clauses

GNAT requires that all alignment clauses specify a power of 2, and all default alignments
are always a power of 2. The default alignment values are as follows:

* Elementary Types.

For elementary types, the alignment is the minimum of the actual size of objects of
the type divided by Storage Unit, and the maximum alignment supported by the
target. (This maximum alignment is given by the GNAT-specific attribute Stan-
dard’Maximum Alignment; see [Attribute Maximum Alignment], page 116.)

For example, for type Long Float, the object size is 8 bytes, and the default alignment
will be 8 on any target that supports alignments this large, but on some targets, the
maximum alignment may be smaller than 8, in which case objects of type Long Float
will be maximally aligned.

* Arrays.

For arrays, the alignment is equal to the alignment of the component type for the
normal case where no packing or component size is given. If the array is packed, and
the packing is effective (see separate section on packed arrays), then the alignment
will be either 4, 2, or 1 for long packed arrays or arrays whose length is not known at
compile time, depending on whether the component size is divisible by 4, 2, or is odd.
For short packed arrays, which are handled internally as modular types, the alignment
will be as described for elementary types, e.g. a packed array of length 31 bits will
have an object size of four bytes, and an alignment of 4.

* Records.

For the normal non-packed case, the alignment of a record is equal to the maximum
alignment of any of its components. For tagged records, this includes the implicit access
type used for the tag. If a pragma Pack is used and all components are packable (see
separate section on pragma Pack), then the resulting alignment is 1, unless the layout
of the record makes it profitable to increase it.

A special case is when:

* the size of the record is given explicitly, or a full record representation clause is
given, and

* the size of the record is 2, 4, or 8 bytes.

In this case, an alignment is chosen to match the size of the record. For example, if we
have:

Chapter 9: Representation Clauses and Pragmas 189

type Small is record
A, B : Character;

end record;
for Small’Size use 16;

then the default alignment of the record type Small is 2, not 1. This leads to more
efficient code when the record is treated as a unit, and also allows the type to specified
as Atomic on architectures requiring strict alignment.

An alignment clause may specify a larger alignment than the default value up to some
maximum value dependent on the target (obtainable by using the attribute reference Stan-
dard’Maximum Alignment). It may also specify a smaller alignment than the default value
for enumeration, integer and fixed point types, as well as for record types, for example

type V is record
A : Integer;

end record;

for V’alignment use 1;

The default alignment for the type V is 4, as a result of the Integer field in the record, but
it is permissible, as shown, to override the default alignment of the record with a smaller
value.
Note that according to the Ada standard, an alignment clause applies only to the first
named subtype. If additional subtypes are declared, then the compiler is allowed to choose
any alignment it likes, and there is no way to control this choice. Consider:

type R is range 1 .. 10_000;
for R’Alignment use 1;
subtype RS is R range 1 .. 1000;

The alignment clause specifies an alignment of 1 for the first named subtype R but this does
not necessarily apply to RS. When writing portable Ada code, you should avoid writing
code that explicitly or implicitly relies on the alignment of such subtypes.
For the GNAT compiler, if an explicit alignment clause is given, this value is also used
for any subsequent subtypes. So for GNAT, in the above example, you can count on the
alignment of RS being 1. But this assumption is non-portable, and other compilers may
choose different alignments for the subtype RS.

9.2 Size Clauses

The default size for a type T is obtainable through the language-defined attribute T’Size
and also through the equivalent GNAT-defined attribute T’Value Size. For objects of type
T, GNAT will generally increase the type size so that the object size (obtainable through
the GNAT-defined attribute T’Object Size) is a multiple of T’Alignment * Storage Unit.
For example:

type Smallint is range 1 .. 6;

type Rec is record
Y1 : integer;
Y2 : boolean;

Chapter 9: Representation Clauses and Pragmas 190

end record;

In this example, Smallint’Size = Smallint’Value Size = 3, as specified by the RM rules, but
objects of this type will have a size of 8 (Smallint’Object Size = 8), since objects by default
occupy an integral number of storage units. On some targets, notably older versions of the
Digital Alpha, the size of stand alone objects of this type may be 32, reflecting the inability
of the hardware to do byte load/stores.
Similarly, the size of type Rec is 40 bits (Rec’Size = Rec’Value Size = 40), but the alignment
is 4, so objects of this type will have their size increased to 64 bits so that it is a multiple
of the alignment (in bits). This decision is in accordance with the specific Implementation
Advice in RM 13.3(43):

"A Size clause should be supported for an object if the specified Size is
at least as large as its subtype’s Size, and corresponds to a size in storage
elements that is a multiple of the object’s Alignment (if the Alignment
is nonzero)."

An explicit size clause may be used to override the default size by increasing it. For example,
if we have:

type My_Boolean is new Boolean;
for My_Boolean’Size use 32;

then values of this type will always be 32 bits long. In the case of discrete types, the size can
be increased up to 64 bits, with the effect that the entire specified field is used to hold the
value, sign- or zero-extended as appropriate. If more than 64 bits is specified, then padding
space is allocated after the value, and a warning is issued that there are unused bits.
Similarly the size of records and arrays may be increased, and the effect is to add padding
bits after the value. This also causes a warning message to be generated.
The largest Size value permitted in GNAT is 2**31-1. Since this is a Size in bits, this
corresponds to an object of size 256 megabytes (minus one). This limitation is true on all
targets. The reason for this limitation is that it improves the quality of the code in many
cases if it is known that a Size value can be accommodated in an object of type Integer.

9.3 Storage Size Clauses

For tasks, the Storage Size clause specifies the amount of space to be allocated for the task
stack. This cannot be extended, and if the stack is exhausted, then Storage Error will be
raised (if stack checking is enabled). Use a Storage Size attribute definition clause, or a
Storage Size pragma in the task definition to set the appropriate required size. A useful
technique is to include in every task definition a pragma of the form:

pragma Storage_Size (Default_Stack_Size);

Then Default Stack Size can be defined in a global package, and modified as required. Any
tasks requiring stack sizes different from the default can have an appropriate alternative
reference in the pragma.
You can also use the -d binder switch to modify the default stack size.
For access types, the Storage Size clause specifies the maximum space available for alloca-
tion of objects of the type. If this space is exceeded then Storage Error will be raised by
an allocation attempt. In the case where the access type is declared local to a subprogram,
the use of a Storage Size clause triggers automatic use of a special predefined storage pool

Chapter 9: Representation Clauses and Pragmas 191

(System.Pool Size) that ensures that all space for the pool is automatically reclaimed on
exit from the scope in which the type is declared.
A special case recognized by the compiler is the specification of a Storage Size of zero for
an access type. This means that no items can be allocated from the pool, and this is
recognized at compile time, and all the overhead normally associated with maintaining a
fixed size storage pool is eliminated. Consider the following example:

procedure p is
type R is array (Natural) of Character;
type P is access all R;
for P’Storage_Size use 0;
-- Above access type intended only for interfacing purposes

y : P;

procedure g (m : P);
pragma Import (C, g);

-- ...

begin
-- ...
y := new R;

end;

As indicated in this example, these dummy storage pools are often useful in connection
with interfacing where no object will ever be allocated. If you compile the above example,
you get the warning:

p.adb:16:09: warning: allocation from empty storage pool
p.adb:16:09: warning: Storage_Error will be raised at run time

Of course in practice, there will not be any explicit allocators in the case of such an access
declaration.

9.4 Size of Variant Record Objects

In the case of variant record objects, there is a question whether Size gives information
about a particular variant, or the maximum size required for any variant. Consider the
following program

with Text_IO; use Text_IO;
procedure q is

type R1 (A : Boolean := False) is record
case A is

when True => X : Character;
when False => null;

end case;
end record;

V1 : R1 (False);

Chapter 9: Representation Clauses and Pragmas 192

V2 : R1;

begin
Put_Line (Integer’Image (V1’Size));
Put_Line (Integer’Image (V2’Size));

end q;

Here we are dealing with a variant record, where the True variant requires 16 bits, and
the False variant requires 8 bits. In the above example, both V1 and V2 contain the False
variant, which is only 8 bits long. However, the result of running the program is:

8
16

The reason for the difference here is that the discriminant value of V1 is fixed, and will
always be False. It is not possible to assign a True variant value to V1, therefore 8 bits is
sufficient. On the other hand, in the case of V2, the initial discriminant value is False (from
the default), but it is possible to assign a True variant value to V2, therefore 16 bits must
be allocated for V2 in the general case, even fewer bits may be needed at any particular
point during the program execution.

As can be seen from the output of this program, the ’Size attribute applied to such an
object in GNAT gives the actual allocated size of the variable, which is the largest size of
any of the variants. The Ada Reference Manual is not completely clear on what choice
should be made here, but the GNAT behavior seems most consistent with the language in
the RM.

In some cases, it may be desirable to obtain the size of the current variant, rather than the
size of the largest variant. This can be achieved in GNAT by making use of the fact that
in the case of a subprogram parameter, GNAT does indeed return the size of the current
variant (because a subprogram has no way of knowing how much space is actually allocated
for the actual).

Consider the following modified version of the above program:

with Text_IO; use Text_IO;
procedure q is

type R1 (A : Boolean := False) is record
case A is

when True => X : Character;
when False => null;

end case;
end record;

V2 : R1;

function Size (V : R1) return Integer is
begin

return V’Size;
end Size;

begin

Chapter 9: Representation Clauses and Pragmas 193

Put_Line (Integer’Image (V2’Size));
Put_Line (Integer’Image (Size (V2)));
V2 := (True, ’x’);
Put_Line (Integer’Image (V2’Size));
Put_Line (Integer’Image (Size (V2)));

end q;

The output from this program is
16
8
16
16

Here we see that while the ’Size attribute always returns the maximum size, regardless of
the current variant value, the Size function does indeed return the size of the current variant
value.

9.5 Biased Representation

In the case of scalars with a range starting at other than zero, it is possible in some cases
to specify a size smaller than the default minimum value, and in such cases, GNAT uses
an unsigned biased representation, in which zero is used to represent the lower bound, and
successive values represent successive values of the type.
For example, suppose we have the declaration:

type Small is range -7 .. -4;
for Small’Size use 2;

Although the default size of type Small is 4, the Size clause is accepted by GNAT and
results in the following representation scheme:

-7 is represented as 2#00#
-6 is represented as 2#01#
-5 is represented as 2#10#
-4 is represented as 2#11#

Biased representation is only used if the specified Size clause cannot be accepted in any
other manner. These reduced sizes that force biased representation can be used for all
discrete types except for enumeration types for which a representation clause is given.

9.6 Value Size and Object Size Clauses

In Ada 95 and Ada 2005, T’Size for a type T is the minimum number of bits required to hold
values of type T. Although this interpretation was allowed in Ada 83, it was not required,
and this requirement in practice can cause some significant difficulties. For example, in most
Ada 83 compilers, Natural’Size was 32. However, in Ada 95 and Ada 2005, Natural’Size is
typically 31. This means that code may change in behavior when moving from Ada 83 to
Ada 95 or Ada 2005. For example, consider:

type Rec is record;
A : Natural;
B : Natural;

end record;

Chapter 9: Representation Clauses and Pragmas 194

for Rec use record
at 0 range 0 .. Natural’Size - 1;
at 0 range Natural’Size .. 2 * Natural’Size - 1;

end record;

In the above code, since the typical size of Natural objects is 32 bits and Natural’Size is
31, the above code can cause unexpected inefficient packing in Ada 95 and Ada 2005, and
in general there are cases where the fact that the object size can exceed the size of the type
causes surprises.
To help get around this problem GNAT provides two implementation defined attributes,
Value Size and Object Size. When applied to a type, these attributes yield the size of the
type (corresponding to the RM defined size attribute), and the size of objects of the type
respectively.
The Object Size is used for determining the default size of objects and components. This
size value can be referred to using the Object Size attribute. The phrase ’is used’ here
means that it is the basis of the determination of the size. The backend is free to pad this
up if necessary for efficiency, e.g., an 8-bit stand-alone character might be stored in 32 bits
on a machine with no efficient byte access instructions such as the Alpha.
The default rules for the value of Object Size for discrete types are as follows:

* The Object Size for base subtypes reflect the natural hardware size in bits (run the
compiler with -gnatS to find those values for numeric types). Enumeration types and
fixed-point base subtypes have 8, 16, 32, or 64 bits for this size, depending on the range
of values to be stored.

* The Object Size of a subtype is the same as the Object Size of the type from which it
is obtained.

* The Object Size of a derived base type is copied from the parent base type, and the
Object Size of a derived first subtype is copied from the parent first subtype.

The Value Size attribute is the (minimum) number of bits required to store a value of the
type. This value is used to determine how tightly to pack records or arrays with components
of this type, and also affects the semantics of unchecked conversion (unchecked conversions
where the Value Size values differ generate a warning, and are potentially target dependent).
The default rules for the value of Value Size are as follows:

* The Value Size for a base subtype is the minimum number of bits required to store all
values of the type (including the sign bit only if negative values are possible).

* If a subtype statically matches the first subtype of a given type, then it has by default
the same Value Size as the first subtype. This is a consequence of RM 13.1(14): "if
two subtypes statically match, then their subtype-specific aspects are the same".)

* All other subtypes have a Value Size corresponding to the minimum number of bits
required to store all values of the subtype. For dynamic bounds, it is assumed that the
value can range down or up to the corresponding bound of the ancestor

The RM defined attribute Size corresponds to the Value Size attribute.
The Size attribute may be defined for a first-named subtype. This sets the Value Size of
the first-named subtype to the given value, and the Object Size of this first-named subtype

Chapter 9: Representation Clauses and Pragmas 195

to the given value padded up to an appropriate boundary. It is a consequence of the default
rules above that this Object Size will apply to all further subtypes. On the other hand,
Value Size is affected only for the first subtype, any dynamic subtypes obtained from it
directly, and any statically matching subtypes. The Value Size of any other static subtypes
is not affected.
Value Size and Object Size may be explicitly set for any subtype using an attribute defi-
nition clause. Note that the use of these attributes can cause the RM 13.1(14) rule to be
violated. If two access types reference aliased objects whose subtypes have differing Ob-
ject Size values as a result of explicit attribute definition clauses, then it is illegal to convert
from one access subtype to the other. For a more complete description of this additional
legality rule, see the description of the Object Size attribute.
To get a feel for the difference, consider the following examples (note that in each case the
base is Short Short Integer with a size of 8):

Type or subtype declaration Object Size Value Size

type x1 is range 0 .. 5; 8 3

type x2 is range 0 .. 5; for x2’size use 12; 16 12

subtype x3 is x2 range 0 .. 3; 16 2

subtype x4 is x2’base range 0 .. 10; 8 4

dynamic : x2’Base range -64 .. +63;

subtype x5 is x2 range 0 .. dynamic; 16 3*

subtype x6 is x2’base range 0 .. dynamic; 8 7*

Note: the entries marked ’*’ are not actually specified by the Ada Reference Manual, which
has nothing to say about size in the dynamic case. What GNAT does is to allocate sufficient
bits to accomodate any possible dynamic values for the bounds at run-time.
So far, so good, but GNAT has to obey the RM rules, so the question is under what
conditions must the RM Size be used. The following is a list of the occasions on which the
RM Size must be used:

* Component size for packed arrays or records
* Value of the attribute Size for a type
* Warning about sizes not matching for unchecked conversion

For record types, the Object Size is always a multiple of the alignment of the type (this is
true for all types). In some cases the Value Size can be smaller. Consider:

type R is record
X : Integer;
Y : Character;

end record;

Chapter 9: Representation Clauses and Pragmas 196

On a typical 32-bit architecture, the X component will be four bytes, and require four-byte
alignment, and the Y component will be one byte. In this case R’Value Size will be 40
(bits) since this is the minimum size required to store a value of this type, and for example,
it is permissible to have a component of type R in an outer array whose component size is
specified to be 48 bits. However, R’Object Size will be 64 (bits), since it must be rounded
up so that this value is a multiple of the alignment (4 bytes = 32 bits).
For all other types, the Object Size and Value Size are the same (and equivalent to the
RM attribute Size). Only Size may be specified for such types.
Note that Value Size can be used to force biased representation for a particular subtype.
Consider this example:

type R is (A, B, C, D, E, F);
subtype RAB is R range A .. B;
subtype REF is R range E .. F;

By default, RAB has a size of 1 (sufficient to accommodate the representation of A and B,
0 and 1), and REF has a size of 3 (sufficient to accommodate the representation of E and
F, 4 and 5). But if we add the following Value Size attribute definition clause:

for REF’Value_Size use 1;

then biased representation is forced for REF, and 0 will represent E and 1 will represent F. A
warning is issued when a Value Size attribute definition clause forces biased representation.
This warning can be turned off using -gnatw.B.

9.7 Component Size Clauses

Normally, the value specified in a component size clause must be consistent with the subtype
of the array component with regard to size and alignment. In other words, the value specified
must be at least equal to the size of this subtype, and must be a multiple of the alignment
value.
In addition, component size clauses are allowed which cause the array to be packed, by
specifying a smaller value. A first case is for component size values in the range 1 through
63. The value specified must not be smaller than the Size of the subtype. GNAT will
accurately honor all packing requests in this range. For example, if we have:

type r is array (1 .. 8) of Natural;
for r’Component_Size use 31;

then the resulting array has a length of 31 bytes (248 bits = 8 * 31). Of course access to
the components of such an array is considerably less efficient than if the natural component
size of 32 is used. A second case is when the subtype of the component is a record type
padded because of its default alignment. For example, if we have:

type r is record
i : Integer;
j : Integer;
b : Boolean;

end record;

type a is array (1 .. 8) of r;
for a’Component_Size use 72;

Chapter 9: Representation Clauses and Pragmas 197

then the resulting array has a length of 72 bytes, instead of 96 bytes if the alignment of the
record (4) was obeyed.

Note that there is no point in giving both a component size clause and a pragma Pack for
the same array type. if such duplicate clauses are given, the pragma Pack will be ignored.

9.8 Bit Order Clauses

For record subtypes, GNAT permits the specification of the Bit Order attribute. The
specification may either correspond to the default bit order for the target, in which case
the specification has no effect and places no additional restrictions, or it may be for the
non-standard setting (that is the opposite of the default).

In the case where the non-standard value is specified, the effect is to renumber bits within
each byte, but the ordering of bytes is not affected. There are certain restrictions placed
on component clauses as follows:

* Components fitting within a single storage unit.

These are unrestricted, and the effect is merely to renumber bits. For example if we are
on a little-endian machine with Low Order First being the default, then the following
two declarations have exactly the same effect:

type R1 is record
A : Boolean;
B : Integer range 1 .. 120;

end record;

for R1 use record
A at 0 range 0 .. 0;
B at 0 range 1 .. 7;

end record;

type R2 is record
A : Boolean;
B : Integer range 1 .. 120;

end record;

for R2’Bit_Order use High_Order_First;

for R2 use record
A at 0 range 7 .. 7;
B at 0 range 0 .. 6;

end record;

The useful application here is to write the second declaration with the Bit Order
attribute definition clause, and know that it will be treated the same, regardless of
whether the target is little-endian or big-endian.

* Components occupying an integral number of bytes.

These are components that exactly fit in two or more bytes. Such component declara-
tions are allowed, but have no effect, since it is important to realize that the Bit Order

Chapter 9: Representation Clauses and Pragmas 198

specification does not affect the ordering of bytes. In particular, the following attempt
at getting an endian-independent integer does not work:

type R2 is record
A : Integer;

end record;

for R2’Bit_Order use High_Order_First;

for R2 use record
A at 0 range 0 .. 31;

end record;

This declaration will result in a little-endian integer on a little-endian machine, and a
big-endian integer on a big-endian machine. If byte flipping is required for interoper-
ability between big- and little-endian machines, this must be explicitly programmed.
This capability is not provided by Bit Order.

* Components that are positioned across byte boundaries.

but do not occupy an integral number of bytes. Given that bytes are not reordered,
such fields would occupy a non-contiguous sequence of bits in memory, requiring non-
trivial code to reassemble. They are for this reason not permitted, and any component
clause specifying such a layout will be flagged as illegal by GNAT.

Since the misconception that Bit Order automatically deals with all endian-related incom-
patibilities is a common one, the specification of a component field that is an integral number
of bytes will always generate a warning. This warning may be suppressed using pragma
Warnings (Off) if desired. The following section contains additional details regarding the
issue of byte ordering.

9.9 Effect of Bit Order on Byte Ordering

In this section we will review the effect of the Bit Order attribute definition clause on byte
ordering. Briefly, it has no effect at all, but a detailed example will be helpful. Before
giving this example, let us review the precise definition of the effect of defining Bit Order.
The effect of a non-standard bit order is described in section 13.5.3 of the Ada Reference
Manual:

"2 A bit ordering is a method of interpreting the meaning of the storage
place attributes."

To understand the precise definition of storage place attributes in this context, we visit
section 13.5.1 of the manual:

"13 A record representation clause (without the mod clause) specifies
the layout. The storage place attributes (see 13.5.2) are taken from the
values of the position, first bit, and last bit expressions after normalizing
those values so that first bit is less than Storage Unit."

The critical point here is that storage places are taken from the values after normalization,
not before. So the Bit Order interpretation applies to normalized values. The interpretation
is described in the later part of the 13.5.3 paragraph:

Chapter 9: Representation Clauses and Pragmas 199

"2 A bit ordering is a method of interpreting the meaning of the storage
place attributes. High Order First (known in the vernacular as ’big en-
dian’) means that the first bit of a storage element (bit 0) is the most
significant bit (interpreting the sequence of bits that represent a com-
ponent as an unsigned integer value). Low Order First (known in the
vernacular as ’little endian’) means the opposite: the first bit is the least
significant."

Note that the numbering is with respect to the bits of a storage unit. In other words, the
specification affects only the numbering of bits within a single storage unit.

We can make the effect clearer by giving an example.

Suppose that we have an external device which presents two bytes, the first byte presented,
which is the first (low addressed byte) of the two byte record is called Master, and the
second byte is called Slave.

The left most (most significant bit is called Control for each byte, and the remaining 7 bits
are called V1, V2, ... V7, where V7 is the rightmost (least significant) bit.

On a big-endian machine, we can write the following representation clause

type Data is record
Master_Control : Bit;
Master_V1 : Bit;
Master_V2 : Bit;
Master_V3 : Bit;
Master_V4 : Bit;
Master_V5 : Bit;
Master_V6 : Bit;
Master_V7 : Bit;
Slave_Control : Bit;
Slave_V1 : Bit;
Slave_V2 : Bit;
Slave_V3 : Bit;
Slave_V4 : Bit;
Slave_V5 : Bit;
Slave_V6 : Bit;
Slave_V7 : Bit;

end record;

for Data use record
Master_Control at 0 range 0 .. 0;
Master_V1 at 0 range 1 .. 1;
Master_V2 at 0 range 2 .. 2;
Master_V3 at 0 range 3 .. 3;
Master_V4 at 0 range 4 .. 4;
Master_V5 at 0 range 5 .. 5;
Master_V6 at 0 range 6 .. 6;
Master_V7 at 0 range 7 .. 7;
Slave_Control at 1 range 0 .. 0;

Chapter 9: Representation Clauses and Pragmas 200

Slave_V1 at 1 range 1 .. 1;
Slave_V2 at 1 range 2 .. 2;
Slave_V3 at 1 range 3 .. 3;
Slave_V4 at 1 range 4 .. 4;
Slave_V5 at 1 range 5 .. 5;
Slave_V6 at 1 range 6 .. 6;
Slave_V7 at 1 range 7 .. 7;

end record;

Now if we move this to a little endian machine, then the bit ordering within the byte is
backwards, so we have to rewrite the record rep clause as:

for Data use record
Master_Control at 0 range 7 .. 7;
Master_V1 at 0 range 6 .. 6;
Master_V2 at 0 range 5 .. 5;
Master_V3 at 0 range 4 .. 4;
Master_V4 at 0 range 3 .. 3;
Master_V5 at 0 range 2 .. 2;
Master_V6 at 0 range 1 .. 1;
Master_V7 at 0 range 0 .. 0;
Slave_Control at 1 range 7 .. 7;
Slave_V1 at 1 range 6 .. 6;
Slave_V2 at 1 range 5 .. 5;
Slave_V3 at 1 range 4 .. 4;
Slave_V4 at 1 range 3 .. 3;
Slave_V5 at 1 range 2 .. 2;
Slave_V6 at 1 range 1 .. 1;
Slave_V7 at 1 range 0 .. 0;

end record;

It is a nuisance to have to rewrite the clause, especially if the code has to be maintained on
both machines. However, this is a case that we can handle with the Bit Order attribute if it
is implemented. Note that the implementation is not required on byte addressed machines,
but it is indeed implemented in GNAT. This means that we can simply use the first record
clause, together with the declaration

for Data’Bit_Order use High_Order_First;

and the effect is what is desired, namely the layout is exactly the same, independent of
whether the code is compiled on a big-endian or little-endian machine.

The important point to understand is that byte ordering is not affected. A Bit Order
attribute definition never affects which byte a field ends up in, only where it ends up in that
byte. To make this clear, let us rewrite the record rep clause of the previous example as:

for Data’Bit_Order use High_Order_First;
for Data use record

Master_Control at 0 range 0 .. 0;
Master_V1 at 0 range 1 .. 1;
Master_V2 at 0 range 2 .. 2;
Master_V3 at 0 range 3 .. 3;

Chapter 9: Representation Clauses and Pragmas 201

Master_V4 at 0 range 4 .. 4;
Master_V5 at 0 range 5 .. 5;
Master_V6 at 0 range 6 .. 6;
Master_V7 at 0 range 7 .. 7;
Slave_Control at 0 range 8 .. 8;
Slave_V1 at 0 range 9 .. 9;
Slave_V2 at 0 range 10 .. 10;
Slave_V3 at 0 range 11 .. 11;
Slave_V4 at 0 range 12 .. 12;
Slave_V5 at 0 range 13 .. 13;
Slave_V6 at 0 range 14 .. 14;
Slave_V7 at 0 range 15 .. 15;

end record;

This is exactly equivalent to saying (a repeat of the first example):

for Data’Bit_Order use High_Order_First;
for Data use record

Master_Control at 0 range 0 .. 0;
Master_V1 at 0 range 1 .. 1;
Master_V2 at 0 range 2 .. 2;
Master_V3 at 0 range 3 .. 3;
Master_V4 at 0 range 4 .. 4;
Master_V5 at 0 range 5 .. 5;
Master_V6 at 0 range 6 .. 6;
Master_V7 at 0 range 7 .. 7;
Slave_Control at 1 range 0 .. 0;
Slave_V1 at 1 range 1 .. 1;
Slave_V2 at 1 range 2 .. 2;
Slave_V3 at 1 range 3 .. 3;
Slave_V4 at 1 range 4 .. 4;
Slave_V5 at 1 range 5 .. 5;
Slave_V6 at 1 range 6 .. 6;
Slave_V7 at 1 range 7 .. 7;

end record;

Why are they equivalent? Well take a specific field, the Slave V2 field. The storage place
attributes are obtained by normalizing the values given so that the First Bit value is less
than 8. After normalizing the values (0,10,10) we get (1,2,2) which is exactly what we
specified in the other case.

Now one might expect that the Bit Order attribute might affect bit numbering within the
entire record component (two bytes in this case, thus affecting which byte fields end up in),
but that is not the way this feature is defined, it only affects numbering of bits, not which
byte they end up in.

Consequently it never makes sense to specify a starting bit number greater than 7 (for a
byte addressable field) if an attribute definition for Bit Order has been given, and indeed
it may be actively confusing to specify such a value, so the compiler generates a warning
for such usage.

Chapter 9: Representation Clauses and Pragmas 202

If you do need to control byte ordering then appropriate conditional values must be used.
If in our example, the slave byte came first on some machines we might write:

Master_Byte_First constant Boolean := ...;

Master_Byte : constant Natural :=
1 - Boolean’Pos (Master_Byte_First);

Slave_Byte : constant Natural :=
Boolean’Pos (Master_Byte_First);

for Data’Bit_Order use High_Order_First;
for Data use record

Master_Control at Master_Byte range 0 .. 0;
Master_V1 at Master_Byte range 1 .. 1;
Master_V2 at Master_Byte range 2 .. 2;
Master_V3 at Master_Byte range 3 .. 3;
Master_V4 at Master_Byte range 4 .. 4;
Master_V5 at Master_Byte range 5 .. 5;
Master_V6 at Master_Byte range 6 .. 6;
Master_V7 at Master_Byte range 7 .. 7;
Slave_Control at Slave_Byte range 0 .. 0;
Slave_V1 at Slave_Byte range 1 .. 1;
Slave_V2 at Slave_Byte range 2 .. 2;
Slave_V3 at Slave_Byte range 3 .. 3;
Slave_V4 at Slave_Byte range 4 .. 4;
Slave_V5 at Slave_Byte range 5 .. 5;
Slave_V6 at Slave_Byte range 6 .. 6;
Slave_V7 at Slave_Byte range 7 .. 7;

end record;

Now to switch between machines, all that is necessary is to set the boolean constant Mas-
ter Byte First in an appropriate manner.

9.10 Pragma Pack for Arrays

Pragma Pack applied to an array has an effect that depends upon whether the component
type is packable. For a component type to be packable, it must be one of the following cases:

* Any elementary type.
* Any small packed array type with a static size.
* Any small simple record type with a static size.

For all these cases, if the component subtype size is in the range 1 through 64, then the
effect of the pragma Pack is exactly as though a component size were specified giving the
component subtype size.
All other types are non-packable, they occupy an integral number of storage units and the
only effect of pragma Pack is to remove alignment gaps.
For example if we have:

type r is range 0 .. 17;

Chapter 9: Representation Clauses and Pragmas 203

type ar is array (1 .. 8) of r;
pragma Pack (ar);

Then the component size of ar will be set to 5 (i.e., to r’size, and the size of the array ar
will be exactly 40 bits).
Note that in some cases this rather fierce approach to packing can produce unexpected
effects. For example, in Ada 95 and Ada 2005, subtype Natural typically has a size of 31,
meaning that if you pack an array of Natural, you get 31-bit close packing, which saves a
few bits, but results in far less efficient access. Since many other Ada compilers will ignore
such a packing request, GNAT will generate a warning on some uses of pragma Pack that
it guesses might not be what is intended. You can easily remove this warning by using
an explicit Component Size setting instead, which never generates a warning, since the
intention of the programmer is clear in this case.
GNAT treats packed arrays in one of two ways. If the size of the array is known at compile
time and is less than 64 bits, then internally the array is represented as a single modular
type, of exactly the appropriate number of bits. If the length is greater than 63 bits, or is
not known at compile time, then the packed array is represented as an array of bytes, and
the length is always a multiple of 8 bits.
Note that to represent a packed array as a modular type, the alignment must be suitable for
the modular type involved. For example, on typical machines a 32-bit packed array will be
represented by a 32-bit modular integer with an alignment of four bytes. If you explicitly
override the default alignment with an alignment clause that is too small, the modular
representation cannot be used. For example, consider the following set of declarations:

type R is range 1 .. 3;
type S is array (1 .. 31) of R;
for S’Component_Size use 2;
for S’Size use 62;
for S’Alignment use 1;

If the alignment clause were not present, then a 62-bit modular representation would be
chosen (typically with an alignment of 4 or 8 bytes depending on the target). But the default
alignment is overridden with the explicit alignment clause. This means that the modular
representation cannot be used, and instead the array of bytes representation must be used,
meaning that the length must be a multiple of 8. Thus the above set of declarations will
result in a diagnostic rejecting the size clause and noting that the minimum size allowed is
64.
One special case that is worth noting occurs when the base type of the component size
is 8/16/32 and the subtype is one bit less. Notably this occurs with subtype Natural.
Consider:

type Arr is array (1 .. 32) of Natural;
pragma Pack (Arr);

In all commonly used Ada 83 compilers, this pragma Pack would be ignored, since typically
Natural’Size is 32 in Ada 83, and in any case most Ada 83 compilers did not attempt 31
bit packing.
In Ada 95 and Ada 2005, Natural’Size is required to be 31. Furthermore, GNAT really does
pack 31-bit subtype to 31 bits. This may result in a substantial unintended performance

Chapter 9: Representation Clauses and Pragmas 204

penalty when porting legacy Ada 83 code. To help prevent this, GNAT generates a warning
in such cases. If you really want 31 bit packing in a case like this, you can set the component
size explicitly:

type Arr is array (1 .. 32) of Natural;
for Arr’Component_Size use 31;

Here 31-bit packing is achieved as required, and no warning is generated, since in this case
the programmer intention is clear.

9.11 Pragma Pack for Records

Pragma Pack applied to a record will pack the components to reduce wasted space from
alignment gaps and by reducing the amount of space taken by components. We distinguish
between packable components and non-packable components. Components of the following
types are considered packable:

* Components of an elementary type are packable unless they are aliased, independent,
or of an atomic type.

* Small packed arrays, where the size is statically known, are represented internally as
modular integers, and so they are also packable.

* Small simple records, where the size is statically known, are also packable.

For all these cases, if the ’Size value is in the range 1 through 64, the components occupy
the exact number of bits corresponding to this value and are packed with no padding bits,
i.e. they can start on an arbitrary bit boundary.
All other types are non-packable, they occupy an integral number of storage units and the
only effect of pragma Pack is to remove alignment gaps.
For example, consider the record

type Rb1 is array (1 .. 13) of Boolean;
pragma Pack (Rb1);

type Rb2 is array (1 .. 65) of Boolean;
pragma Pack (Rb2);

type AF is new Float with Atomic;

type X2 is record
L1 : Boolean;
L2 : Duration;
L3 : AF;
L4 : Boolean;
L5 : Rb1;
L6 : Rb2;

end record;
pragma Pack (X2);

The representation for the record X2 is as follows:
for X2’Size use 224;
for X2 use record

Chapter 9: Representation Clauses and Pragmas 205

L1 at 0 range 0 .. 0;
L2 at 0 range 1 .. 64;
L3 at 12 range 0 .. 31;
L4 at 16 range 0 .. 0;
L5 at 16 range 1 .. 13;
L6 at 18 range 0 .. 71;

end record;

Studying this example, we see that the packable fields L1 and L2 are of length equal to
their sizes, and placed at specific bit boundaries (and not byte boundaries) to eliminate
padding. But L3 is of a non-packable float type (because it is aliased), so it is on the next
appropriate alignment boundary.
The next two fields are fully packable, so L4 and L5 are minimally packed with no gaps.
However, type Rb2 is a packed array that is longer than 64 bits, so it is itself non-packable.
Thus the L6 field is aligned to the next byte boundary, and takes an integral number of
bytes, i.e., 72 bits.

9.12 Record Representation Clauses

Record representation clauses may be given for all record types, including types obtained by
record extension. Component clauses are allowed for any static component. The restrictions
on component clauses depend on the type of the component.
For all components of an elementary type, the only restriction on component clauses is that
the size must be at least the ’Size value of the type (actually the Value Size). There are no
restrictions due to alignment, and such components may freely cross storage boundaries.
Packed arrays with a size up to and including 64 bits are represented internally using a
modular type with the appropriate number of bits, and thus the same lack of restriction
applies. For example, if you declare:

type R is array (1 .. 49) of Boolean;
pragma Pack (R);
for R’Size use 49;

then a component clause for a component of type R may start on any specified bit boundary,
and may specify a value of 49 bits or greater.
For packed bit arrays that are longer than 64 bits, there are two cases. If the component
size is a power of 2 (1,2,4,8,16,32 bits), including the important case of single bits or boolean
values, then there are no limitations on placement of such components, and they may start
and end at arbitrary bit boundaries.
If the component size is not a power of 2 (e.g., 3 or 5), then an array of this type longer
than 64 bits must always be placed on on a storage unit (byte) boundary and occupy an
integral number of storage units (bytes). Any component clause that does not meet this
requirement will be rejected.
Any aliased component, or component of an aliased type, must have its normal alignment
and size. A component clause that does not meet this requirement will be rejected.
The tag field of a tagged type always occupies an address sized field at the start of the record.
No component clause may attempt to overlay this tag. When a tagged type appears as a
component, the tag field must have proper alignment

Chapter 9: Representation Clauses and Pragmas 206

In the case of a record extension T1, of a type T, no component clause applied to the type
T1 can specify a storage location that would overlap the first T’Size bytes of the record.

For all other component types, including non-bit-packed arrays, the component can be
placed at an arbitrary bit boundary, so for example, the following is permitted:

type R is array (1 .. 10) of Boolean;
for R’Size use 80;

type Q is record
G, H : Boolean;
L, M : R;

end record;

for Q use record
G at 0 range 0 .. 0;
H at 0 range 1 .. 1;
L at 0 range 2 .. 81;
R at 0 range 82 .. 161;

end record;

Note: the above rules apply to recent releases of GNAT 5. In GNAT 3, there are more
severe restrictions on larger components. For composite types, including packed arrays
with a size greater than 64 bits, component clauses must respect the alignment requirement
of the type, in particular, always starting on a byte boundary, and the length must be a
multiple of the storage unit.

9.13 Handling of Records with Holes

As a result of alignment considerations, records may contain "holes" or gaps which do not
correspond to the data bits of any of the components. Record representation clauses can
also result in holes in records.

GNAT does not attempt to clear these holes, so in record objects, they should be considered
to hold undefined rubbish. The generated equality routine just tests components so does not
access these undefined bits, and assignment and copy operations may or may not preserve
the contents of these holes (for assignments, the holes in the target will in practice contain
either the bits that are present in the holes in the source, or the bits that were present in
the target before the assignment).

If it is necessary to ensure that holes in records have all zero bits, then record objects
for which this initialization is desired should be explicitly set to all zero values using
Unchecked Conversion or address overlays. For example

type HRec is record
C : Character;
I : Integer;

end record;

On typical machines, integers need to be aligned on a four-byte boundary, resulting in three
bytes of undefined rubbish following the 8-bit field for C. To ensure that the hole in a
variable of type HRec is set to all zero bits, you could for example do:

Chapter 9: Representation Clauses and Pragmas 207

type Base is record
Dummy1, Dummy2 : Integer := 0;

end record;

BaseVar : Base;
RealVar : Hrec;
for RealVar’Address use BaseVar’Address;

Now the 8-bytes of the value of RealVar start out containing all zero bits. A safer approach
is to just define dummy fields, avoiding the holes, as in:

type HRec is record
C : Character;
Dummy1 : Short_Short_Integer := 0;
Dummy2 : Short_Short_Integer := 0;
Dummy3 : Short_Short_Integer := 0;
I : Integer;

end record;

And to make absolutely sure that the intent of this is followed, you can use representation
clauses:

for Hrec use record
C at 0 range 0 .. 7;
Dummy1 at 1 range 0 .. 7;
Dummy2 at 2 range 0 .. 7;
Dummy3 at 3 range 0 .. 7;
I at 4 range 0 .. 31;

end record;
for Hrec’Size use 64;

9.14 Enumeration Clauses

The only restriction on enumeration clauses is that the range of values must be representable.
For the signed case, if one or more of the representation values are negative, all values must
be in the range:

System.Min_Int .. System.Max_Int

For the unsigned case, where all values are nonnegative, the values must be in the range:

0 .. System.Max_Binary_Modulus;

A confirming representation clause is one in which the values range from 0 in sequence,
i.e., a clause that confirms the default representation for an enumeration type. Such a
confirming representation is permitted by these rules, and is specially recognized by the
compiler so that no extra overhead results from the use of such a clause.

If an array has an index type which is an enumeration type to which an enumeration clause
has been applied, then the array is stored in a compact manner. Consider the declarations:

type r is (A, B, C);
for r use (A => 1, B => 5, C => 10);
type t is array (r) of Character;

Chapter 9: Representation Clauses and Pragmas 208

The array type t corresponds to a vector with exactly three elements and has a default
size equal to 3*Character’Size. This ensures efficient use of space, but means that accesses
to elements of the array will incur the overhead of converting representation values to the
corresponding positional values, (i.e., the value delivered by the Pos attribute).

9.15 Address Clauses

The reference manual allows a general restriction on representation clauses, as found in RM
13.1(22):

"An implementation need not support representation items containing
nonstatic expressions, except that an implementation should support a
representation item for a given entity if each nonstatic expression in the
representation item is a name that statically denotes a constant declared
before the entity."

In practice this is applicable only to address clauses, since this is the only case in which
a nonstatic expression is permitted by the syntax. As the AARM notes in sections 13.1
(22.a-22.h):

22.a Reason: This is to avoid the following sort of thing:
22.b X : Integer := F(...); Y : Address := G(...); for X’Address use Y;
22.c In the above, we have to evaluate the initialization expression for X
before we know where to put the result. This seems like an unreasonable
implementation burden.
22.d The above code should instead be written like this:
22.e Y : constant Address := G(...); X : Integer := F(...); for X’Address
use Y;
22.f This allows the expression ’Y’ to be safely evaluated before X is
created.
22.g The constant could be a formal parameter of mode in.
22.h An implementation can support other nonstatic expressions if it
wants to. Expressions of type Address are hardly ever static, but their
value might be known at compile time anyway in many cases.

GNAT does indeed permit many additional cases of nonstatic expressions. In particular,
if the type involved is elementary there are no restrictions (since in this case, holding a
temporary copy of the initialization value, if one is present, is inexpensive). In addition,
if there is no implicit or explicit initialization, then there are no restrictions. GNAT will
reject only the case where all three of these conditions hold:

* The type of the item is non-elementary (e.g., a record or array).
* There is explicit or implicit initialization required for the object. Note that access

values are always implicitly initialized.
* The address value is nonstatic. Here GNAT is more permissive than the RM, and allows

the address value to be the address of a previously declared stand-alone variable, as
long as it does not itself have an address clause.

Anchor : Some_Initialized_Type;
Overlay : Some_Initialized_Type;

Chapter 9: Representation Clauses and Pragmas 209

for Overlay’Address use Anchor’Address;

However, the prefix of the address clause cannot be an array component, or a component
of a discriminated record.

As noted above in section 22.h, address values are typically nonstatic. In particular the
To Address function, even if applied to a literal value, is a nonstatic function call. To avoid
this minor annoyance, GNAT provides the implementation defined attribute ’To Address.
The following two expressions have identical values:

To_Address (16#1234_0000#)
System’To_Address (16#1234_0000#);

except that the second form is considered to be a static expression, and thus when used as
an address clause value is always permitted.
Additionally, GNAT treats as static an address clause that is an unchecked conversion of
a static integer value. This simplifies the porting of legacy code, and provides a portable
equivalent to the GNAT attribute To Address.
Another issue with address clauses is the interaction with alignment requirements. When an
address clause is given for an object, the address value must be consistent with the alignment
of the object (which is usually the same as the alignment of the type of the object). If an
address clause is given that specifies an inappropriately aligned address value, then the
program execution is erroneous.
Since this source of erroneous behavior can have unfortunate effects on machines with strict
alignment requirements, GNAT checks (at compile time if possible, generating a warning,
or at execution time with a run-time check) that the alignment is appropriate. If the run-
time check fails, then Program Error is raised. This run-time check is suppressed if range
checks are suppressed, or if the special GNAT check Alignment Check is suppressed, or if
pragma Restrictions (No Elaboration Code) is in effect. It is also suppressed by default on
non-strict alignment machines (such as the x86).
Finally, GNAT does not permit overlaying of objects of controlled types or composite types
containing a controlled component. In most cases, the compiler can detect an attempt at
such overlays and will generate a warning at compile time and a Program Error exception
at run time.
An address clause cannot be given for an exported object. More understandably the real
restriction is that objects with an address clause cannot be exported. This is because such
variables are not defined by the Ada program, so there is no external object to export.
It is permissible to give an address clause and a pragma Import for the same object. In
this case, the variable is not really defined by the Ada program, so there is no external
symbol to be linked. The link name and the external name are ignored in this case. The
reason that we allow this combination is that it provides a useful idiom to avoid unwanted
initializations on objects with address clauses.
When an address clause is given for an object that has implicit or explicit initialization, then
by default initialization takes place. This means that the effect of the object declaration
is to overwrite the memory at the specified address. This is almost always not what the
programmer wants, so GNAT will output a warning:

with System;
package G is

Chapter 9: Representation Clauses and Pragmas 210

type R is record
M : Integer := 0;

end record;

Ext : R;
for Ext’Address use System’To_Address (16#1234_1234#);

|
>>> warning: implicit initialization of "Ext" may

modify overlaid storage
>>> warning: use pragma Import for "Ext" to suppress

initialization (RM B(24))

end G;

As indicated by the warning message, the solution is to use a (dummy) pragma Import to
suppress this initialization. The pragma tell the compiler that the object is declared and ini-
tialized elsewhere. The following package compiles without warnings (and the initialization
is suppressed):

with System;
package G is

type R is record
M : Integer := 0;

end record;

Ext : R;
for Ext’Address use System’To_Address (16#1234_1234#);
pragma Import (Ada, Ext);

end G;

A final issue with address clauses involves their use for overlaying variables, as in the
following example:

A : Integer;
B : Integer;
for B’Address use A’Address;

or alternatively, using the form recommended by the RM:
A : Integer;
Addr : constant Address := A’Address;
B : Integer;
for B’Address use Addr;

In both of these cases, A and B become aliased to one another via the address clause.
This use of address clauses to overlay variables, achieving an effect similar to unchecked
conversion was erroneous in Ada 83, but in Ada 95 and Ada 2005 the effect is implementation
defined. Furthermore, the Ada RM specifically recommends that in a situation like this, B
should be subject to the following implementation advice (RM 13.3(19)):

"19 If the Address of an object is specified, or it is imported or exported,
then the implementation should not perform optimizations based on as-
sumptions of no aliases."

Chapter 9: Representation Clauses and Pragmas 211

GNAT follows this recommendation, and goes further by also applying this recommendation
to the overlaid variable (A in the above example) in this case. This means that the overlay
works "as expected", in that a modification to one of the variables will affect the value of
the other.

More generally, GNAT interprets this recommendation conservatively for address clauses:
in the cases other than overlays, it considers that the object is effectively subject to pragma
Volatile and implements the associated semantics.

Note that when address clause overlays are used in this way, there is an issue of unintentional
initialization, as shown by this example:

package Overwrite_Record is
type R is record

A : Character := ’C’;
B : Character := ’A’;

end record;
X : Short_Integer := 3;
Y : R;
for Y’Address use X’Address;

|
>>> warning: default initialization of "Y" may

modify "X", use pragma Import for "Y" to
suppress initialization (RM B.1(24))

end Overwrite_Record;

Here the default initialization of Y will clobber the value of X, which justifies the warning.
The warning notes that this effect can be eliminated by adding a pragma Import which
suppresses the initialization:

package Overwrite_Record is
type R is record

A : Character := ’C’;
B : Character := ’A’;

end record;
X : Short_Integer := 3;
Y : R;
for Y’Address use X’Address;
pragma Import (Ada, Y);

end Overwrite_Record;

Note that the use of pragma Initialize Scalars may cause variables to be initialized when
they would not otherwise have been in the absence of the use of this pragma. This may
cause an overlay to have this unintended clobbering effect. The compiler avoids this for
scalar types, but not for composite objects (where in general the effect of Initialize Scalars
is part of the initialization routine for the composite object:

pragma Initialize_Scalars;
with Ada.Text_IO; use Ada.Text_IO;
procedure Overwrite_Array is

type Arr is array (1 .. 5) of Integer;

Chapter 9: Representation Clauses and Pragmas 212

X : Arr := (others => 1);
A : Arr;
for A’Address use X’Address;

|
>>> warning: default initialization of "A" may

modify "X", use pragma Import for "A" to
suppress initialization (RM B.1(24))

begin
if X /= Arr’(others => 1) then

Put_Line ("X was clobbered");
else

Put_Line ("X was not clobbered");
end if;

end Overwrite_Array;

The above program generates the warning as shown, and at execution time, prints X was
clobbered. If the pragma Import is added as suggested:

pragma Initialize_Scalars;
with Ada.Text_IO; use Ada.Text_IO;
procedure Overwrite_Array is

type Arr is array (1 .. 5) of Integer;
X : Arr := (others => 1);
A : Arr;
for A’Address use X’Address;
pragma Import (Ada, A);

begin
if X /= Arr’(others => 1) then

Put_Line ("X was clobbered");
else

Put_Line ("X was not clobbered");
end if;

end Overwrite_Array;

then the program compiles without the warning and when run will generate the output X
was not clobbered.

9.16 Use of Address Clauses for Memory-Mapped I/O

A common pattern is to use an address clause to map an atomic variable to a location in
memory that corresponds to a memory-mapped I/O operation or operations, for example:

type Mem_Word is record
A,B,C,D : Byte;

end record;
pragma Atomic (Mem_Word);
for Mem_Word_Size use 32;

Mem : Mem_Word;

Chapter 9: Representation Clauses and Pragmas 213

for Mem’Address use some-address;
...
Temp := Mem;
Temp.A := 32;
Mem := Temp;

For a full access (reference or modification) of the variable (Mem) in this case, as in the above
examples, GNAT guarantees that the entire atomic word will be accessed, in accordance
with the RM C.6(15) clause.
A problem arises with a component access such as:

Mem.A := 32;

Note that the component A is not declared as atomic. This means that it is not clear what
this assignment means. It could correspond to full word read and write as given in the first
example, or on architectures that supported such an operation it might be a single byte
store instruction. The RM does not have anything to say in this situation, and GNAT does
not make any guarantee. The code generated may vary from target to target. GNAT will
issue a warning in such a case:

Mem.A := 32;
|
>>> warning: access to non-atomic component of atomic array,

may cause unexpected accesses to atomic object

It is best to be explicit in this situation, by either declaring the components to be atomic if
you want the byte store, or explicitly writing the full word access sequence if that is what
the hardware requires. Alternatively, if the full word access sequence is required, GNAT
also provides the pragma Volatile Full Access which can be used in lieu of pragma Atomic
and will give the additional guarantee.

9.17 Effect of Convention on Representation

Normally the specification of a foreign language convention for a type or an object has no
effect on the chosen representation. In particular, the representation chosen for data in
GNAT generally meets the standard system conventions, and for example records are laid
out in a manner that is consistent with C. This means that specifying convention C (for
example) has no effect.
There are four exceptions to this general rule:

* Convention Fortran and array subtypes.
If pragma Convention Fortran is specified for an array subtype, then in accordance with
the implementation advice in section 3.6.2(11) of the Ada Reference Manual, the array
will be stored in a Fortran-compatible column-major manner, instead of the normal
default row-major order.

* Convention C and enumeration types
GNAT normally stores enumeration types in 8, 16, or 32 bits as required to accommo-
date all values of the type. For example, for the enumeration type declared by:

type Color is (Red, Green, Blue);

8 bits is sufficient to store all values of the type, so by default, objects of type Color
will be represented using 8 bits. However, normal C convention is to use 32 bits for all

Chapter 9: Representation Clauses and Pragmas 214

enum values in C, since enum values are essentially of type int. If pragma Convention C
is specified for an Ada enumeration type, then the size is modified as necessary (usually
to 32 bits) to be consistent with the C convention for enum values.
Note that this treatment applies only to types. If Convention C is given for an enu-
meration object, where the enumeration type is not Convention C, then Object Size
bits are allocated. For example, for a normal enumeration type, with less than 256
elements, only 8 bits will be allocated for the object. Since this may be a surprise in
terms of what C expects, GNAT will issue a warning in this situation. The warning
can be suppressed by giving an explicit size clause specifying the desired size.

* Convention C/Fortran and Boolean types
In C, the usual convention for boolean values, that is values used for conditions, is that
zero represents false, and nonzero values represent true. In Ada, the normal convention
is that two specific values, typically 0/1, are used to represent false/true respectively.
Fortran has a similar convention for LOGICAL values (any nonzero value represents
true).
To accommodate the Fortran and C conventions, if a pragma Convention specifies C
or Fortran convention for a derived Boolean, as in the following example:

type C_Switch is new Boolean;
pragma Convention (C, C_Switch);

then the GNAT generated code will treat any nonzero value as true. For truth values
generated by GNAT, the conventional value 1 will be used for True, but when one of
these values is read, any nonzero value is treated as True.

9.18 Conventions and Anonymous Access Types

The RM is not entirely clear on convention handling in a number of cases, and in particular,
it is not clear on the convention to be given to anonymous access types in general, and in
particular what is to be done for the case of anonymous access-to-subprogram.
In GNAT, we decide that if an explicit Convention is applied to an object or component,
and its type is such an anonymous type, then the convention will apply to this anonymous
type as well. This seems to make sense since it is anomolous in any case to have a different
convention for an object and its type, and there is clearly no way to explicitly specify a
convention for an anonymous type, since it doesn’t have a name to specify!
Furthermore, we decide that if a convention is applied to a record type, then this convention
is inherited by any of its components that are of an anonymous access type which do not
have an explicitly specified convention.
The following program shows these conventions in action:

package ConvComp is
type Foo is range 1 .. 10;
type T1 is record

A : access function (X : Foo) return Integer;
B : Integer;

end record;
pragma Convention (C, T1);

Chapter 9: Representation Clauses and Pragmas 215

type T2 is record
A : access function (X : Foo) return Integer;
pragma Convention (C, A);
B : Integer;

end record;
pragma Convention (COBOL, T2);

type T3 is record
A : access function (X : Foo) return Integer;
pragma Convention (COBOL, A);
B : Integer;

end record;
pragma Convention (C, T3);

type T4 is record
A : access function (X : Foo) return Integer;
B : Integer;

end record;
pragma Convention (COBOL, T4);

function F (X : Foo) return Integer;
pragma Convention (C, F);

function F (X : Foo) return Integer is (13);

TV1 : T1 := (F’Access, 12); -- OK
TV2 : T2 := (F’Access, 13); -- OK

TV3 : T3 := (F’Access, 13); -- ERROR
|

>>> subprogram "F" has wrong convention
>>> does not match access to subprogram declared at line 17

38. TV4 : T4 := (F’Access, 13); -- ERROR
|

>>> subprogram "F" has wrong convention
>>> does not match access to subprogram declared at line 24

39. end ConvComp;

9.19 Determining the Representations chosen by GNAT

Although the descriptions in this section are intended to be complete, it is often easier to
simply experiment to see what GNAT accepts and what the effect is on the layout of types
and objects.

As required by the Ada RM, if a representation clause is not accepted, then it must be
rejected as illegal by the compiler. However, when a representation clause or pragma is
accepted, there can still be questions of what the compiler actually does. For example, if
a partial record representation clause specifies the location of some components and not

Chapter 9: Representation Clauses and Pragmas 216

others, then where are the non-specified components placed? Or if pragma Pack is used on
a record, then exactly where are the resulting fields placed? The section on pragma Pack
in this chapter can be used to answer the second question, but it is often easier to just see
what the compiler does.

For this purpose, GNAT provides the option -gnatR. If you compile with this option, then
the compiler will output information on the actual representations chosen, in a format
similar to source representation clauses. For example, if we compile the package:

package q is
type r (x : boolean) is tagged record

case x is
when True => S : String (1 .. 100);
when False => null;

end case;
end record;

type r2 is new r (false) with record
y2 : integer;

end record;

for r2 use record
y2 at 16 range 0 .. 31;

end record;

type x is record
y : character;

end record;

type x1 is array (1 .. 10) of x;
for x1’component_size use 11;

type ia is access integer;

type Rb1 is array (1 .. 13) of Boolean;
pragma Pack (rb1);

type Rb2 is array (1 .. 65) of Boolean;
pragma Pack (rb2);

type x2 is record
l1 : Boolean;
l2 : Duration;
l3 : Float;
l4 : Boolean;
l5 : Rb1;
l6 : Rb2;

end record;

Chapter 9: Representation Clauses and Pragmas 217

pragma Pack (x2);
end q;

using the switch -gnatR we obtain the following output:

Representation information for unit q

for r’Size use ??;
for r’Alignment use 4;
for r use record

x at 4 range 0 .. 7;
_tag at 0 range 0 .. 31;
s at 5 range 0 .. 799;

end record;

for r2’Size use 160;
for r2’Alignment use 4;
for r2 use record

x at 4 range 0 .. 7;
_tag at 0 range 0 .. 31;
_parent at 0 range 0 .. 63;
y2 at 16 range 0 .. 31;

end record;

for x’Size use 8;
for x’Alignment use 1;
for x use record

y at 0 range 0 .. 7;
end record;

for x1’Size use 112;
for x1’Alignment use 1;
for x1’Component_Size use 11;

for rb1’Size use 13;
for rb1’Alignment use 2;
for rb1’Component_Size use 1;

for rb2’Size use 72;
for rb2’Alignment use 1;
for rb2’Component_Size use 1;

for x2’Size use 224;
for x2’Alignment use 4;
for x2 use record

l1 at 0 range 0 .. 0;
l2 at 0 range 1 .. 64;

Chapter 9: Representation Clauses and Pragmas 218

l3 at 12 range 0 .. 31;
l4 at 16 range 0 .. 0;
l5 at 16 range 1 .. 13;
l6 at 18 range 0 .. 71;

end record;

The Size values are actually the Object Size, i.e., the default size that will be allocated for
objects of the type. The ?? size for type r indicates that we have a variant record, and the
actual size of objects will depend on the discriminant value.
The Alignment values show the actual alignment chosen by the compiler for each record or
array type.
The record representation clause for type r shows where all fields are placed, including the
compiler generated tag field (whose location cannot be controlled by the programmer).
The record representation clause for the type extension r2 shows all the fields present,
including the parent field, which is a copy of the fields of the parent type of r2, i.e., r1.
The component size and size clauses for types rb1 and rb2 show the exact effect of pragma
Pack on these arrays, and the record representation clause for type x2 shows how pragma
Pack affects this record type.
In some cases, it may be useful to cut and paste the representation clauses generated by the
compiler into the original source to fix and guarantee the actual representation to be used.

Chapter 10: Standard Library Routines 219

10 Standard Library Routines

The Ada Reference Manual contains in Annex A a full description of an extensive set of
standard library routines that can be used in any Ada program, and which must be provided
by all Ada compilers. They are analogous to the standard C library used by C programs.

GNAT implements all of the facilities described in annex A, and for most purposes the
description in the Ada Reference Manual, or appropriate Ada text book, will be sufficient
for making use of these facilities.

In the case of the input-output facilities, [The Implementation of Standard I/O], page 229,
gives details on exactly how GNAT interfaces to the file system. For the remaining packages,
the Ada Reference Manual should be sufficient. The following is a list of the packages
included, together with a brief description of the functionality that is provided.

For completeness, references are included to other predefined library routines defined in
other sections of the Ada Reference Manual (these are cross-indexed from Annex A). For
further details see the relevant package declarations in the run-time library. In particular, a
few units are not implemented, as marked by the presence of pragma Unimplemented Unit,
and in this case the package declaration contains comments explaining why the unit is not
implemented.

Ada (A.2)
This is a parent package for all the standard library packages. It is usually
included implicitly in your program, and itself contains no useful data or rou-
tines.

Ada.Assertions (11.4.2)
Assertions provides the Assert subprograms, and also the declaration of the
Assertion Error exception.

Ada.Asynchronous_Task_Control (D.11)
Asynchronous Task Control provides low level facilities for task synchroniza-
tion. It is typically not implemented. See package spec for details.

Ada.Calendar (9.6)
Calendar provides time of day access, and routines for manipulating times and
durations.

Ada.Calendar.Arithmetic (9.6.1)
This package provides additional arithmetic operations for Calendar.

Ada.Calendar.Formatting (9.6.1)
This package provides formatting operations for Calendar.

Ada.Calendar.Time_Zones (9.6.1)
This package provides additional Calendar facilities for handling time zones.

Ada.Characters (A.3.1)
This is a dummy parent package that contains no useful entities

Ada.Characters.Conversions (A.3.2)
This package provides character conversion functions.

Chapter 10: Standard Library Routines 220

Ada.Characters.Handling (A.3.2)
This package provides some basic character handling capabilities, including
classification functions for classes of characters (e.g., test for letters, or digits).

Ada.Characters.Latin_1 (A.3.3)
This package includes a complete set of definitions of the characters that ap-
pear in type CHARACTER. It is useful for writing programs that will run in
international environments. For example, if you want an upper case E with an
acute accent in a string, it is often better to use the definition of UC E Acute
in this package. Then your program will print in an understandable manner
even if your environment does not support these extended characters.

Ada.Command_Line (A.15)
This package provides access to the command line parameters and the name
of the current program (analogous to the use of argc and argv in C), and also
allows the exit status for the program to be set in a system-independent manner.

Ada.Complex_Text_IO (G.1.3)
This package provides text input and output of complex numbers.

Ada.Containers (A.18.1)
A top level package providing a few basic definitions used by all the following
specific child packages that provide specific kinds of containers.

Ada.Containers.Bounded_Priority_Queues (A.18.31)
Ada.Containers.Bounded_Synchronized_Queues (A.18.29)
Ada.Containers.Doubly_Linked_Lists (A.18.3)
Ada.Containers.Generic_Array_Sort (A.18.26)
Ada.Containers.Generic_Constrained_Array_Sort (A.18.26)
Ada.Containers.Generic_Sort (A.18.26)
Ada.Containers.Hashed_Maps (A.18.5)
Ada.Containers.Hashed_Sets (A.18.8)
Ada.Containers.Indefinite_Doubly_Linked_Lists (A.18.12)
Ada.Containers.Indefinite_Hashed_Maps (A.18.13)
Ada.Containers.Indefinite_Hashed_Sets (A.18.15)
Ada.Containers.Indefinite_Holders (A.18.18)
Ada.Containers.Indefinite_Multiway_Trees (A.18.17)
Ada.Containers.Indefinite_Ordered_Maps (A.18.14)
Ada.Containers.Indefinite_Ordered_Sets (A.18.16)
Ada.Containers.Indefinite_Vectors (A.18.11)
Ada.Containers.Multiway_Trees (A.18.10)
Ada.Containers.Ordered_Maps (A.18.6)
Ada.Containers.Ordered_Sets (A.18.9)
Ada.Containers.Synchronized_Queue_Interfaces (A.18.27)
Ada.Containers.Unbounded_Priority_Queues (A.18.30)

Chapter 10: Standard Library Routines 221

Ada.Containers.Unbounded_Synchronized_Queues (A.18.28)
Ada.Containers.Vectors (A.18.2)

Ada.Directories (A.16)
This package provides operations on directories.

Ada.Directories.Hierarchical_File_Names (A.16.1)
This package provides additional directory operations handling hiearchical file
names.

Ada.Directories.Information (A.16)
This is an implementation defined package for additional directory operations,
which is not implemented in GNAT.

Ada.Decimal (F.2)
This package provides constants describing the range of decimal numbers im-
plemented, and also a decimal divide routine (analogous to the COBOL verb
DIVIDE ... GIVING ... REMAINDER ...)

Ada.Direct_IO (A.8.4)
This package provides input-output using a model of a set of records of fixed-
length, containing an arbitrary definite Ada type, indexed by an integer record
number.

Ada.Dispatching (D.2.1)
A parent package containing definitions for task dispatching operations.

Ada.Dispatching.EDF (D.2.6)
Not implemented in GNAT.

Ada.Dispatching.Non_Preemptive (D.2.4)
Not implemented in GNAT.

Ada.Dispatching.Round_Robin (D.2.5)
Not implemented in GNAT.

Ada.Dynamic_Priorities (D.5)
This package allows the priorities of a task to be adjusted dynamically as the
task is running.

Ada.Environment_Variables (A.17)
This package provides facilities for accessing environment variables.

Ada.Exceptions (11.4.1)
This package provides additional information on exceptions, and also contains
facilities for treating exceptions as data objects, and raising exceptions with
associated messages.

Ada.Execution_Time (D.14)
Not implemented in GNAT.

Ada.Execution_Time.Group_Budgets (D.14.2)
Not implemented in GNAT.

Ada.Execution_Time.Timers (D.14.1)’
Not implemented in GNAT.

Chapter 10: Standard Library Routines 222

Ada.Finalization (7.6)
This package contains the declarations and subprograms to support the use of
controlled types, providing for automatic initialization and finalization (analo-
gous to the constructors and destructors of C++).

Ada.Float_Text_IO (A.10.9)
A library level instantiation of Text IO.Float IO for type Float.

Ada.Float_Wide_Text_IO (A.10.9)
A library level instantiation of Wide Text IO.Float IO for type Float.

Ada.Float_Wide_Wide_Text_IO (A.10.9)
A library level instantiation of Wide Wide Text IO.Float IO for type Float.

Ada.Integer_Text_IO (A.10.9)
A library level instantiation of Text IO.Integer IO for type Integer.

Ada.Integer_Wide_Text_IO (A.10.9)
A library level instantiation of Wide Text IO.Integer IO for type Integer.

Ada.Integer_Wide_Wide_Text_IO (A.10.9)
A library level instantiation of Wide Wide Text IO.Integer IO for type Integer.

Ada.Interrupts (C.3.2)
This package provides facilities for interfacing to interrupts, which includes the
set of signals or conditions that can be raised and recognized as interrupts.

Ada.Interrupts.Names (C.3.2)
This package provides the set of interrupt names (actually signal or condition
names) that can be handled by GNAT.

Ada.IO_Exceptions (A.13)
This package defines the set of exceptions that can be raised by use of the
standard IO packages.

Ada.Iterator_Interfaces (5.5.1)
This package provides a generic interface to generalized iterators.

Ada.Locales (A.19)
This package provides declarations providing information (Language and Coun-
try) about the current locale.

Ada.Numerics
This package contains some standard constants and exceptions used throughout
the numerics packages. Note that the constants pi and e are defined here, and
it is better to use these definitions than rolling your own.

Ada.Numerics.Complex_Arrays (G.3.2)
Provides operations on arrays of complex numbers.

Ada.Numerics.Complex_Elementary_Functions
Provides the implementation of standard elementary functions (such as log
and trigonometric functions) operating on complex numbers using the standard
Float and the Complex and Imaginary types created by the package Numer-
ics.Complex Types.

Chapter 10: Standard Library Routines 223

Ada.Numerics.Complex_Types
This is a predefined instantiation of Numerics.Generic Complex Types using
Standard.Float to build the type Complex and Imaginary.

Ada.Numerics.Discrete_Random
This generic package provides a random number generator suitable for gener-
ating uniformly distributed values of a specified discrete subtype.

Ada.Numerics.Float_Random
This package provides a random number generator suitable for generating uni-
formly distributed floating point values in the unit interval.

Ada.Numerics.Generic_Complex_Elementary_Functions
This is a generic version of the package that provides the implementation of
standard elementary functions (such as log and trigonometric functions) for an
arbitrary complex type.
The following predefined instantiations of this package are provided:

* Short_Float

Ada.Numerics.Short Complex Elementary Functions

* Float

Ada.Numerics.Complex Elementary Functions

* Long_Float

Ada.Numerics.Long Complex Elementary Functions

Ada.Numerics.Generic_Complex_Types
This is a generic package that allows the creation of complex types, with asso-
ciated complex arithmetic operations.
The following predefined instantiations of this package exist

* Short_Float

Ada.Numerics.Short Complex Complex Types

* Float

Ada.Numerics.Complex Complex Types

* Long_Float

Ada.Numerics.Long Complex Complex Types

Ada.Numerics.Generic_Elementary_Functions
This is a generic package that provides the implementation of standard elemen-
tary functions (such as log an trigonometric functions) for an arbitrary float
type.
The following predefined instantiations of this package exist

* Short_Float

Ada.Numerics.Short Elementary Functions

* Float

Ada.Numerics.Elementary Functions

* Long_Float

Ada.Numerics.Long Elementary Functions

Chapter 10: Standard Library Routines 224

Ada.Numerics.Generic_Real_Arrays (G.3.1)
Generic operations on arrays of reals

Ada.Numerics.Real_Arrays (G.3.1)
Preinstantiation of Ada.Numerics.Generic Real Arrays (Float).

Ada.Real_Time (D.8)
This package provides facilities similar to those of Calendar, but operating with
a finer clock suitable for real time control. Note that annex D requires that there
be no backward clock jumps, and GNAT generally guarantees this behavior,
but of course if the external clock on which the GNAT runtime depends is
deliberately reset by some external event, then such a backward jump may
occur.

Ada.Real_Time.Timing_Events (D.15)
Not implemented in GNAT.

Ada.Sequential_IO (A.8.1)
This package provides input-output facilities for sequential files, which can con-
tain a sequence of values of a single type, which can be any Ada type, including
indefinite (unconstrained) types.

Ada.Storage_IO (A.9)
This package provides a facility for mapping arbitrary Ada types to and from
a storage buffer. It is primarily intended for the creation of new IO packages.

Ada.Streams (13.13.1)
This is a generic package that provides the basic support for the concept of
streams as used by the stream attributes (Input, Output, Read and Write).

Ada.Streams.Stream_IO (A.12.1)
This package is a specialization of the type Streams defined in package
Streams together with a set of operations providing Stream IO capability. The
Stream IO model permits both random and sequential access to a file which
can contain an arbitrary set of values of one or more Ada types.

Ada.Strings (A.4.1)
This package provides some basic constants used by the string handling pack-
ages.

Ada.Strings.Bounded (A.4.4)
This package provides facilities for handling variable length strings. The
bounded model requires a maximum length. It is thus somewhat more limited
than the unbounded model, but avoids the use of dynamic allocation or
finalization.

Ada.Strings.Bounded.Equal_Case_Insensitive (A.4.10)
Provides case-insensitive comparisons of bounded strings

Ada.Strings.Bounded.Hash (A.4.9)
This package provides a generic hash function for bounded strings

Ada.Strings.Bounded.Hash_Case_Insensitive (A.4.9)
This package provides a generic hash function for bounded strings that converts
the string to be hashed to lower case.

Chapter 10: Standard Library Routines 225

Ada.Strings.Bounded.Less_Case_Insensitive (A.4.10)
This package provides a comparison function for bounded strings that works in
a case insensitive manner by converting to lower case before the comparison.

Ada.Strings.Fixed (A.4.3)
This package provides facilities for handling fixed length strings.

Ada.Strings.Fixed.Equal_Case_Insensitive (A.4.10)
This package provides an equality function for fixed strings that compares the
strings after converting both to lower case.

Ada.Strings.Fixed.Hash_Case_Insensitive (A.4.9)
This package provides a case insensitive hash function for fixed strings that
converts the string to lower case before computing the hash.

Ada.Strings.Fixed.Less_Case_Insensitive (A.4.10)
This package provides a comparison function for fixed strings that works in a
case insensitive manner by converting to lower case before the comparison.

Ada.Strings.Hash (A.4.9)
This package provides a hash function for strings.

Ada.Strings.Hash_Case_Insensitive (A.4.9)
This package provides a hash function for strings that is case insensitive. The
string is converted to lower case before computing the hash.

Ada.Strings.Less_Case_Insensitive (A.4.10)
This package provides a comparison function for\strings that works in a case
insensitive manner by converting to lower case before the comparison.

Ada.Strings.Maps (A.4.2)
This package provides facilities for handling character mappings and arbitrarily
defined subsets of characters. For instance it is useful in defining specialized
translation tables.

Ada.Strings.Maps.Constants (A.4.6)
This package provides a standard set of predefined mappings and predefined
character sets. For example, the standard upper to lower case conversion table
is found in this package. Note that upper to lower case conversion is non-trivial
if you want to take the entire set of characters, including extended characters
like E with an acute accent, into account. You should use the mappings in this
package (rather than adding 32 yourself) to do case mappings.

Ada.Strings.Unbounded (A.4.5)
This package provides facilities for handling variable length strings. The un-
bounded model allows arbitrary length strings, but requires the use of dynamic
allocation and finalization.

Ada.Strings.Unbounded.Equal_Case_Insensitive (A.4.10)
Provides case-insensitive comparisons of unbounded strings

Ada.Strings.Unbounded.Hash (A.4.9)
This package provides a generic hash function for unbounded strings

Chapter 10: Standard Library Routines 226

Ada.Strings.Unbounded.Hash_Case_Insensitive (A.4.9)
This package provides a generic hash function for unbounded strings that con-
verts the string to be hashed to lower case.

Ada.Strings.Unbounded.Less_Case_Insensitive (A.4.10)
This package provides a comparison function for unbounded strings that works
in a case insensitive manner by converting to lower case before the comparison.

Ada.Strings.UTF_Encoding (A.4.11)
This package provides basic definitions for dealing with UTF-encoded strings.

Ada.Strings.UTF_Encoding.Conversions (A.4.11)
This package provides conversion functions for UTF-encoded strings.

Ada.Strings.UTF_Encoding.Strings (A.4.11)
Ada.Strings.UTF_Encoding.Wide_Strings (A.4.11)

Ada.Strings.UTF_Encoding.Wide_Wide_Strings (A.4.11)
These packages provide facilities for handling UTF encodings for Strings,
Wide Strings and Wide Wide Strings.

Ada.Strings.Wide_Bounded (A.4.7)
Ada.Strings.Wide_Fixed (A.4.7)
Ada.Strings.Wide_Maps (A.4.7)

Ada.Strings.Wide_Unbounded (A.4.7)
These packages provide analogous capabilities to the corresponding packages
without Wide_ in the name, but operate with the types Wide String and
Wide Character instead of String and Character. Versions of all the child
packages are available.

Ada.Strings.Wide_Wide_Bounded (A.4.7)
Ada.Strings.Wide_Wide_Fixed (A.4.7)
Ada.Strings.Wide_Wide_Maps (A.4.7)

Ada.Strings.Wide_Wide_Unbounded (A.4.7)
These packages provide analogous capabilities to the corresponding packages
without Wide_ in the name, but operate with the types Wide Wide String and
Wide Wide Character instead of String and Character.

Ada.Synchronous_Barriers (D.10.1)
This package provides facilities for synchronizing tasks at a low level with bar-
riers.

Ada.Synchronous_Task_Control (D.10)
This package provides some standard facilities for controlling task communica-
tion in a synchronous manner.

Ada.Synchronous_Task_Control.EDF (D.10)
Not implemented in GNAT.

Ada.Tags

This package contains definitions for manipulation of the tags of tagged values.

Chapter 10: Standard Library Routines 227

Ada.Tags.Generic_Dispatching_Constructor (3.9)
This package provides a way of constructing tagged class-wide values given only
the tag value.

Ada.Task_Attributes (C.7.2)
This package provides the capability of associating arbitrary task-specific data
with separate tasks.

Ada.Task_Identifification (C.7.1)
This package provides capabilities for task identification.

Ada.Task_Termination (C.7.3)
This package provides control over task termination.

Ada.Text_IO
This package provides basic text input-output capabilities for character, string
and numeric data. The subpackages of this package are listed next. Note
that although these are defined as subpackages in the RM, they are actually
transparently implemented as child packages in GNAT, meaning that they are
only loaded if needed.

Ada.Text_IO.Decimal_IO
Provides input-output facilities for decimal fixed-point types

Ada.Text_IO.Enumeration_IO
Provides input-output facilities for enumeration types.

Ada.Text_IO.Fixed_IO
Provides input-output facilities for ordinary fixed-point types.

Ada.Text_IO.Float_IO
Provides input-output facilities for float types. The following predefined instan-
tiations of this generic package are available:

* Short_Float

Short Float Text IO

* Float

Float Text IO

* Long_Float

Long Float Text IO

Ada.Text_IO.Integer_IO
Provides input-output facilities for integer types. The following predefined in-
stantiations of this generic package are available:

* Short_Short_Integer

Ada.Short Short Integer Text IO

* Short_Integer

Ada.Short Integer Text IO

* Integer

Ada.Integer Text IO

Chapter 10: Standard Library Routines 228

* Long_Integer

Ada.Long Integer Text IO

* Long_Long_Integer

Ada.Long Long Integer Text IO

Ada.Text_IO.Modular_IO
Provides input-output facilities for modular (unsigned) types.

Ada.Text_IO.Bounded_IO (A.10.11)
Provides input-output facilities for bounded strings.

Ada.Text_IO.Complex_IO (G.1.3)
This package provides basic text input-output capabilities for complex data.

Ada.Text_IO.Editing (F.3.3)
This package contains routines for edited output, analogous to the use of pic-
tures in COBOL. The picture formats used by this package are a close copy of
the facility in COBOL.

Ada.Text_IO.Text_Streams (A.12.2)
This package provides a facility that allows Text IO files to be treated as
streams, so that the stream attributes can be used for writing arbitrary data,
including binary data, to Text IO files.

Ada.Text_IO.Unbounded_IO (A.10.12)
This package provides input-output facilities for unbounded strings.

Ada.Unchecked_Conversion (13.9)
This generic package allows arbitrary conversion from one type to another of
the same size, providing for breaking the type safety in special circumstances.

If the types have the same Size (more accurately the same Value Size), then
the effect is simply to transfer the bits from the source to the target type
without any modification. This usage is well defined, and for simple types
whose representation is typically the same across all implementations, gives a
portable method of performing such conversions.

If the types do not have the same size, then the result is implementation defined,
and thus may be non-portable. The following describes how GNAT handles such
unchecked conversion cases.

If the types are of different sizes, and are both discrete types, then the effect
is of a normal type conversion without any constraint checking. In particular
if the result type has a larger size, the result will be zero or sign extended. If
the result type has a smaller size, the result will be truncated by ignoring high
order bits.

If the types are of different sizes, and are not both discrete types, then the
conversion works as though pointers were created to the source and target, and
the pointer value is converted. The effect is that bits are copied from successive
low order storage units and bits of the source up to the length of the target
type.

Chapter 10: Standard Library Routines 229

A warning is issued if the lengths differ, since the effect in this case is implemen-
tation dependent, and the above behavior may not match that of some other
compiler.
A pointer to one type may be converted to a pointer to another type using
unchecked conversion. The only case in which the effect is undefined is when
one or both pointers are pointers to unconstrained array types. In this case, the
bounds information may get incorrectly transferred, and in particular, GNAT
uses double size pointers for such types, and it is meaningless to convert between
such pointer types. GNAT will issue a warning if the alignment of the target
designated type is more strict than the alignment of the source designated type
(since the result may be unaligned in this case).
A pointer other than a pointer to an unconstrained array type may be converted
to and from System.Address. Such usage is common in Ada 83 programs, but
note that Ada.Address To Access Conversions is the preferred method of per-
forming such conversions in Ada 95 and Ada 2005. Neither unchecked con-
version nor Ada.Address To Access Conversions should be used in conjunction
with pointers to unconstrained objects, since the bounds information cannot be
handled correctly in this case.

Ada.Unchecked_Deallocation (13.11.2)
This generic package allows explicit freeing of storage previously allocated by
use of an allocator.

Ada.Wide_Text_IO (A.11)
This package is similar to Ada.Text IO, except that the external file supports
wide character representations, and the internal types are Wide Character and
Wide String instead of Character and String. The corresponding set of nested
packages and child packages are defined.

Ada.Wide_Wide_Text_IO (A.11)
This package is similar to Ada.Text IO, except that the external file supports
wide character representations, and the internal types are Wide Character and
Wide String instead of Character and String. The corresponding set of nested
packages and child packages are defined.

For packages in Interfaces and System, all the RM defined packages are available in GNAT,
see the Ada 2012 RM for full details.

Chapter 11: The Implementation of Standard I/O 230

11 The Implementation of Standard I/O

GNAT implements all the required input-output facilities described in A.6 through A.14.
These sections of the Ada Reference Manual describe the required behavior of these packages
from the Ada point of view, and if you are writing a portable Ada program that does not
need to know the exact manner in which Ada maps to the outside world when it comes to
reading or writing external files, then you do not need to read this chapter. As long as your
files are all regular files (not pipes or devices), and as long as you write and read the files
only from Ada, the description in the Ada Reference Manual is sufficient.

However, if you want to do input-output to pipes or other devices, such as the keyboard or
screen, or if the files you are dealing with are either generated by some other language, or
to be read by some other language, then you need to know more about the details of how
the GNAT implementation of these input-output facilities behaves.

In this chapter we give a detailed description of exactly how GNAT interfaces to the file
system. As always, the sources of the system are available to you for answering questions
at an even more detailed level, but for most purposes the information in this chapter will
suffice.

Another reason that you may need to know more about how input-output is implemented
arises when you have a program written in mixed languages where, for example, files are
shared between the C and Ada sections of the same program. GNAT provides some addi-
tional facilities, in the form of additional child library packages, that facilitate this sharing,
and these additional facilities are also described in this chapter.

11.1 Standard I/O Packages

The Standard I/O packages described in Annex A for

* Ada.Text IO

* Ada.Text IO.Complex IO

* Ada.Text IO.Text Streams

* Ada.Wide Text IO

* Ada.Wide Text IO.Complex IO

* Ada.Wide Text IO.Text Streams

* Ada.Wide Wide Text IO

* Ada.Wide Wide Text IO.Complex IO

* Ada.Wide Wide Text IO.Text Streams

* Ada.Stream IO

* Ada.Sequential IO

* Ada.Direct IO

are implemented using the C library streams facility; where

* All files are opened using fopen.

* All input/output operations use fread/fwrite.

Chapter 11: The Implementation of Standard I/O 231

There is no internal buffering of any kind at the Ada library level. The only buffering is
that provided at the system level in the implementation of the library routines that support
streams. This facilitates shared use of these streams by mixed language programs. Note
though that system level buffering is explicitly enabled at elaboration of the standard I/O
packages and that can have an impact on mixed language programs, in particular those
using I/O before calling the Ada elaboration routine (e.g., adainit). It is recommended to
call the Ada elaboration routine before performing any I/O or when impractical, flush the
common I/O streams and in particular Standard Output before elaborating the Ada code.

11.2 FORM Strings

The format of a FORM string in GNAT is:
"keyword=value,keyword=value,...,keyword=value"

where letters may be in upper or lower case, and there are no spaces between values. The
order of the entries is not important. Currently the following keywords defined.

TEXT_TRANSLATION=[YES|NO|TEXT|BINARY|U8TEXT|WTEXT|U16TEXT]
SHARED=[YES|NO]
WCEM=[n|h|u|s|e|8|b]
ENCODING=[UTF8|8BITS]

The use of these parameters is described later in this section. If an unrecognized keyword
appears in a form string, it is silently ignored and not considered invalid.

11.3 Direct IO

Direct IO can only be instantiated for definite types. This is a restriction of the Ada
language, which means that the records are fixed length (the length being determined by
type’Size, rounded up to the next storage unit boundary if necessary).
The records of a Direct IO file are simply written to the file in index sequence, with the
first record starting at offset zero, and subsequent records following. There is no control
information of any kind. For example, if 32-bit integers are being written, each record takes
4-bytes, so the record at index K starts at offset (K-1)*4.
There is no limit on the size of Direct IO files, they are expanded as necessary to accom-
modate whatever records are written to the file.

11.4 Sequential IO

Sequential IO may be instantiated with either a definite (constrained) or indefinite (uncon-
strained) type.
For the definite type case, the elements written to the file are simply the memory images of
the data values with no control information of any kind. The resulting file should be read
using the same type, no validity checking is performed on input.
For the indefinite type case, the elements written consist of two parts. First is the size
of the data item, written as the memory image of a Interfaces.C.size t value, followed by
the memory image of the data value. The resulting file can only be read using the same
(unconstrained) type. Normal assignment checks are performed on these read operations,
and if these checks fail, Data Error is raised. In particular, in the array case, the lengths

Chapter 11: The Implementation of Standard I/O 232

must match, and in the variant record case, if the variable for a particular read operation
is constrained, the discriminants must match.

Note that it is not possible to use Sequential IO to write variable length array items, and
then read the data back into different length arrays. For example, the following will raise
Data Error:

package IO is new Sequential_IO (String);
F : IO.File_Type;
S : String (1..4);
...
IO.Create (F)
IO.Write (F, "hello!")
IO.Reset (F, Mode=>In_File);
IO.Read (F, S);
Put_Line (S);

On some Ada implementations, this will print hell, but the program is clearly incorrect,
since there is only one element in the file, and that element is the string hello!.

In Ada 95 and Ada 2005, this kind of behavior can be legitimately achieved using Stream IO,
and this is the preferred mechanism. In particular, the above program fragment rewritten
to use Stream IO will work correctly.

11.5 Text IO

Text IO files consist of a stream of characters containing the following special control char-
acters:

LF (line feed, 16#0A#) Line Mark
FF (form feed, 16#0C#) Page Mark

A canonical Text IO file is defined as one in which the following conditions are met:

* The character LF is used only as a line mark, i.e., to mark the end of the line.
* The character FF is used only as a page mark, i.e., to mark the end of a page and

consequently can appear only immediately following a LF (line mark) character.
* The file ends with either LF (line mark) or LF-FF (line mark, page mark). In the

former case, the page mark is implicitly assumed to be present.

A file written using Text IO will be in canonical form provided that no explicit LF or FF
characters are written using Put or Put Line. There will be no FF character at the end of
the file unless an explicit New Page operation was performed before closing the file.

A canonical Text IO file that is a regular file (i.e., not a device or a pipe) can be read using
any of the routines in Text IO. The semantics in this case will be exactly as defined in the
Ada Reference Manual, and all the routines in Text IO are fully implemented.

A text file that does not meet the requirements for a canonical Text IO file has one of the
following:

* The file contains FF characters not immediately following a LF character.
* The file contains LF or FF characters written by Put or Put Line, which are not

logically considered to be line marks or page marks.

Chapter 11: The Implementation of Standard I/O 233

* The file ends in a character other than LF or FF, i.e., there is no explicit line mark or
page mark at the end of the file.

Text IO can be used to read such non-standard text files but subprograms to do with line
or page numbers do not have defined meanings. In particular, a FF character that does not
follow a LF character may or may not be treated as a page mark from the point of view of
page and line numbering. Every LF character is considered to end a line, and there is an
implied LF character at the end of the file.

11.5.1 Stream Pointer Positioning

Ada.Text IO has a definition of current position for a file that is being read. No inter-
nal buffering occurs in Text IO, and usually the physical position in the stream used to
implement the file corresponds to this logical position defined by Text IO. There are two
exceptions:

* After a call to End Of Page that returns True, the stream is positioned past the LF
(line mark) that precedes the page mark. Text IO maintains an internal flag so that
subsequent read operations properly handle the logical position which is unchanged by
the End Of Page call.

* After a call to End Of File that returns True, if the Text IO file was positioned before
the line mark at the end of file before the call, then the logical position is unchanged,
but the stream is physically positioned right at the end of file (past the line mark, and
past a possible page mark following the line mark. Again Text IO maintains internal
flags so that subsequent read operations properly handle the logical position.

These discrepancies have no effect on the observable behavior of Text IO, but if a single
Ada stream is shared between a C program and Ada program, or shared (using shared=yes
in the form string) between two Ada files, then the difference may be observable in some
situations.

11.5.2 Reading and Writing Non-Regular Files

A non-regular file is a device (such as a keyboard), or a pipe. Text IO can be used for reading
and writing. Writing is not affected and the sequence of characters output is identical to the
normal file case, but for reading, the behavior of Text IO is modified to avoid undesirable
look-ahead as follows:
An input file that is not a regular file is considered to have no page marks. Any Ascii.FF
characters (the character normally used for a page mark) appearing in the file are considered
to be data characters. In particular:

* Get Line and Skip Line do not test for a page mark following a line mark. If a page
mark appears, it will be treated as a data character.

* This avoids the need to wait for an extra character to be typed or entered from the
pipe to complete one of these operations.

* End Of Page always returns False

* End Of File will return False if there is a page mark at the end of the file.

Output to non-regular files is the same as for regular files. Page marks may be written
to non-regular files using New Page, but as noted above they will not be treated as page
marks on input if the output is piped to another Ada program.

Chapter 11: The Implementation of Standard I/O 234

Another important discrepancy when reading non-regular files is that the end of file indica-
tion is not ’sticky’. If an end of file is entered, e.g., by pressing the EOT key, then end of file
is signaled once (i.e., the test End Of File will yield True, or a read will raise End Error),
but then reading can resume to read data past that end of file indication, until another end
of file indication is entered.

11.5.3 Get Immediate

Get Immediate returns the next character (including control characters) from the input file.
In particular, Get Immediate will return LF or FF characters used as line marks or page
marks. Such operations leave the file positioned past the control character, and it is thus
not treated as having its normal function. This means that page, line and column counts
after this kind of Get Immediate call are set as though the mark did not occur. In the case
where a Get Immediate leaves the file positioned between the line mark and page mark
(which is not normally possible), it is undefined whether the FF character will be treated
as a page mark.

11.5.4 Treating Text IO Files as Streams

The package Text IO.Streams allows a Text IO file to be treated as a stream. Data written
to a Text IO file in this stream mode is binary data. If this binary data contains bytes
16#0A# (LF) or 16#0C# (FF), the resulting file may have non-standard format. Simi-
larly if read operations are used to read from a Text IO file treated as a stream, then LF
and FF characters may be skipped and the effect is similar to that described above for
Get Immediate.

11.5.5 Text IO Extensions

A package GNAT.IO Aux in the GNAT library provides some useful extensions to the
standard Text IO package:

* function File Exists (Name : String) return Boolean; Determines if a file of the given
name exists.

* function Get Line return String; Reads a string from the standard input file. The value
returned is exactly the length of the line that was read.

* function Get Line (File : Ada.Text IO.File Type) return String; Similar, except that
the parameter File specifies the file from which the string is to be read.

11.5.6 Text IO Facilities for Unbounded Strings

The package Ada.Strings.Unbounded.Text IO in library files a-suteio.ads/adb contains
some GNAT-specific subprograms useful for Text IO operations on unbounded strings:

* function Get Line (File : File Type) return Unbounded String; Reads a line from the
specified file and returns the result as an unbounded string.

* procedure Put (File : File Type; U : Unbounded String); Writes the value of the given
unbounded string to the specified file Similar to the effect of Put (To String (U)) except
that an extra copy is avoided.

* procedure Put Line (File : File Type; U : Unbounded String); Writes the value of the
given unbounded string to the specified file, followed by a New Line. Similar to the
effect of Put Line (To String (U)) except that an extra copy is avoided.

Chapter 11: The Implementation of Standard I/O 235

In the above procedures, File is of type Ada.Text IO.File Type and is optional. If the
parameter is omitted, then the standard input or output file is referenced as appropriate.
The package Ada.Strings.Wide Unbounded.Wide Text IO in library files a-swuwti.ads
and a-swuwti.adb provides similar extended Wide Text IO functionality for unbounded
wide strings.
The package Ada.Strings.Wide Wide Unbounded.Wide Wide Text IO in library files a-
szuzti.ads and a-szuzti.adb provides similar extended Wide Wide Text IO functional-
ity for unbounded wide wide strings.

11.6 Wide Text IO

Wide Text IO is similar in most respects to Text IO, except that both input and output
files may contain special sequences that represent wide character values. The encoding
scheme for a given file may be specified using a FORM parameter:

WCEM=‘x‘

as part of the FORM string (WCEM = wide character encoding method), where x is one
of the following characters

Character Encoding

h Hex ESC encoding

u Upper half encoding

s Shift-JIS encoding

e EUC Encoding

8 UTF-8 encoding

b Brackets encoding

The encoding methods match those that can be used in a source program, but there is
no requirement that the encoding method used for the source program be the same as the
encoding method used for files, and different files may use different encoding methods.
The default encoding method for the standard files, and for opened files for which no WCEM
parameter is given in the FORM string matches the wide character encoding specified for
the main program (the default being brackets encoding if no coding method was specified
with -gnatW).

Hex Coding
In this encoding, a wide character is represented by a five character sequence:

ESC a b c d

where a, b, c, d are the four hexadecimal characters (using upper case
letters) of the wide character code. For example, ESC A345 is used
to represent the wide character with code 16#A345#. This scheme is
compatible with use of the full Wide Character set.

Chapter 11: The Implementation of Standard I/O 236

Upper Half Coding
The wide character with encoding 16#abcd#, where the upper bit is on (i.e.,
a is in the range 8-F) is represented as two bytes 16#ab# and 16#cd#. The
second byte may never be a format control character, but is not required to be
in the upper half. This method can be also used for shift-JIS or EUC where
the internal coding matches the external coding.

Shift JIS Coding
A wide character is represented by a two character sequence 16#ab# and
16#cd#, with the restrictions described for upper half encoding as described
above. The internal character code is the corresponding JIS character accord-
ing to the standard algorithm for Shift-JIS conversion. Only characters defined
in the JIS code set table can be used with this encoding method.

EUC Coding
A wide character is represented by a two character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal char-
acter code is the corresponding JIS character according to the EUC encoding
algorithm. Only characters defined in the JIS code set table can be used with
this encoding method.

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#0xxxxxxx#
16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#
16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#

where the xxx bits correspond to the left-padded bits of the 16-bit char-
acter value. Note that all lower half ASCII characters are represented as
ASCII bytes and all upper half characters and other wide characters are
represented as sequences of upper-half (The full UTF-8 scheme allows
for encoding 31-bit characters as 6-byte sequences, but in this imple-
mentation, all UTF-8 sequences of four or more bytes length will raise a
Constraint Error, as will all invalid UTF-8 sequences.)

Brackets Coding
In this encoding, a wide character is represented by the following eight character
sequence:

[" a b c d "]

where a, b, c, d are the four hexadecimal characters (using uppercase
letters) of the wide character code. For example, ["A345"] is used to rep-
resent the wide character with code 16#A345#. This scheme is compat-
ible with use of the full Wide Character set. On input, brackets coding
can also be used for upper half characters, e.g., ["C1"] for lower case a.
However, on output, brackets notation is only used for wide characters
with a code greater than 16#FF#.
Note that brackets coding is not normally used in the context of
Wide Text IO or Wide Wide Text IO, since it is really just designed as

Chapter 11: The Implementation of Standard I/O 237

a portable way of encoding source files. In the context of Wide Text IO
or Wide Wide Text IO, it can only be used if the file does not contain
any instance of the left bracket character other than to encode wide
character values using the brackets encoding method. In practice it is
expected that some standard wide character encoding method such as
UTF-8 will be used for text input output.
If brackets notation is used, then any occurrence of a left bracket in
the input file which is not the start of a valid wide character sequence
will cause Constraint Error to be raised. It is possible to encode a left
bracket as ["5B"] and Wide Text IO and Wide Wide Text IO input will
interpret this as a left bracket.
However, when a left bracket is output, it will be output as a left bracket
and not as ["5B"]. We make this decision because for normal use of
Wide Text IO for outputting messages, it is unpleasant to clobber left
brackets. For example, if we write:

Put_Line ("Start of output [first run]");

we really do not want to have the left bracket in this message clobbered
so that the output reads:
Start of output ["5B"]first run]

In practice brackets encoding is reasonably useful for normal Put Line
use since we won’t get confused between left brackets and wide character
sequences in the output. But for input, or when files are written out
and read back in, it really makes better sense to use one of the standard
encoding methods such as UTF-8.

For the coding schemes other than UTF-8, Hex, or Brackets encoding, not all wide character
values can be represented. An attempt to output a character that cannot be represented
using the encoding scheme for the file causes Constraint Error to be raised. An invalid wide
character sequence on input also causes Constraint Error to be raised.

11.6.1 Stream Pointer Positioning

Ada.Wide Text IO is similar to Ada.Text IO in its handling of stream pointer positioning
([Text IO], page 232). There is one additional case:
If Ada.Wide Text IO.Look Ahead reads a character outside the normal lower ASCII set
(i.e., a character in the range:

Wide_Character’Val (16#0080#) .. Wide_Character’Val (16#FFFF#)

then although the logical position of the file pointer is unchanged by the Look Ahead call,
the stream is physically positioned past the wide character sequence. Again this is to
avoid the need for buffering or backup, and all Wide Text IO routines check the internal
indication that this situation has occurred so that this is not visible to a normal program
using Wide Text IO. However, this discrepancy can be observed if the wide text file shares
a stream with another file.

11.6.2 Reading and Writing Non-Regular Files

As in the case of Text IO, when a non-regular file is read, it is assumed that the file contains
no page marks (any form characters are treated as data characters), and End Of Page

Chapter 11: The Implementation of Standard I/O 238

always returns False. Similarly, the end of file indication is not sticky, so it is possible to
read beyond an end of file.

11.7 Wide Wide Text IO

Wide Wide Text IO is similar in most respects to Text IO, except that both input and
output files may contain special sequences that represent wide wide character values. The
encoding scheme for a given file may be specified using a FORM parameter:

WCEM=‘x‘

as part of the FORM string (WCEM = wide character encoding method), where x is one
of the following characters

Character Encoding

h Hex ESC encoding

u Upper half encoding

s Shift-JIS encoding

e EUC Encoding

8 UTF-8 encoding

b Brackets encoding

The encoding methods match those that can be used in a source program, but there is
no requirement that the encoding method used for the source program be the same as the
encoding method used for files, and different files may use different encoding methods.

The default encoding method for the standard files, and for opened files for which no WCEM
parameter is given in the FORM string matches the wide character encoding specified for
the main program (the default being brackets encoding if no coding method was specified
with -gnatW).

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, three, or four byte sequence:

16#000000#-16#00007f#: 2#0xxxxxxx#
16#000080#-16#0007ff#: 2#110xxxxx# 2#10xxxxxx#
16#000800#-16#00ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#
16#010000#-16#10ffff#: 2#11110xxx# 2#10xxxxxx# 2#10xxxxxx# 2#10xxxxxx#

where the xxx bits correspond to the left-padded bits of the 21-bit char-
acter value. Note that all lower half ASCII characters are represented as
ASCII bytes and all upper half characters and other wide characters are
represented as sequences of upper-half characters.

Chapter 11: The Implementation of Standard I/O 239

Brackets Coding
In this encoding, a wide wide character is represented by the following eight
character sequence if is in wide character range

[" a b c d "]

and by the following ten character sequence if not

[" a b c d e f "]

where a, b, c, d, e, and f are the four or six hexadecimal characters
(using uppercase letters) of the wide wide character code. For exam-
ple, ["01A345"] is used to represent the wide wide character with code
16#01A345#.

This scheme is compatible with use of the full Wide Wide Character set.
On input, brackets coding can also be used for upper half characters, e.g.,
["C1"] for lower case a. However, on output, brackets notation is only
used for wide characters with a code greater than 16#FF#.

If is also possible to use the other Wide Character encoding methods, such as Shift-JIS, but
the other schemes cannot support the full range of wide wide characters. An attempt to
output a character that cannot be represented using the encoding scheme for the file causes
Constraint Error to be raised. An invalid wide character sequence on input also causes
Constraint Error to be raised.

11.7.1 Stream Pointer Positioning

Ada.Wide Wide Text IO is similar to Ada.Text IO in its handling of stream pointer posi-
tioning ([Text IO], page 232). There is one additional case:

If Ada.Wide Wide Text IO.Look Ahead reads a character outside the normal lower ASCII
set (i.e., a character in the range:

Wide_Wide_Character’Val (16#0080#) .. Wide_Wide_Character’Val (16#10FFFF#)

then although the logical position of the file pointer is unchanged by the Look Ahead call,
the stream is physically positioned past the wide character sequence. Again this is to avoid
the need for buffering or backup, and all Wide Wide Text IO routines check the internal
indication that this situation has occurred so that this is not visible to a normal program
using Wide Wide Text IO. However, this discrepancy can be observed if the wide text file
shares a stream with another file.

11.7.2 Reading and Writing Non-Regular Files

As in the case of Text IO, when a non-regular file is read, it is assumed that the file contains
no page marks (any form characters are treated as data characters), and End Of Page
always returns False. Similarly, the end of file indication is not sticky, so it is possible to
read beyond an end of file.

11.8 Stream IO

A stream file is a sequence of bytes, where individual elements are written to the file as
described in the Ada Reference Manual. The type Stream Element is simply a byte. There
are two ways to read or write a stream file.

Chapter 11: The Implementation of Standard I/O 240

* The operations Read and Write directly read or write a sequence of stream elements
with no control information.

* The stream attributes applied to a stream file transfer data in the manner described
for stream attributes.

11.9 Text Translation

Text_Translation=xxx may be used as the Form parameter passed to Text IO.Create and
Text IO.Open. Text_Translation=xxx has no effect on Unix systems. Possible values are:

* Yes or Text is the default, which means to translate LF to/from CR/LF on Windows
systems.
No disables this translation; i.e. it uses binary mode. For output files,
Text_Translation=No may be used to create Unix-style files on Windows.

* wtext translation enabled in Unicode mode. (corresponds to O WTEXT).
* u8text translation enabled in Unicode UTF-8 mode. (corresponds to O U8TEXT).
* u16text translation enabled in Unicode UTF-16 mode. (corresponds to O U16TEXT).

11.10 Shared Files

Section A.14 of the Ada Reference Manual allows implementations to provide a wide variety
of behavior if an attempt is made to access the same external file with two or more internal
files.
To provide a full range of functionality, while at the same time minimizing the problems
of portability caused by this implementation dependence, GNAT handles file sharing as
follows:

* In the absence of a shared=xxx form parameter, an attempt to open two or more files
with the same full name is considered an error and is not supported. The exception
Use Error will be raised. Note that a file that is not explicitly closed by the program
remains open until the program terminates.

* If the form parameter shared=no appears in the form string, the file can be opened or
created with its own separate stream identifier, regardless of whether other files sharing
the same external file are opened. The exact effect depends on how the C stream
routines handle multiple accesses to the same external files using separate streams.

* If the form parameter shared=yes appears in the form string for each of two or more
files opened using the same full name, the same stream is shared between these files,
and the semantics are as described in Ada Reference Manual, Section A.14.

When a program that opens multiple files with the same name is ported from another Ada
compiler to GNAT, the effect will be that Use Error is raised.
The documentation of the original compiler and the documentation of the program should
then be examined to determine if file sharing was expected, and shared=xxx parameters
added to Open and Create calls as required.
When a program is ported from GNAT to some other Ada compiler, no special attention is
required unless the shared=xxx form parameter is used in the program. In this case, you
must examine the documentation of the new compiler to see if it supports the required file
sharing semantics, and form strings modified appropriately. Of course it may be the case

Chapter 11: The Implementation of Standard I/O 241

that the program cannot be ported if the target compiler does not support the required
functionality. The best approach in writing portable code is to avoid file sharing (and hence
the use of the shared=xxx parameter in the form string) completely.

One common use of file sharing in Ada 83 is the use of instantiations of Sequential IO
on the same file with different types, to achieve heterogeneous input-output. Although
this approach will work in GNAT if shared=yes is specified, it is preferable in Ada to use
Stream IO for this purpose (using the stream attributes)

11.11 Filenames encoding

An encoding form parameter can be used to specify the filename encoding encoding=xxx.

* If the form parameter encoding=utf8 appears in the form string, the filename must
be encoded in UTF-8.

* If the form parameter encoding=8bits appears in the form string, the filename must
be a standard 8bits string.

In the absence of a encoding=xxx form parameter, the encoding is controlled by the GNAT_
CODE_PAGE environment variable. And if not set utf8 is assumed.

CP ACP

The current system Windows ANSI code page.

CP UTF8

UTF-8 encoding

This encoding form parameter is only supported on the Windows platform. On the other
Operating Systems the run-time is supporting UTF-8 natively.

11.12 File content encoding

For text files it is possible to specify the encoding to use. This is controlled by the by the
GNAT_CCS_ENCODING environment variable. And if not set TEXT is assumed.

The possible values are those supported on Windows:

TEXT

Translated text mode

WTEXT

Translated unicode encoding

U16TEXT
Unicode 16-bit encoding

U8TEXT

Unicode 8-bit encoding

This encoding is only supported on the Windows platform.

Chapter 11: The Implementation of Standard I/O 242

11.13 Open Modes

Open and Create calls result in a call to fopen using the mode shown in the following table:

Open and Create Call Modes

OPEN CREATE

Append File "r+" "w+"

In File "r" "w+"

Out File (Direct IO) "r+" "w"

Out File (all other cases) "w" "w"

Inout File "r+" "w+"

If text file translation is required, then either b or t is added to the mode, depending on
the setting of Text. Text file translation refers to the mapping of CR/LF sequences in an
external file to LF characters internally. This mapping only occurs in DOS and DOS-like
systems, and is not relevant to other systems.

A special case occurs with Stream IO. As shown in the above table, the file is initially opened
in r or w mode for the In File and Out File cases. If a Set Mode operation subsequently
requires switching from reading to writing or vice-versa, then the file is reopened in r+ mode
to permit the required operation.

11.14 Operations on C Streams

The package Interfaces.C Streams provides an Ada program with direct access to the C
library functions for operations on C streams:

package Interfaces.C_Streams is
-- Note: the reason we do not use the types that are in
-- Interfaces.C is that we want to avoid dragging in the
-- code in this unit if possible.
subtype chars is System.Address;
-- Pointer to null-terminated array of characters
subtype FILEs is System.Address;
-- Corresponds to the C type FILE*
subtype voids is System.Address;
-- Corresponds to the C type void*
subtype int is Integer;
subtype long is Long_Integer;
-- Note: the above types are subtypes deliberately, and it
-- is part of this spec that the above correspondences are
-- guaranteed. This means that it is legitimate to, for
-- example, use Integer instead of int. We provide these

Chapter 11: The Implementation of Standard I/O 243

-- synonyms for clarity, but in some cases it may be
-- convenient to use the underlying types (for example to
-- avoid an unnecessary dependency of a spec on the spec
-- of this unit).
type size_t is mod 2 ** Standard’Address_Size;
NULL_Stream : constant FILEs;
-- Value returned (NULL in C) to indicate an
-- fdopen/fopen/tmpfile error

-- Constants Defined in stdio.h --

EOF : constant int;
-- Used by a number of routines to indicate error or
-- end of file
IOFBF : constant int;
IOLBF : constant int;
IONBF : constant int;
-- Used to indicate buffering mode for setvbuf call
SEEK_CUR : constant int;
SEEK_END : constant int;
SEEK_SET : constant int;
-- Used to indicate origin for fseek call
function stdin return FILEs;
function stdout return FILEs;
function stderr return FILEs;
-- Streams associated with standard files

-- Standard C functions --

-- The functions selected below are ones that are
-- available in UNIX (but not necessarily in ANSI C).
-- These are very thin interfaces
-- which copy exactly the C headers. For more
-- documentation on these functions, see the Microsoft C
-- "Run-Time Library Reference" (Microsoft Press, 1990,
-- ISBN 1-55615-225-6), which includes useful information
-- on system compatibility.
procedure clearerr (stream : FILEs);
function fclose (stream : FILEs) return int;
function fdopen (handle : int; mode : chars) return FILEs;
function feof (stream : FILEs) return int;
function ferror (stream : FILEs) return int;
function fflush (stream : FILEs) return int;
function fgetc (stream : FILEs) return int;
function fgets (strng : chars; n : int; stream : FILEs)

return chars;
function fileno (stream : FILEs) return int;

Chapter 11: The Implementation of Standard I/O 244

function fopen (filename : chars; Mode : chars)
return FILEs;

-- Note: to maintain target independence, use
-- text_translation_required, a boolean variable defined in
-- a-sysdep.c to deal with the target dependent text
-- translation requirement. If this variable is set,
-- then b/t should be appended to the standard mode
-- argument to set the text translation mode off or on
-- as required.
function fputc (C : int; stream : FILEs) return int;
function fputs (Strng : chars; Stream : FILEs) return int;
function fread

(buffer : voids;
size : size_t;
count : size_t;
stream : FILEs)
return size_t;

function freopen
(filename : chars;
mode : chars;
stream : FILEs)
return FILEs;

function fseek
(stream : FILEs;
offset : long;
origin : int)
return int;

function ftell (stream : FILEs) return long;
function fwrite

(buffer : voids;
size : size_t;
count : size_t;
stream : FILEs)
return size_t;

function isatty (handle : int) return int;
procedure mktemp (template : chars);
-- The return value (which is just a pointer to template)
-- is discarded
procedure rewind (stream : FILEs);
function rmtmp return int;
function setvbuf

(stream : FILEs;
buffer : chars;
mode : int;
size : size_t)
return int;

Chapter 11: The Implementation of Standard I/O 245

function tmpfile return FILEs;
function ungetc (c : int; stream : FILEs) return int;
function unlink (filename : chars) return int;

-- Extra functions --

-- These functions supply slightly thicker bindings than
-- those above. They are derived from functions in the
-- C Run-Time Library, but may do a bit more work than
-- just directly calling one of the Library functions.
function is_regular_file (handle : int) return int;
-- Tests if given handle is for a regular file (result 1)
-- or for a non-regular file (pipe or device, result 0).

-- Control of Text/Binary Mode --

-- If text_translation_required is true, then the following
-- functions may be used to dynamically switch a file from
-- binary to text mode or vice versa. These functions have
-- no effect if text_translation_required is false (i.e., in
-- normal UNIX mode). Use fileno to get a stream handle.
procedure set_binary_mode (handle : int);
procedure set_text_mode (handle : int);

-- Full Path Name support --

procedure full_name (nam : chars; buffer : chars);
-- Given a NUL terminated string representing a file
-- name, returns in buffer a NUL terminated string
-- representing the full path name for the file name.
-- On systems where it is relevant the drive is also
-- part of the full path name. It is the responsibility
-- of the caller to pass an actual parameter for buffer
-- that is big enough for any full path name. Use
-- max_path_len given below as the size of buffer.
max_path_len : integer;
-- Maximum length of an allowable full path name on the
-- system, including a terminating NUL character.

end Interfaces.C_Streams;

11.15 Interfacing to C Streams

The packages in this section permit interfacing Ada files to C Stream operations.

with Interfaces.C_Streams;
package Ada.Sequential_IO.C_Streams is

function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;

Chapter 11: The Implementation of Standard I/O 246

procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");

end Ada.Sequential_IO.C_Streams;

with Interfaces.C_Streams;
package Ada.Direct_IO.C_Streams is

function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;

procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");

end Ada.Direct_IO.C_Streams;

with Interfaces.C_Streams;
package Ada.Text_IO.C_Streams is

function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;

procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");

end Ada.Text_IO.C_Streams;

with Interfaces.C_Streams;
package Ada.Wide_Text_IO.C_Streams is

function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;

procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");

end Ada.Wide_Text_IO.C_Streams;

with Interfaces.C_Streams;
package Ada.Wide_Wide_Text_IO.C_Streams is

function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;

procedure Open
(File : in out File_Type;
Mode : in File_Mode;

Chapter 11: The Implementation of Standard I/O 247

C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");

end Ada.Wide_Wide_Text_IO.C_Streams;

with Interfaces.C_Streams;
package Ada.Stream_IO.C_Streams is

function C_Stream (F : File_Type)
return Interfaces.C_Streams.FILEs;

procedure Open
(File : in out File_Type;
Mode : in File_Mode;
C_Stream : in Interfaces.C_Streams.FILEs;
Form : in String := "");

end Ada.Stream_IO.C_Streams;

In each of these six packages, the C Stream function obtains the FILE pointer from a
currently opened Ada file. It is then possible to use the Interfaces.C Streams package to
operate on this stream, or the stream can be passed to a C program which can operate on it
directly. Of course the program is responsible for ensuring that only appropriate sequences
of operations are executed.
One particular use of relevance to an Ada program is that the setvbuf function can be used
to control the buffering of the stream used by an Ada file. In the absence of such a call the
standard default buffering is used.
The Open procedures in these packages open a file giving an existing C Stream instead of
a file name. Typically this stream is imported from a C program, allowing an Ada file to
operate on an existing C file.

Chapter 12: The GNAT Library 248

12 The GNAT Library

The GNAT library contains a number of general and special purpose packages. It represents
functionality that the GNAT developers have found useful, and which is made available to
GNAT users. The packages described here are fully supported, and upwards compatibility
will be maintained in future releases, so you can use these facilities with the confidence that
the same functionality will be available in future releases.

The chapter here simply gives a brief summary of the facilities available. The full documen-
tation is found in the spec file for the package. The full sources of these library packages,
including both spec and body, are provided with all GNAT releases. For example, to find
out the full specifications of the SPITBOL pattern matching capability, including a full
tutorial and extensive examples, look in the g-spipat.ads file in the library.

For each entry here, the package name (as it would appear in a with clause) is given, followed
by the name of the corresponding spec file in parentheses. The packages are children in
four hierarchies, Ada, Interfaces, System, and GNAT, the latter being a GNAT-specific
hierarchy.

Note that an application program should only use packages in one of these four hierarchies
if the package is defined in the Ada Reference Manual, or is listed in this section of the
GNAT Programmers Reference Manual. All other units should be considered internal im-
plementation units and should not be directly with’ed by application code. The use of a
with statement that references one of these internal implementation units makes an appli-
cation potentially dependent on changes in versions of GNAT, and will generate a warning
message.

12.1 Ada.Characters.Latin 9 (a-chlat9.ads)

This child of Ada.Characters provides a set of definitions corresponding to those in the
RM-defined package Ada.Characters.Latin 1 but with the few modifications required for
Latin-9 The provision of such a package is specifically authorized by the Ada Reference
Manual (RM A.3.3(27)).

12.2 Ada.Characters.Wide Latin 1 (a-cwila1.ads)

This child of Ada.Characters provides a set of definitions corresponding to those in the
RM-defined package Ada.Characters.Latin 1 but with the types of the constants being
Wide Character instead of Character. The provision of such a package is specifically au-
thorized by the Ada Reference Manual (RM A.3.3(27)).

12.3 Ada.Characters.Wide Latin 9 (a-cwila1.ads)

This child of Ada.Characters provides a set of definitions corresponding to those in the
GNAT defined package Ada.Characters.Latin 9 but with the types of the constants be-
ing Wide Character instead of Character. The provision of such a package is specifically
authorized by the Ada Reference Manual (RM A.3.3(27)).

Chapter 12: The GNAT Library 249

12.4 Ada.Characters.Wide Wide Latin 1 (a-chzla1.ads)

This child of Ada.Characters provides a set of definitions corresponding to those in the
RM-defined package Ada.Characters.Latin 1 but with the types of the constants being
Wide Wide Character instead of Character. The provision of such a package is specifically
authorized by the Ada Reference Manual (RM A.3.3(27)).

12.5 Ada.Characters.Wide Wide Latin 9 (a-chzla9.ads)

This child of Ada.Characters provides a set of definitions corresponding to those in the
GNAT defined package Ada.Characters.Latin 9 but with the types of the constants being
Wide Wide Character instead of Character. The provision of such a package is specifically
authorized by the Ada Reference Manual (RM A.3.3(27)).

12.6 Ada.Containers.Formal Doubly Linked Lists
(a-cfdlli.ads)

This child of Ada.Containers defines a modified version of the Ada 2005 container for
doubly linked lists, meant to facilitate formal verification of code using such containers.
The specification of this unit is compatible with SPARK 2014.

Note that although this container was designed with formal verification in mind, it may
well be generally useful in that it is a simplified more efficient version than the one defined
in the standard. In particular it does not have the complex overhead required to detect
cursor tampering.

12.7 Ada.Containers.Formal Hashed Maps (a-cfhama.ads)

This child of Ada.Containers defines a modified version of the Ada 2005 container for hashed
maps, meant to facilitate formal verification of code using such containers. The specification
of this unit is compatible with SPARK 2014.

Note that although this container was designed with formal verification in mind, it may
well be generally useful in that it is a simplified more efficient version than the one defined
in the standard. In particular it does not have the complex overhead required to detect
cursor tampering.

12.8 Ada.Containers.Formal Hashed Sets (a-cfhase.ads)

This child of Ada.Containers defines a modified version of the Ada 2005 container for hashed
sets, meant to facilitate formal verification of code using such containers. The specification
of this unit is compatible with SPARK 2014.

Note that although this container was designed with formal verification in mind, it may
well be generally useful in that it is a simplified more efficient version than the one defined
in the standard. In particular it does not have the complex overhead required to detect
cursor tampering.

Chapter 12: The GNAT Library 250

12.9 Ada.Containers.Formal Ordered Maps (a-cforma.ads)

This child of Ada.Containers defines a modified version of the Ada 2005 container for
ordered maps, meant to facilitate formal verification of code using such containers. The
specification of this unit is compatible with SPARK 2014.

Note that although this container was designed with formal verification in mind, it may
well be generally useful in that it is a simplified more efficient version than the one defined
in the standard. In particular it does not have the complex overhead required to detect
cursor tampering.

12.10 Ada.Containers.Formal Ordered Sets (a-cforse.ads)

This child of Ada.Containers defines a modified version of the Ada 2005 container for ordered
sets, meant to facilitate formal verification of code using such containers. The specification
of this unit is compatible with SPARK 2014.

Note that although this container was designed with formal verification in mind, it may
well be generally useful in that it is a simplified more efficient version than the one defined
in the standard. In particular it does not have the complex overhead required to detect
cursor tampering.

12.11 Ada.Containers.Formal Vectors (a-cofove.ads)

This child of Ada.Containers defines a modified version of the Ada 2005 container for vec-
tors, meant to facilitate formal verification of code using such containers. The specification
of this unit is compatible with SPARK 2014.

Note that although this container was designed with formal verification in mind, it may
well be generally useful in that it is a simplified more efficient version than the one defined
in the standard. In particular it does not have the complex overhead required to detect
cursor tampering.

12.12 Ada.Containers.Formal Indefinite Vectors
(a-cfinve.ads)

This child of Ada.Containers defines a modified version of the Ada 2005 container for vectors
of indefinite elements, meant to facilitate formal verification of code using such containers.
The specification of this unit is compatible with SPARK 2014.

Note that although this container was designed with formal verification in mind, it may
well be generally useful in that it is a simplified more efficient version than the one defined
in the standard. In particular it does not have the complex overhead required to detect
cursor tampering.

12.13 Ada.Containers.Bounded Holders (a-coboho.ads)

This child of Ada.Containers defines a modified version of Indefinite Holders that avoids
heap allocation.

Chapter 12: The GNAT Library 251

12.14 Ada.Command Line.Environment (a-colien.ads)

This child of Ada.Command Line provides a mechanism for obtaining environment values
on systems where this concept makes sense.

12.15 Ada.Command Line.Remove (a-colire.ads)

This child of Ada.Command Line provides a mechanism for logically removing arguments
from the argument list. Once removed, an argument is not visible to further calls on the
subprograms in Ada.Command Line will not see the removed argument.

12.16 Ada.Command Line.Response File (a-clrefi.ads)

This child of Ada.Command Line provides a mechanism facilities for getting command line
arguments from a text file, called a "response file". Using a response file allow passing a
set of arguments to an executable longer than the maximum allowed by the system on the
command line.

12.17 Ada.Direct IO.C Streams (a-diocst.ads)

This package provides subprograms that allow interfacing between C streams and Direct IO.
The stream identifier can be extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.

12.18 Ada.Exceptions.Is Null Occurrence (a-einuoc.ads)

This child subprogram provides a way of testing for the null exception occurrence
(Null Occurrence) without raising an exception.

12.19 Ada.Exceptions.Last Chance Handler (a-elchha.ads)

This child subprogram is used for handling otherwise unhandled exceptions (hence the
name last chance), and perform clean ups before terminating the program. Note that this
subprogram never returns.

12.20 Ada.Exceptions.Traceback (a-exctra.ads)

This child package provides the subprogram (Tracebacks) to give a traceback array of
addresses based on an exception occurrence.

12.21 Ada.Sequential IO.C Streams (a-siocst.ads)

This package provides subprograms that allow interfacing between C streams and Sequen-
tial IO. The stream identifier can be extracted from a file opened on the Ada side, and an
Ada file can be constructed from a stream opened on the C side.

12.22 Ada.Streams.Stream IO.C Streams (a-ssicst.ads)

This package provides subprograms that allow interfacing between C streams and
Stream IO. The stream identifier can be extracted from a file opened on the Ada side, and
an Ada file can be constructed from a stream opened on the C side.

Chapter 12: The GNAT Library 252

12.23 Ada.Strings.Unbounded.Text IO (a-suteio.ads)

This package provides subprograms for Text IO for unbounded strings, avoiding the neces-
sity for an intermediate operation with ordinary strings.

12.24 Ada.Strings.Wide Unbounded.Wide Text IO
(a-swuwti.ads)

This package provides subprograms for Text IO for unbounded wide strings, avoiding the
necessity for an intermediate operation with ordinary wide strings.

12.25 Ada.Strings.Wide Wide Unbounded.Wide Wide Text IO
(a-szuzti.ads)

This package provides subprograms for Text IO for unbounded wide wide strings, avoiding
the necessity for an intermediate operation with ordinary wide wide strings.

12.26 Ada.Text IO.C Streams (a-tiocst.ads)

This package provides subprograms that allow interfacing between C streams and Text IO.
The stream identifier can be extracted from a file opened on the Ada side, and an Ada file
can be constructed from a stream opened on the C side.

12.27 Ada.Text IO.Reset Standard Files (a-tirsfi.ads)

This procedure is used to reset the status of the standard files used by Ada.Text IO. This
is useful in a situation (such as a restart in an embedded application) where the status of
the files may change during execution (for example a standard input file may be redefined
to be interactive).

12.28 Ada.Wide Characters.Unicode (a-wichun.ads)

This package provides subprograms that allow categorization of Wide Character values
according to Unicode categories.

12.29 Ada.Wide Text IO.C Streams (a-wtcstr.ads)

This package provides subprograms that allow interfacing between C streams and
Wide Text IO. The stream identifier can be extracted from a file opened on the Ada side,
and an Ada file can be constructed from a stream opened on the C side.

12.30 Ada.Wide Text IO.Reset Standard Files
(a-wrstfi.ads)

This procedure is used to reset the status of the standard files used by Ada.Wide Text IO.
This is useful in a situation (such as a restart in an embedded application) where the status
of the files may change during execution (for example a standard input file may be redefined
to be interactive).

Chapter 12: The GNAT Library 253

12.31 Ada.Wide Wide Characters.Unicode (a-zchuni.ads)

This package provides subprograms that allow categorization of Wide Wide Character val-
ues according to Unicode categories.

12.32 Ada.Wide Wide Text IO.C Streams (a-ztcstr.ads)

This package provides subprograms that allow interfacing between C streams and
Wide Wide Text IO. The stream identifier can be extracted from a file opened on the
Ada side, and an Ada file can be constructed from a stream opened on the C side.

12.33 Ada.Wide Wide Text IO.Reset Standard Files
(a-zrstfi.ads)

This procedure is used to reset the status of the standard files used by
Ada.Wide Wide Text IO. This is useful in a situation (such as a restart in an
embedded application) where the status of the files may change during execution (for
example a standard input file may be redefined to be interactive).

12.34 GNAT.Altivec (g-altive.ads)

This is the root package of the GNAT AltiVec binding. It provides definitions of constants
and types common to all the versions of the binding.

12.35 GNAT.Altivec.Conversions (g-altcon.ads)

This package provides the Vector/View conversion routines.

12.36 GNAT.Altivec.Vector Operations (g-alveop.ads)

This package exposes the Ada interface to the AltiVec operations on vector objects. A soft
emulation is included by default in the GNAT library. The hard binding is provided as a
separate package. This unit is common to both bindings.

12.37 GNAT.Altivec.Vector Types (g-alvety.ads)

This package exposes the various vector types part of the Ada binding to AltiVec facilities.

12.38 GNAT.Altivec.Vector Views (g-alvevi.ads)

This package provides public ’View’ data types from/to which private vector representations
can be converted via GNAT.Altivec.Conversions. This allows convenient access to individual
vector elements and provides a simple way to initialize vector objects.

12.39 GNAT.Array Split (g-arrspl.ads)

Useful array-manipulation routines: given a set of separators, split an array wherever the
separators appear, and provide direct access to the resulting slices.

Chapter 12: The GNAT Library 254

12.40 GNAT.AWK (g-awk.ads)

Provides AWK-like parsing functions, with an easy interface for parsing one or more files
containing formatted data. The file is viewed as a database where each record is a line and
a field is a data element in this line.

12.41 GNAT.Bind Environment (g-binenv.ads)

Provides access to key=value associations captured at bind time. These associations can
be specified using the -V binder command line switch.

12.42 GNAT.Bounded Buffers (g-boubuf.ads)

Provides a concurrent generic bounded buffer abstraction. Instances are useful directly or
as parts of the implementations of other abstractions, such as mailboxes.

12.43 GNAT.Bounded Mailboxes (g-boumai.ads)

Provides a thread-safe asynchronous intertask mailbox communication facility.

12.44 GNAT.Bubble Sort (g-bubsor.ads)

Provides a general implementation of bubble sort usable for sorting arbitrary data items.
Exchange and comparison procedures are provided by passing access-to-procedure values.

12.45 GNAT.Bubble Sort A (g-busora.ads)

Provides a general implementation of bubble sort usable for sorting arbitrary data items.
Move and comparison procedures are provided by passing access-to-procedure values. This
is an older version, retained for compatibility. Usually GNAT.Bubble Sort will be prefer-
able.

12.46 GNAT.Bubble Sort G (g-busorg.ads)

Similar to Bubble Sort A except that the move and sorting procedures are provided as
generic parameters, this improves efficiency, especially if the procedures can be inlined, at
the expense of duplicating code for multiple instantiations.

12.47 GNAT.Byte Order Mark (g-byorma.ads)

Provides a routine which given a string, reads the start of the string to see whether it is one
of the standard byte order marks (BOM’s) which signal the encoding of the string. The
routine includes detection of special XML sequences for various UCS input formats.

12.48 GNAT.Byte Swapping (g-bytswa.ads)

General routines for swapping the bytes in 2-, 4-, and 8-byte quantities. Machine-specific
implementations are available in some cases.

Chapter 12: The GNAT Library 255

12.49 GNAT.Calendar (g-calend.ads)

Extends the facilities provided by Ada.Calendar to include handling of days of the week,
an extended Split and Time Of capability. Also provides conversion of Ada.Calendar.Time
values to and from the C timeval format.

12.50 GNAT.Calendar.Time IO (g-catiio.ads)

12.51 GNAT.CRC32 (g-crc32.ads)

This package implements the CRC-32 algorithm. For a full description of this algorithm
see Computation of Cyclic Redundancy Checks via Table Look-Up, Communications of the
ACM, Vol. 31 No. 8, pp. 1008-1013, Aug. 1988. Sarwate, D.V.

12.52 GNAT.Case Util (g-casuti.ads)

A set of simple routines for handling upper and lower casing of strings without the overhead
of the full casing tables in Ada.Characters.Handling.

12.53 GNAT.CGI (g-cgi.ads)

This is a package for interfacing a GNAT program with a Web server via the Common
Gateway Interface (CGI). Basically this package parses the CGI parameters, which are a
set of key/value pairs sent by the Web server. It builds a table whose index is the key and
provides some services to deal with this table.

12.54 GNAT.CGI.Cookie (g-cgicoo.ads)

This is a package to interface a GNAT program with a Web server via the Common Gateway
Interface (CGI). It exports services to deal with Web cookies (piece of information kept in
the Web client software).

12.55 GNAT.CGI.Debug (g-cgideb.ads)

This is a package to help debugging CGI (Common Gateway Interface) programs written
in Ada.

12.56 GNAT.Command Line (g-comlin.ads)

Provides a high level interface to Ada.Command Line facilities, including the ability to
scan for named switches with optional parameters and expand file names using wild card
notations.

12.57 GNAT.Compiler Version (g-comver.ads)

Provides a routine for obtaining the version of the compiler used to compile the program.
More accurately this is the version of the binder used to bind the program (this will normally
be the same as the version of the compiler if a consistent tool set is used to compile all units
of a partition).

Chapter 12: The GNAT Library 256

12.58 GNAT.Ctrl C (g-ctrl_c.ads)

Provides a simple interface to handle Ctrl-C keyboard events.

12.59 GNAT.Current Exception (g-curexc.ads)

Provides access to information on the current exception that has been raised without the
need for using the Ada 95 / Ada 2005 exception choice parameter specification syntax.
This is particularly useful in simulating typical facilities for obtaining information about
exceptions provided by Ada 83 compilers.

12.60 GNAT.Debug Pools (g-debpoo.ads)

Provide a debugging storage pools that helps tracking memory corruption problems. See
The GNAT Debug Pool Facility section in the GNAT User’s Guide.

12.61 GNAT.Debug Utilities (g-debuti.ads)

Provides a few useful utilities for debugging purposes, including conversion to and from
string images of address values. Supports both C and Ada formats for hexadecimal literals.

12.62 GNAT.Decode String (g-decstr.ads)

A generic package providing routines for decoding wide character and wide wide character
strings encoded as sequences of 8-bit characters using a specified encoding method. Includes
validation routines, and also routines for stepping to next or previous encoded character in
an encoded string. Useful in conjunction with Unicode character coding. Note there is a
preinstantiation for UTF-8. See next entry.

12.63 GNAT.Decode UTF8 String (g-deutst.ads)

A preinstantiation of GNAT.Decode Strings for UTF-8 encoding.

12.64 GNAT.Directory Operations (g-dirope.ads)

Provides a set of routines for manipulating directories, including changing the current di-
rectory, making new directories, and scanning the files in a directory.

12.65 GNAT.Directory Operations.Iteration (g-diopit.ads)

A child unit of GNAT.Directory Operations providing additional operations for iterating
through directories.

12.66 GNAT.Dynamic HTables (g-dynhta.ads)

A generic implementation of hash tables that can be used to hash arbitrary data. Provided
in two forms, a simple form with built in hash functions, and a more complex form in which
the hash function is supplied.
This package provides a facility similar to that of GNAT.HTable, except that this package
declares a type that can be used to define dynamic instances of the hash table, while an
instantiation of GNAT.HTable creates a single instance of the hash table.

Chapter 12: The GNAT Library 257

12.67 GNAT.Dynamic Tables (g-dyntab.ads)

A generic package providing a single dimension array abstraction where the length of the
array can be dynamically modified.
This package provides a facility similar to that of GNAT.Table, except that this package
declares a type that can be used to define dynamic instances of the table, while an instan-
tiation of GNAT.Table creates a single instance of the table type.

12.68 GNAT.Encode String (g-encstr.ads)

A generic package providing routines for encoding wide character and wide wide character
strings as sequences of 8-bit characters using a specified encoding method. Useful in con-
junction with Unicode character coding. Note there is a preinstantiation for UTF-8. See
next entry.

12.69 GNAT.Encode UTF8 String (g-enutst.ads)

A preinstantiation of GNAT.Encode Strings for UTF-8 encoding.

12.70 GNAT.Exception Actions (g-excact.ads)

Provides callbacks when an exception is raised. Callbacks can be registered for specific
exceptions, or when any exception is raised. This can be used for instance to force a core
dump to ease debugging.

12.71 GNAT.Exception Traces (g-exctra.ads)

Provides an interface allowing to control automatic output upon exception occurrences.

12.72 GNAT.Exceptions (g-expect.ads)

Normally it is not possible to raise an exception with a message from a subprogram in a
pure package, since the necessary types and subprograms are in Ada.Exceptions which is
not a pure unit. GNAT.Exceptions provides a facility for getting around this limitation for
a few predefined exceptions, and for example allow raising Constraint Error with a message
from a pure subprogram.

12.73 GNAT.Expect (g-expect.ads)

Provides a set of subprograms similar to what is available with the standard Tcl Expect
tool. It allows you to easily spawn and communicate with an external process. You can send
commands or inputs to the process, and compare the output with some expected regular
expression. Currently GNAT.Expect is implemented on all native GNAT ports. It is not
implemented for cross ports, and in particular is not implemented for VxWorks or LynxOS.

12.74 GNAT.Expect.TTY (g-exptty.ads)

As GNAT.Expect but using pseudo-terminal. Currently GNAT.Expect.TTY is imple-
mented on all native GNAT ports. It is not implemented for cross ports, and in particular
is not implemented for VxWorks or LynxOS.

Chapter 12: The GNAT Library 258

12.75 GNAT.Float Control (g-flocon.ads)

Provides an interface for resetting the floating-point processor into the mode required for
correct semantic operation in Ada. Some third party library calls may cause this mode to
be modified, and the Reset procedure in this package can be used to reestablish the required
mode.

12.76 GNAT.Formatted String (g-forstr.ads)

Provides support for C/C++ printf() formatted strings. The format is copied from the
printf() routine and should therefore gives identical output. Some generic routines are
provided to be able to use types derived from Integer, Float or enumerations as values for
the formatted string.

12.77 GNAT.Heap Sort (g-heasor.ads)

Provides a general implementation of heap sort usable for sorting arbitrary data items. Ex-
change and comparison procedures are provided by passing access-to-procedure values. The
algorithm used is a modified heap sort that performs approximately N*log(N) comparisons
in the worst case.

12.78 GNAT.Heap Sort A (g-hesora.ads)

Provides a general implementation of heap sort usable for sorting arbitrary data items.
Move and comparison procedures are provided by passing access-to-procedure values. The
algorithm used is a modified heap sort that performs approximately N*log(N) comparisons
in the worst case. This differs from GNAT.Heap Sort in having a less convenient interface,
but may be slightly more efficient.

12.79 GNAT.Heap Sort G (g-hesorg.ads)

Similar to Heap Sort A except that the move and sorting procedures are provided as generic
parameters, this improves efficiency, especially if the procedures can be inlined, at the
expense of duplicating code for multiple instantiations.

12.80 GNAT.HTable (g-htable.ads)

A generic implementation of hash tables that can be used to hash arbitrary data. Provides
two approaches, one a simple static approach, and the other allowing arbitrary dynamic
hash tables.

12.81 GNAT.IO (g-io.ads)

A simple preelaborable input-output package that provides a subset of simple Text IO
functions for reading characters and strings from Standard Input, and writing characters,
strings and integers to either Standard Output or Standard Error.

12.82 GNAT.IO Aux (g-io_aux.ads)

Provides some auxiliary functions for use with Text IO, including a test for whether a file
exists, and functions for reading a line of text.

Chapter 12: The GNAT Library 259

12.83 GNAT.Lock Files (g-locfil.ads)

Provides a general interface for using files as locks. Can be used for providing program level
synchronization.

12.84 GNAT.MBBS Discrete Random (g-mbdira.ads)

The original implementation of Ada.Numerics.Discrete Random. Uses a modified version
of the Blum-Blum-Shub generator.

12.85 GNAT.MBBS Float Random (g-mbflra.ads)

The original implementation of Ada.Numerics.Float Random. Uses a modified version of
the Blum-Blum-Shub generator.

12.86 GNAT.MD5 (g-md5.ads)

Implements the MD5 Message-Digest Algorithm as described in RFC 1321, and the HMAC-
MD5 message authentication function as described in RFC 2104 and FIPS PUB 198.

12.87 GNAT.Memory Dump (g-memdum.ads)

Provides a convenient routine for dumping raw memory to either the standard output or
standard error files. Uses GNAT.IO for actual output.

12.88 GNAT.Most Recent Exception (g-moreex.ads)

Provides access to the most recently raised exception. Can be used for various logging
purposes, including duplicating functionality of some Ada 83 implementation dependent
extensions.

12.89 GNAT.OS Lib (g-os_lib.ads)

Provides a range of target independent operating system interface functions, including
time/date management, file operations, subprocess management, including a portable
spawn procedure, and access to environment variables and error return codes.

12.90 GNAT.Perfect Hash Generators (g-pehage.ads)

Provides a generator of static minimal perfect hash functions. No collisions occur and each
item can be retrieved from the table in one probe (perfect property). The hash table size
corresponds to the exact size of the key set and no larger (minimal property). The key set
has to be know in advance (static property). The hash functions are also order preserving.
If w2 is inserted after w1 in the generator, their hashcode are in the same order. These
hashing functions are very convenient for use with realtime applications.

12.91 GNAT.Random Numbers (g-rannum.ads)

Provides random number capabilities which extend those available in the standard Ada
library and are more convenient to use.

Chapter 12: The GNAT Library 260

12.92 GNAT.Regexp (g-regexp.ads)

A simple implementation of regular expressions, using a subset of regular expression syntax
copied from familiar Unix style utilities. This is the simplest of the three pattern matching
packages provided, and is particularly suitable for ’file globbing’ applications.

12.93 GNAT.Registry (g-regist.ads)

This is a high level binding to the Windows registry. It is possible to do simple things
like reading a key value, creating a new key. For full registry API, but at a lower level of
abstraction, refer to the Win32.Winreg package provided with the Win32Ada binding

12.94 GNAT.Regpat (g-regpat.ads)

A complete implementation of Unix-style regular expression matching, copied from the
original V7 style regular expression library written in C by Henry Spencer (and binary
compatible with this C library).

12.95 GNAT.Rewrite Data (g-rewdat.ads)

A unit to rewrite on-the-fly string occurrences in a stream of data. The implementation
has a very minimal memory footprint as the full content to be processed is not loaded into
memory all at once. This makes this interface usable for large files or socket streams.

12.96 GNAT.Secondary Stack Info (g-sestin.ads)

Provide the capability to query the high water mark of the current task’s secondary stack.

12.97 GNAT.Semaphores (g-semaph.ads)

Provides classic counting and binary semaphores using protected types.

12.98 GNAT.Serial Communications (g-sercom.ads)

Provides a simple interface to send and receive data over a serial port. This is only supported
on GNU/Linux and Windows.

12.99 GNAT.SHA1 (g-sha1.ads)

Implements the SHA-1 Secure Hash Algorithm as described in FIPS PUB 180-3 and RFC
3174, and the HMAC-SHA1 message authentication function as described in RFC 2104 and
FIPS PUB 198.

12.100 GNAT.SHA224 (g-sha224.ads)

Implements the SHA-224 Secure Hash Algorithm as described in FIPS PUB 180-3, and the
HMAC-SHA224 message authentication function as described in RFC 2104 and FIPS PUB
198.

Chapter 12: The GNAT Library 261

12.101 GNAT.SHA256 (g-sha256.ads)

Implements the SHA-256 Secure Hash Algorithm as described in FIPS PUB 180-3, and the
HMAC-SHA256 message authentication function as described in RFC 2104 and FIPS PUB
198.

12.102 GNAT.SHA384 (g-sha384.ads)

Implements the SHA-384 Secure Hash Algorithm as described in FIPS PUB 180-3, and the
HMAC-SHA384 message authentication function as described in RFC 2104 and FIPS PUB
198.

12.103 GNAT.SHA512 (g-sha512.ads)

Implements the SHA-512 Secure Hash Algorithm as described in FIPS PUB 180-3, and the
HMAC-SHA512 message authentication function as described in RFC 2104 and FIPS PUB
198.

12.104 GNAT.Signals (g-signal.ads)

Provides the ability to manipulate the blocked status of signals on supported targets.

12.105 GNAT.Sockets (g-socket.ads)

A high level and portable interface to develop sockets based applications. This package is
based on the sockets thin binding found in GNAT.Sockets.Thin. Currently GNAT.Sockets is
implemented on all native GNAT ports and on VxWorks cross prots. It is not implemented
for the LynxOS cross port.

12.106 GNAT.Source Info (g-souinf.ads)

Provides subprograms that give access to source code information known at compile time,
such as the current file name and line number. Also provides subprograms yielding the date
and time of the current compilation (like the C macros DATE and TIME)

12.107 GNAT.Spelling Checker (g-speche.ads)

Provides a function for determining whether one string is a plausible near misspelling of
another string.

12.108 GNAT.Spelling Checker Generic (g-spchge.ads)

Provides a generic function that can be instantiated with a string type for determining
whether one string is a plausible near misspelling of another string.

12.109 GNAT.Spitbol.Patterns (g-spipat.ads)

A complete implementation of SNOBOL4 style pattern matching. This is the most elaborate
of the pattern matching packages provided. It fully duplicates the SNOBOL4 dynamic
pattern construction and matching capabilities, using the efficient algorithm developed by
Robert Dewar for the SPITBOL system.

Chapter 12: The GNAT Library 262

12.110 GNAT.Spitbol (g-spitbo.ads)

The top level package of the collection of SPITBOL-style functionality, this package pro-
vides basic SNOBOL4 string manipulation functions, such as Pad, Reverse, Trim, Substr
capability, as well as a generic table function useful for constructing arbitrary mappings
from strings in the style of the SNOBOL4 TABLE function.

12.111 GNAT.Spitbol.Table Boolean (g-sptabo.ads)

A library level of instantiation of GNAT.Spitbol.Patterns.Table for type Standard.Boolean,
giving an implementation of sets of string values.

12.112 GNAT.Spitbol.Table Integer (g-sptain.ads)

A library level of instantiation of GNAT.Spitbol.Patterns.Table for type Standard.Integer,
giving an implementation of maps from string to integer values.

12.113 GNAT.Spitbol.Table VString (g-sptavs.ads)

A library level of instantiation of GNAT.Spitbol.Patterns.Table for a variable length string
type, giving an implementation of general maps from strings to strings.

12.114 GNAT.SSE (g-sse.ads)

Root of a set of units aimed at offering Ada bindings to a subset of the Intel(r) Streaming
SIMD Extensions with GNAT on the x86 family of targets. It exposes vector component
types together with a general introduction to the binding contents and use.

12.115 GNAT.SSE.Vector Types (g-ssvety.ads)

SSE vector types for use with SSE related intrinsics.

12.116 GNAT.String Hash (g-strhas.ads)

Provides a generic hash function working on arrays of scalars. Both the scalar type and the
hash result type are parameters.

12.117 GNAT.Strings (g-string.ads)

Common String access types and related subprograms. Basically it defines a string access
and an array of string access types.

12.118 GNAT.String Split (g-strspl.ads)

Useful string manipulation routines: given a set of separators, split a string wherever the
separators appear, and provide direct access to the resulting slices. This package is instan-
tiated from GNAT.Array Split.

12.119 GNAT.Table (g-table.ads)

A generic package providing a single dimension array abstraction where the length of the
array can be dynamically modified.

Chapter 12: The GNAT Library 263

This package provides a facility similar to that of GNAT.Dynamic Tables, except that
this package declares a single instance of the table type, while an instantiation of
GNAT.Dynamic Tables creates a type that can be used to define dynamic instances of the
table.

12.120 GNAT.Task Lock (g-tasloc.ads)

A very simple facility for locking and unlocking sections of code using a single global task
lock. Appropriate for use in situations where contention between tasks is very rarely ex-
pected.

12.121 GNAT.Time Stamp (g-timsta.ads)

Provides a simple function that returns a string YYYY-MM-DD HH:MM:SS.SS that rep-
resents the current date and time in ISO 8601 format. This is a very simple routine with
minimal code and there are no dependencies on any other unit.

12.122 GNAT.Threads (g-thread.ads)

Provides facilities for dealing with foreign threads which need to be known by the GNAT
run-time system. Consult the documentation of this package for further details if your
program has threads that are created by a non-Ada environment which then accesses Ada
code.

12.123 GNAT.Traceback (g-traceb.ads)

Provides a facility for obtaining non-symbolic traceback information, useful in various de-
bugging situations.

12.124 GNAT.Traceback.Symbolic (g-trasym.ads)

12.125 GNAT.UTF 32 (g-table.ads)

This is a package intended to be used in conjunction with the Wide Character type in Ada
95 and the Wide Wide Character type in Ada 2005 (available in GNAT in Ada 2005 mode).
This package contains Unicode categorization routines, as well as lexical categorization
routines corresponding to the Ada 2005 lexical rules for identifiers and strings, and also
a lower case to upper case fold routine corresponding to the Ada 2005 rules for identifier
equivalence.

12.126 GNAT.Wide Spelling Checker (g-u3spch.ads)

Provides a function for determining whether one wide wide string is a plausible near
misspelling of another wide wide string, where the strings are represented using the
UTF 32 String type defined in System.Wch Cnv.

12.127 GNAT.Wide Spelling Checker (g-wispch.ads)

Provides a function for determining whether one wide string is a plausible near misspelling
of another wide string.

Chapter 12: The GNAT Library 264

12.128 GNAT.Wide String Split (g-wistsp.ads)

Useful wide string manipulation routines: given a set of separators, split a wide string
wherever the separators appear, and provide direct access to the resulting slices. This
package is instantiated from GNAT.Array Split.

12.129 GNAT.Wide Wide Spelling Checker (g-zspche.ads)

Provides a function for determining whether one wide wide string is a plausible near mis-
spelling of another wide wide string.

12.130 GNAT.Wide Wide String Split (g-zistsp.ads)

Useful wide wide string manipulation routines: given a set of separators, split a wide wide
string wherever the separators appear, and provide direct access to the resulting slices. This
package is instantiated from GNAT.Array Split.

12.131 Interfaces.C.Extensions (i-cexten.ads)

This package contains additional C-related definitions, intended for use with either manually
or automatically generated bindings to C libraries.

12.132 Interfaces.C.Streams (i-cstrea.ads)

This package is a binding for the most commonly used operations on C streams.

12.133 Interfaces.Packed Decimal (i-pacdec.ads)

This package provides a set of routines for conversions to and from a packed decimal format
compatible with that used on IBM mainframes.

12.134 Interfaces.VxWorks (i-vxwork.ads)

This package provides a limited binding to the VxWorks API. In particular, it interfaces
with the VxWorks hardware interrupt facilities.

12.135 Interfaces.VxWorks.Int Connection (i-vxinco.ads)

This package provides a way for users to replace the use of intConnect() with a custom
routine for installing interrupt handlers.

12.136 Interfaces.VxWorks.IO (i-vxwoio.ads)

This package provides a binding to the ioctl (IO/Control) function of VxWorks, defining a
set of option values and function codes. A particular use of this package is to enable the
use of Get Immediate under VxWorks.

12.137 System.Address Image (s-addima.ads)

This function provides a useful debugging function that gives an (implementation depen-
dent) string which identifies an address.

Chapter 12: The GNAT Library 265

12.138 System.Assertions (s-assert.ads)

This package provides the declaration of the exception raised by an run-time assertion
failure, as well as the routine that is used internally to raise this assertion.

12.139 System.Atomic Counters (s-atocou.ads)

This package provides the declaration of an atomic counter type, together with efficient
routines (using hardware synchronization primitives) for incrementing, decrementing, and
testing of these counters. This package is implemented on most targets, including all Alpha,
ia64, PowerPC, SPARC V9, x86, and x86 64 platforms.

12.140 System.Memory (s-memory.ads)

This package provides the interface to the low level routines used by the generated code
for allocation and freeing storage for the default storage pool (analogous to the C routines
malloc and free. It also provides a reallocation interface analogous to the C routine realloc.
The body of this unit may be modified to provide alternative allocation mechanisms for the
default pool, and in addition, direct calls to this unit may be made for low level allocation
uses (for example see the body of GNAT.Tables).

12.141 System.Multiprocessors (s-multip.ads)

This is an Ada 2012 unit defined in the Ada 2012 Reference Manual, but in GNAT we also
make it available in Ada 95 and Ada 2005 (where it is technically an implementation-defined
addition).

12.142 System.Multiprocessors.Dispatching Domains
(s-mudido.ads)

This is an Ada 2012 unit defined in the Ada 2012 Reference Manual, but in GNAT we also
make it available in Ada 95 and Ada 2005 (where it is technically an implementation-defined
addition).

12.143 System.Partition Interface (s-parint.ads)

This package provides facilities for partition interfacing. It is used primarily in a distribution
context when using Annex E with GLADE.

12.144 System.Pool Global (s-pooglo.ads)

This package provides a storage pool that is equivalent to the default storage pool used for
access types for which no pool is specifically declared. It uses malloc/free to allocate/free
and does not attempt to do any automatic reclamation.

12.145 System.Pool Local (s-pooloc.ads)

This package provides a storage pool that is intended for use with locally defined access
types. It uses malloc/free for allocate/free, and maintains a list of allocated blocks, so that
all storage allocated for the pool can be freed automatically when the pool is finalized.

Chapter 12: The GNAT Library 266

12.146 System.Restrictions (s-restri.ads)

This package provides facilities for accessing at run time the status of restrictions specified
at compile time for the partition. Information is available both with regard to actual restric-
tions specified, and with regard to compiler determined information on which restrictions
are violated by one or more packages in the partition.

12.147 System.Rident (s-rident.ads)

This package provides definitions of the restrictions identifiers supported by GNAT, and also
the format of the restrictions provided in package System.Restrictions. It is not normally
necessary to with this generic package since the necessary instantiation is included in package
System.Restrictions.

12.148 System.Strings.Stream Ops (s-ststop.ads)

This package provides a set of stream subprograms for standard string types. It is intended
primarily to support implicit use of such subprograms when stream attributes are applied
to string types, but the subprograms in this package can be used directly by application
programs.

12.149 System.Unsigned Types (s-unstyp.ads)

This package contains definitions of standard unsigned types that correspond in size to
the standard signed types declared in Standard, and (unlike the types in Interfaces) have
corresponding names. It also contains some related definitions for other specialized types
used by the compiler in connection with packed array types.

12.150 System.Wch Cnv (s-wchcnv.ads)

This package provides routines for converting between wide and wide wide characters and a
representation as a value of type Standard.String, using a specified wide character encoding
method. It uses definitions in package System.Wch Con.

12.151 System.Wch Con (s-wchcon.ads)

This package provides definitions and descriptions of the various methods used for encod-
ing wide characters in ordinary strings. These definitions are used by the package Sys-
tem.Wch Cnv.

Chapter 13: Interfacing to Other Languages 267

13 Interfacing to Other Languages

The facilities in Annex B of the Ada Reference Manual are fully implemented in GNAT,
and in addition, a full interface to C++ is provided.

13.1 Interfacing to C

Interfacing to C with GNAT can use one of two approaches:

* The types in the package Interfaces.C may be used.
* Standard Ada types may be used directly. This may be less portable to other compilers,

but will work on all GNAT compilers, which guarantee correspondence between the C
and Ada types.

Pragma Convention C may be applied to Ada types, but mostly has no effect, since this is
the default. The following table shows the correspondence between Ada scalar types and
the corresponding C types.

Ada Type C Type

Integer int

Short_Integer short

Short_Short_Integer signed char

Long_Integer long

Long_Long_Integer long long

Short_Float float

Float float

Long_Float double

Long_Long_Float This is the longest floating-point type supported by the hardware.

Additionally, there are the following general correspondences between Ada and C types:

* Ada enumeration types map to C enumeration types directly if pragma Convention
C is specified, which causes them to have int length. Without pragma Convention C,
Ada enumeration types map to 8, 16, or 32 bits (i.e., C types signed char, short, int,
respectively) depending on the number of values passed. This is the only case in which
pragma Convention C affects the representation of an Ada type.

* Ada access types map to C pointers, except for the case of pointers to unconstrained
types in Ada, which have no direct C equivalent.

* Ada arrays map directly to C arrays.

Chapter 13: Interfacing to Other Languages 268

* Ada records map directly to C structures.

* Packed Ada records map to C structures where all members are bit fields of the length
corresponding to the type’Size value in Ada.

13.2 Interfacing to C++

The interface to C++ makes use of the following pragmas, which are primarily intended
to be constructed automatically using a binding generator tool, although it is possible to
construct them by hand.

Using these pragmas it is possible to achieve complete inter-operability between Ada tagged
types and C++ class definitions. See [Implementation Defined Pragmas], page 4, for more
details.

pragma CPP Class ([Entity =>] ‘LOCAL NAME‘)
The argument denotes an entity in the current declarative region that is declared
as a tagged or untagged record type. It indicates that the type corresponds to
an externally declared C++ class type, and is to be laid out the same way that
C++ would lay out the type.

Note: Pragma CPP Class is currently obsolete. It is supported for backward
compatibility but its functionality is available using pragma Import with Con-
vention = CPP.

pragma CPP Constructor ([Entity =>] ‘LOCAL NAME‘)
This pragma identifies an imported function (imported in the usual way with
pragma Import) as corresponding to a C++ constructor.

A few restrictions are placed on the use of the Access attribute in conjunction with subpro-
grams subject to convention CPP: the attribute may be used neither on primitive operations
of a tagged record type with convention CPP, imported or not, nor on subprograms im-
ported with pragma CPP Constructor.

In addition, C++ exceptions are propagated and can be handled in an others choice of an
exception handler. The corresponding Ada occurrence has no message, and the simple
name of the exception identity contains Foreign_Exception. Finalization and awaiting
dependent tasks works properly when such foreign exceptions are propagated.

It is also possible to import a C++ exception using the following syntax:

LOCAL_NAME : exception;
pragma Import (Cpp,

[Entity =>] LOCAL_NAME,
[External_Name =>] static_string_EXPRESSION);

The External Name is the name of the C++ RTTI symbol. You can then cover a specific
C++ exception in an exception handler.

13.3 Interfacing to COBOL

Interfacing to COBOL is achieved as described in section B.4 of the Ada Reference Manual.

Chapter 13: Interfacing to Other Languages 269

13.4 Interfacing to Fortran

Interfacing to Fortran is achieved as described in section B.5 of the Ada Reference Manual.
The pragma Convention Fortran, applied to a multi-dimensional array causes the array to
be stored in column-major order as required for convenient interface to Fortran.

13.5 Interfacing to non-GNAT Ada code

It is possible to specify the convention Ada in a pragma Import or pragma Export. However
this refers to the calling conventions used by GNAT, which may or may not be similar enough
to those used by some other Ada 83 / Ada 95 / Ada 2005 compiler to allow interoperation.
If arguments types are kept simple, and if the foreign compiler generally follows system call-
ing conventions, then it may be possible to integrate files compiled by other Ada compilers,
provided that the elaboration issues are adequately addressed (for example by eliminating
the need for any load time elaboration).
In particular, GNAT running on VMS is designed to be highly compatible with the DEC
Ada 83 compiler, so this is one case in which it is possible to import foreign units of this
type, provided that the data items passed are restricted to simple scalar values or simple
record types without variants, or simple array types with fixed bounds.

Chapter 14: Specialized Needs Annexes 270

14 Specialized Needs Annexes

Ada 95, Ada 2005, and Ada 2012 define a number of Specialized Needs Annexes, which
are not required in all implementations. However, as described in this chapter, GNAT
implements all of these annexes:

Systems Programming (Annex C)
The Systems Programming Annex is fully implemented.

Real-Time Systems (Annex D)
The Real-Time Systems Annex is fully implemented.

Distributed Systems (Annex E)
Stub generation is fully implemented in the GNAT compiler. In addition, a
complete compatible PCS is available as part of the GLADE system, a separate
product. When the two products are used in conjunction, this annex is fully
implemented.

Information Systems (Annex F)
The Information Systems annex is fully implemented.

Numerics (Annex G)
The Numerics Annex is fully implemented.

Safety and Security / High-Integrity Systems (Annex H)
The Safety and Security Annex (termed the High-Integrity Systems Annex in
Ada 2005) is fully implemented.

Chapter 15: Implementation of Specific Ada Features 271

15 Implementation of Specific Ada Features

This chapter describes the GNAT implementation of several Ada language facilities.

15.1 Machine Code Insertions

Package Machine Code provides machine code support as described in the Ada Reference
Manual in two separate forms:

* Machine code statements, consisting of qualified expressions that fit the requirements
of RM section 13.8.

* An intrinsic callable procedure, providing an alternative mechanism of including ma-
chine instructions in a subprogram.

The two features are similar, and both are closely related to the mechanism provided by
the asm instruction in the GNU C compiler. Full understanding and use of the facilities in
this package requires understanding the asm instruction, see the section on Extended Asm
in Using the GNU Compiler Collection (GCC).
Calls to the function Asm and the procedure Asm have identical semantic restrictions and
effects as described below. Both are provided so that the procedure call can be used as a
statement, and the function call can be used to form a code statement.
Consider this C asm instruction:

asm ("fsinx %1 %0" : "=f" (result) : "f" (angle));

The equivalent can be written for GNAT as:
Asm ("fsinx %1 %0",

My_Float’Asm_Output ("=f", result),
My_Float’Asm_Input ("f", angle));

The first argument to Asm is the assembler template, and is identical to what is used
in GNU C. This string must be a static expression. The second argument is the output
operand list. It is either a single Asm Output attribute reference, or a list of such references
enclosed in parentheses (technically an array aggregate of such references).
The Asm Output attribute denotes a function that takes two parameters. The first is
a string, the second is the name of a variable of the type designated by the attribute
prefix. The first (string) argument is required to be a static expression and designates the
constraint (see the section on Constraints in Using the GNU Compiler Collection (GCC))
for the parameter; e.g., what kind of register is required. The second argument is the
variable to be written or updated with the result. The possible values for constraint are
the same as those used in the RTL, and are dependent on the configuration file used to
build the GCC back end. If there are no output operands, then this argument may either
be omitted, or explicitly given as No Output Operands. No support is provided for GNU
C’s symbolic names for output parameters.
The second argument of my_float’Asm_Output functions as though it were an out param-
eter, which is a little curious, but all names have the form of expressions, so there is no
syntactic irregularity, even though normally functions would not be permitted out param-
eters. The third argument is the list of input operands. It is either a single Asm Input
attribute reference, or a list of such references enclosed in parentheses (technically an array
aggregate of such references).

Chapter 15: Implementation of Specific Ada Features 272

The Asm Input attribute denotes a function that takes two parameters. The first is a
string, the second is an expression of the type designated by the prefix. The first (string)
argument is required to be a static expression, and is the constraint for the parameter, (e.g.,
what kind of register is required). The second argument is the value to be used as the input
argument. The possible values for the constraint are the same as those used in the RTL,
and are dependent on the configuration file used to built the GCC back end. No support is
provided for GNU C’s symbolic names for input parameters.
If there are no input operands, this argument may either be omitted, or explicitly given
as No Input Operands. The fourth argument, not present in the above example, is a list
of register names, called the clobber argument. This argument, if given, must be a static
string expression, and is a space or comma separated list of names of registers that must
be considered destroyed as a result of the Asm call. If this argument is the null string (the
default value), then the code generator assumes that no additional registers are destroyed.
In addition to registers, the special clobbers memory and cc as described in the GNU C
docs are both supported.
The fifth argument, not present in the above example, called the volatile argument, is by
default False. It can be set to the literal value True to indicate to the code generator
that all optimizations with respect to the instruction specified should be suppressed, and
in particular an instruction that has outputs will still be generated, even if none of the
outputs are used. See Using the GNU Compiler Collection (GCC) for the full description.
Generally it is strongly advisable to use Volatile for any ASM statement that is missing either
input or output operands or to avoid unwanted optimizations. A warning is generated if
this advice is not followed.
No support is provided for GNU C’s asm goto feature.
The Asm subprograms may be used in two ways. First the procedure forms can be used
anywhere a procedure call would be valid, and correspond to what the RM calls ’intrinsic’
routines. Such calls can be used to intersperse machine instructions with other Ada state-
ments. Second, the function forms, which return a dummy value of the limited private type
Asm Insn, can be used in code statements, and indeed this is the only context where such
calls are allowed. Code statements appear as aggregates of the form:

Asm_Insn’(Asm (...));
Asm_Insn’(Asm_Volatile (...));

In accordance with RM rules, such code statements are allowed only within subprograms
whose entire body consists of such statements. It is not permissible to intermix such state-
ments with other Ada statements.
Typically the form using intrinsic procedure calls is more convenient and more flexible. The
code statement form is provided to meet the RM suggestion that such a facility should be
made available. The following is the exact syntax of the call to Asm. As usual, if named
notation is used, the arguments may be given in arbitrary order, following the normal rules
for use of positional and named arguments:

ASM_CALL ::= Asm (
[Template =>] static_string_EXPRESSION

[,[Outputs =>] OUTPUT_OPERAND_LIST]
[,[Inputs =>] INPUT_OPERAND_LIST]
[,[Clobber =>] static_string_EXPRESSION]

Chapter 15: Implementation of Specific Ada Features 273

[,[Volatile =>] static_boolean_EXPRESSION])

OUTPUT_OPERAND_LIST ::=
[PREFIX.]No_Output_Operands

| OUTPUT_OPERAND_ATTRIBUTE
| (OUTPUT_OPERAND_ATTRIBUTE {,OUTPUT_OPERAND_ATTRIBUTE})

OUTPUT_OPERAND_ATTRIBUTE ::=
SUBTYPE_MARK’Asm_Output (static_string_EXPRESSION, NAME)

INPUT_OPERAND_LIST ::=
[PREFIX.]No_Input_Operands

| INPUT_OPERAND_ATTRIBUTE
| (INPUT_OPERAND_ATTRIBUTE {,INPUT_OPERAND_ATTRIBUTE})

INPUT_OPERAND_ATTRIBUTE ::=
SUBTYPE_MARK’Asm_Input (static_string_EXPRESSION, EXPRESSION)

The identifiers No Input Operands and No Output Operands are declared in the package
Machine Code and must be referenced according to normal visibility rules. In particular
if there is no use clause for this package, then appropriate package name qualification is
required.

15.2 GNAT Implementation of Tasking

This chapter outlines the basic GNAT approach to tasking (in particular, a multi-layered li-
brary for portability) and discusses issues related to compliance with the Real-Time Systems
Annex.

15.2.1 Mapping Ada Tasks onto the Underlying Kernel Threads

GNAT’s run-time support comprises two layers:
* GNARL (GNAT Run-time Layer)
* GNULL (GNAT Low-level Library)

In GNAT, Ada’s tasking services rely on a platform and OS independent layer known as
GNARL. This code is responsible for implementing the correct semantics of Ada’s task
creation, rendezvous, protected operations etc.
GNARL decomposes Ada’s tasking semantics into simpler lower level operations such as
create a thread, set the priority of a thread, yield, create a lock, lock/unlock, etc. The spec
for these low-level operations constitutes GNULLI, the GNULL Interface. This interface is
directly inspired from the POSIX real-time API.
If the underlying executive or OS implements the POSIX standard faithfully, the GNULL
Interface maps as is to the services offered by the underlying kernel. Otherwise, some target
dependent glue code maps the services offered by the underlying kernel to the semantics
expected by GNARL.
Whatever the underlying OS (VxWorks, UNIX, Windows, etc.) the key point is that each
Ada task is mapped on a thread in the underlying kernel. For example, in the case of
VxWorks, one Ada task = one VxWorks task.

Chapter 15: Implementation of Specific Ada Features 274

In addition Ada task priorities map onto the underlying thread priorities. Mapping Ada
tasks onto the underlying kernel threads has several advantages:

* The underlying scheduler is used to schedule the Ada tasks. This makes Ada tasks as
efficient as kernel threads from a scheduling standpoint.

* Interaction with code written in C containing threads is eased since at the lowest level
Ada tasks and C threads map onto the same underlying kernel concept.

* When an Ada task is blocked during I/O the remaining Ada tasks are able to proceed.
* On multiprocessor systems Ada tasks can execute in parallel.

Some threads libraries offer a mechanism to fork a new process, with the child process
duplicating the threads from the parent. GNAT does not support this functionality when
the parent contains more than one task.

15.2.2 Ensuring Compliance with the Real-Time Annex

Although mapping Ada tasks onto the underlying threads has significant advantages, it does
create some complications when it comes to respecting the scheduling semantics specified
in the real-time annex (Annex D).
For instance the Annex D requirement for the FIFO Within Priorities scheduling policy
states:

When the active priority of a ready task that is not running changes,
or the setting of its base priority takes effect, the task is removed from
the ready queue for its old active priority and is added at the tail of the
ready queue for its new active priority, except in the case where the active
priority is lowered due to the loss of inherited priority, in which case the
task is added at the head of the ready queue for its new active priority.

While most kernels do put tasks at the end of the priority queue when a task changes its
priority, (which respects the main FIFO Within Priorities requirement), almost none keep
a thread at the beginning of its priority queue when its priority drops from the loss of
inherited priority.
As a result most vendors have provided incomplete Annex D implementations.
The GNAT run-time, has a nice cooperative solution to this problem which ensures that
accurate FIFO Within Priorities semantics are respected.
The principle is as follows. When an Ada task T is about to start running, it checks whether
some other Ada task R with the same priority as T has been suspended due to the loss
of priority inheritance. If this is the case, T yields and is placed at the end of its priority
queue. When R arrives at the front of the queue it executes.
Note that this simple scheme preserves the relative order of the tasks that were ready to
execute in the priority queue where R has been placed at the end.

15.3 GNAT Implementation of Shared Passive Packages

GNAT fully implements the pragma Shared Passive for the purpose of designating shared
passive packages. This allows the use of passive partitions in the context described in the
Ada Reference Manual; i.e., for communication between separate partitions of a distributed
application using the features in Annex E.

Chapter 15: Implementation of Specific Ada Features 275

However, the implementation approach used by GNAT provides for more extensive usage
as follows:

Communication between separate programs
This allows separate programs to access the data in passive partitions, using
protected objects for synchronization where needed. The only requirement is
that the two programs have a common shared file system. It is even possible
for programs running on different machines with different architectures (e.g.,
different endianness) to communicate via the data in a passive partition.

Persistence between program runs
The data in a passive package can persist from one run of a program to another,
so that a later program sees the final values stored by a previous run of the
same program.

The implementation approach used is to store the data in files. A separate stream file is
created for each object in the package, and an access to an object causes the corresponding
file to be read or written.

The environment variable SHARED MEMORY DIRECTORY should be set to the direc-
tory to be used for these files. The files in this directory have names that correspond to
their fully qualified names. For example, if we have the package

package X is
pragma Shared_Passive (X);
Y : Integer;
Z : Float;

end X;

and the environment variable is set to /stemp/, then the files created will have the names:

/stemp/x.y
/stemp/x.z

These files are created when a value is initially written to the object, and the files are
retained until manually deleted. This provides the persistence semantics. If no file exists,
it means that no partition has assigned a value to the variable; in this case the initial
value declared in the package will be used. This model ensures that there are no issues in
synchronizing the elaboration process, since elaboration of passive packages elaborates the
initial values, but does not create the files.

The files are written using normal Stream IO access. If you want to be able to communicate
between programs or partitions running on different architectures, then you should use the
XDR versions of the stream attribute routines, since these are architecture independent.

If active synchronization is required for access to the variables in the shared passive package,
then as described in the Ada Reference Manual, the package may contain protected objects
used for this purpose. In this case a lock file (whose name is ___lock (three underscores)
is created in the shared memory directory.

This is used to provide the required locking semantics for proper protected object synchro-
nization.

GNAT supports shared passive packages on all platforms except for OpenVMS.

Chapter 15: Implementation of Specific Ada Features 276

15.4 Code Generation for Array Aggregates

Aggregates have a rich syntax and allow the user to specify the values of complex data
structures by means of a single construct. As a result, the code generated for aggregates
can be quite complex and involve loops, case statements and multiple assignments. In the
simplest cases, however, the compiler will recognize aggregates whose components and con-
straints are fully static, and in those cases the compiler will generate little or no executable
code. The following is an outline of the code that GNAT generates for various aggregate
constructs. For further details, you will find it useful to examine the output produced by
the -gnatG flag to see the expanded source that is input to the code generator. You may
also want to examine the assembly code generated at various levels of optimization.
The code generated for aggregates depends on the context, the component values, and the
type. In the context of an object declaration the code generated is generally simpler than in
the case of an assignment. As a general rule, static component values and static subtypes
also lead to simpler code.

15.4.1 Static constant aggregates with static bounds

For the declarations:
type One_Dim is array (1..10) of integer;
ar0 : constant One_Dim := (1, 2, 3, 4, 5, 6, 7, 8, 9, 0);

GNAT generates no executable code: the constant ar0 is placed in static memory. The
same is true for constant aggregates with named associations:

Cr1 : constant One_Dim := (4 => 16, 2 => 4, 3 => 9, 1 => 1, 5 .. 10 => 0);
Cr3 : constant One_Dim := (others => 7777);

The same is true for multidimensional constant arrays such as:
type two_dim is array (1..3, 1..3) of integer;
Unit : constant two_dim := ((1,0,0), (0,1,0), (0,0,1));

The same is true for arrays of one-dimensional arrays: the following are static:
type ar1b is array (1..3) of boolean;
type ar_ar is array (1..3) of ar1b;
None : constant ar1b := (others => false); -- fully static
None2 : constant ar_ar := (1..3 => None); -- fully static

However, for multidimensional aggregates with named associations, GNAT will generate
assignments and loops, even if all associations are static. The following two declarations
generate a loop for the first dimension, and individual component assignments for the second
dimension:

Zero1: constant two_dim := (1..3 => (1..3 => 0));
Zero2: constant two_dim := (others => (others => 0));

15.4.2 Constant aggregates with unconstrained nominal types

In such cases the aggregate itself establishes the subtype, so that associations with others
cannot be used. GNAT determines the bounds for the actual subtype of the aggregate, and
allocates the aggregate statically as well. No code is generated for the following:

type One_Unc is array (natural range <>) of integer;
Cr_Unc : constant One_Unc := (12,24,36);

Chapter 15: Implementation of Specific Ada Features 277

15.4.3 Aggregates with static bounds

In all previous examples the aggregate was the initial (and immutable) value of a constant.
If the aggregate initializes a variable, then code is generated for it as a combination of
individual assignments and loops over the target object. The declarations

Cr_Var1 : One_Dim := (2, 5, 7, 11, 0, 0, 0, 0, 0, 0);
Cr_Var2 : One_Dim := (others > -1);

generate the equivalent of

Cr_Var1 (1) := 2;
Cr_Var1 (2) := 3;
Cr_Var1 (3) := 5;
Cr_Var1 (4) := 11;

for I in Cr_Var2’range loop
Cr_Var2 (I) := -1;

end loop;

15.4.4 Aggregates with nonstatic bounds

If the bounds of the aggregate are not statically compatible with the bounds of the nominal
subtype of the target, then constraint checks have to be generated on the bounds. For a
multidimensional array, constraint checks may have to be applied to sub-arrays individually,
if they do not have statically compatible subtypes.

15.4.5 Aggregates in assignment statements

In general, aggregate assignment requires the construction of a temporary, and a copy from
the temporary to the target of the assignment. This is because it is not always possible
to convert the assignment into a series of individual component assignments. For example,
consider the simple case:

A := (A(2), A(1));

This cannot be converted into:

A(1) := A(2);
A(2) := A(1);

So the aggregate has to be built first in a separate location, and then copied into the
target. GNAT recognizes simple cases where this intermediate step is not required, and the
assignments can be performed in place, directly into the target. The following sufficient
criteria are applied:

* The bounds of the aggregate are static, and the associations are static.

* The components of the aggregate are static constants, names of simple variables that
are not renamings, or expressions not involving indexed components whose operands
obey these rules.

If any of these conditions are violated, the aggregate will be built in a temporary (created
either by the front-end or the code generator) and then that temporary will be copied onto
the target.

Chapter 15: Implementation of Specific Ada Features 278

15.5 The Size of Discriminated Records with Default
Discriminants

If a discriminated type T has discriminants with default values, it is possible to declare an
object of this type without providing an explicit constraint:

type Size is range 1..100;

type Rec (D : Size := 15) is record
Name : String (1..D);

end T;

Word : Rec;

Such an object is said to be unconstrained. The discriminant of the object can be modified
by a full assignment to the object, as long as it preserves the relation between the value of
the discriminant, and the value of the components that depend on it:

Word := (3, "yes");

Word := (5, "maybe");

Word := (5, "no"); -- raises Constraint_Error

In order to support this behavior efficiently, an unconstrained object is given the maximum
size that any value of the type requires. In the case above, Word has storage for the
discriminant and for a String of length 100. It is important to note that unconstrained
objects do not require dynamic allocation. It would be an improper implementation to
place on the heap those components whose size depends on discriminants. (This improper
implementation was used by some Ada83 compilers, where the Name component above
would have been stored as a pointer to a dynamic string). Following the principle that
dynamic storage management should never be introduced implicitly, an Ada compiler should
reserve the full size for an unconstrained declared object, and place it on the stack.
This maximum size approach has been a source of surprise to some users, who expect
the default values of the discriminants to determine the size reserved for an unconstrained
object: "If the default is 15, why should the object occupy a larger size?" The answer, of
course, is that the discriminant may be later modified, and its full range of values must be
taken into account. This is why the declaration:

type Rec (D : Positive := 15) is record
Name : String (1..D);

end record;

Too_Large : Rec;

is flagged by the compiler with a warning: an attempt to create Too Large will raise
Storage Error, because the required size includes Positive’Last bytes. As the first example
indicates, the proper approach is to declare an index type of ’reasonable’ range so that
unconstrained objects are not too large.
One final wrinkle: if the object is declared to be aliased, or if it is created in the heap by
means of an allocator, then it is not unconstrained: it is constrained by the default values of
the discriminants, and those values cannot be modified by full assignment. This is because
in the presence of aliasing all views of the object (which may be manipulated by different

Chapter 15: Implementation of Specific Ada Features 279

tasks, say) must be consistent, so it is imperative that the object, once created, remain
invariant.

15.6 Strict Conformance to the Ada Reference Manual

The dynamic semantics defined by the Ada Reference Manual impose a set of run-time
checks to be generated. By default, the GNAT compiler will insert many run-time checks
into the compiled code, including most of those required by the Ada Reference Manual.
However, there are two checks that are not enabled in the default mode for efficiency reasons:
checks for access before elaboration on subprogram calls, and stack overflow checking (most
operating systems do not perform this check by default).
Strict conformance to the Ada Reference Manual can be achieved by adding two compiler
options for dynamic checks for access-before-elaboration on subprogram calls and generic
instantiations (-gnatE), and stack overflow checking (-fstack-check).
Note that the result of a floating point arithmetic operation in overflow and invalid sit-
uations, when the Machine Overflows attribute of the result type is False, is to generate
IEEE NaN and infinite values. This is the case for machines compliant with the IEEE
floating-point standard, but on machines that are not fully compliant with this standard,
such as Alpha, the -mieee compiler flag must be used for achieving IEEE confirming behav-
ior (although at the cost of a significant performance penalty), so infinite and NaN values
are properly generated.

Chapter 16: Implementation of Ada 2012 Features 280

16 Implementation of Ada 2012 Features

This chapter contains a complete list of Ada 2012 features that have been implemented.
Generally, these features are only available if the -gnat12 (Ada 2012 features enabled) option
is set, which is the default behavior, or if the configuration pragma Ada 2012 is used.
However, new pragmas, attributes, and restrictions are unconditionally available, since the
Ada 95 standard allows the addition of new pragmas, attributes, and restrictions (there are
exceptions, which are documented in the individual descriptions), and also certain packages
were made available in earlier versions of Ada.
An ISO date (YYYY-MM-DD) appears in parentheses on the description line. This date
shows the implementation date of the feature. Any wavefront subsequent to this date will
contain the indicated feature, as will any subsequent releases. A date of 0000-00-00 means
that GNAT has always implemented the feature, or implemented it as soon as it appeared
as a binding interpretation.
Each feature corresponds to an Ada Issue (’AI’) approved by the Ada standardization group
(ISO/IEC JTC1/SC22/WG9) for inclusion in Ada 2012. The features are ordered based
on the relevant sections of the Ada Reference Manual ("RM"). When a given AI relates to
multiple points in the RM, the earliest is used.
A complete description of the AIs may be found in http://www.ada-auth.org/ai05-
summary.html.

* AI-0176 Quantified expressions (2010-09-29)
Both universally and existentially quantified expressions are implemented. They use
the new syntax for iterators proposed in AI05-139-2, as well as the standard Ada loop
syntax.
RM References: 1.01.04 (12) 2.09 (2/2) 4.04 (7) 4.05.09 (0)

* AI-0079 Allow other format characters in source (2010-07-10)
Wide characters in the unicode category other format are now allowed in source pro-
grams between tokens, but not within a token such as an identifier.
RM References: 2.01 (4/2) 2.02 (7)

* AI-0091 Do not allow other format in identifiers (0000-00-00)
Wide characters in the unicode category other format are not permitted within an
identifier, since this can be a security problem. The error message for this case has
been improved to be more specific, but GNAT has never allowed such characters to
appear in identifiers.
RM References: 2.03 (3.1/2) 2.03 (4/2) 2.03 (5/2) 2.03 (5.1/2) 2.03 (5.2/2) 2.03 (5.3/2)
2.09 (2/2)

* AI-0100 Placement of pragmas (2010-07-01)
This AI is an earlier version of AI-163. It simplifies the rules for legal placement of
pragmas. In the case of lists that allow pragmas, if the list may have no elements, then
the list may consist solely of pragmas.
RM References: 2.08 (7)

* AI-0163 Pragmas in place of null (2010-07-01)
A statement sequence may be composed entirely of pragmas. It is no longer necessary
to add a dummy null statement to make the sequence legal.

Chapter 16: Implementation of Ada 2012 Features 281

RM References: 2.08 (7) 2.08 (16)
* AI-0080 ’View of’ not needed if clear from context (0000-00-00)

This is an editorial change only, described as non-testable in the AI.
RM References: 3.01 (7)

* AI-0183 Aspect specifications (2010-08-16)
Aspect specifications have been fully implemented except for pre and post- conditions,
and type invariants, which have their own separate AI’s. All forms of declarations
listed in the AI are supported. The following is a list of the aspects supported (with
GNAT implementation aspects marked)

Supported Aspect Source

Ada 2005 – GNAT

Ada 2012 – GNAT

Address

Alignment

Atomic

Atomic Components

Bit Order

Component Size

Contract Cases – GNAT

Discard Names

External Tag

Favor Top Level – GNAT

Inline

Inline Always – GNAT

Invariant – GNAT

Machine Radix

No Return

Chapter 16: Implementation of Ada 2012 Features 282

Object Size – GNAT

Pack

Persistent BSS – GNAT

Post

Pre

Predicate

Preelaborable Initialization

Pure Function – GNAT

Remote Access Type – GNAT

Shared – GNAT

Size

Storage Pool

Storage Size

Stream Size

Suppress

Suppress Debug Info – GNAT

Test Case – GNAT

Thread Local Storage – GNAT

Type Invariant

Unchecked Union

Universal Aliasing – GNAT

Unmodified – GNAT

Unreferenced – GNAT

Chapter 16: Implementation of Ada 2012 Features 283

Unreferenced Objects – GNAT

Unsuppress

Value Size – GNAT

Volatile

Volatile Components

Warnings – GNAT

Note that for aspects with an expression, e.g. Size, the expression is
treated like a default expression (visibility is analyzed at the point of
occurrence of the aspect, but evaluation of the expression occurs at the
freeze point of the entity involved).

RM References: 3.02.01 (3) 3.02.02 (2) 3.03.01 (2/2) 3.08 (6) 3.09.03
(1.1/2) 6.01 (2/2) 6.07 (2/2) 9.05.02 (2/2) 7.01 (3) 7.03 (2) 7.03 (3) 9.01
(2/2) 9.01 (3/2) 9.04 (2/2) 9.04 (3/2) 9.05.02 (2/2) 11.01 (2) 12.01 (3)
12.03 (2/2) 12.04 (2/2) 12.05 (2) 12.06 (2.1/2) 12.06 (2.2/2) 12.07 (2)
13.01 (0.1/2) 13.03 (5/1) 13.03.01 (0)

* AI-0128 Inequality is a primitive operation (0000-00-00)

If an equality operator ("=") is declared for a type, then the implicitly declared inequal-
ity operator ("/=") is a primitive operation of the type. This is the only reasonable
interpretation, and is the one always implemented by GNAT, but the RM was not
entirely clear in making this point.

RM References: 3.02.03 (6) 6.06 (6)

* AI-0003 Qualified expressions as names (2010-07-11)

In Ada 2012, a qualified expression is considered to be syntactically a name, meaning
that constructs such as A’(F(X)).B are now legal. This is useful in disambiguating
some cases of overloading.

RM References: 3.03 (11) 3.03 (21) 4.01 (2) 4.04 (7) 4.07 (3) 5.04 (7)

* AI-0120 Constant instance of protected object (0000-00-00)

This is an RM editorial change only. The section that lists objects that are constant
failed to include the current instance of a protected object within a protected function.
This has always been treated as a constant in GNAT.

RM References: 3.03 (21)

* AI-0008 General access to constrained objects (0000-00-00)

The wording in the RM implied that if you have a general access to a constrained
object, it could be used to modify the discriminants. This was obviously not intended.
Constraint Error should be raised, and GNAT has always done so in this situation.

RM References: 3.03 (23) 3.10.02 (26/2) 4.01 (9) 6.04.01 (17) 8.05.01 (5/2)

Chapter 16: Implementation of Ada 2012 Features 284

* AI-0093 Additional rules use immutably limited (0000-00-00)
This is an editorial change only, to make more widespread use of the Ada 2012 ’im-
mutably limited’.
RM References: 3.03 (23.4/3)

* AI-0096 Deriving from formal private types (2010-07-20)
In general it is illegal for a type derived from a formal limited type to be nonlimited.
This AI makes an exception to this rule: derivation is legal if it appears in the private
part of the generic, and the formal type is not tagged. If the type is tagged, the legality
check must be applied to the private part of the package.
RM References: 3.04 (5.1/2) 6.02 (7)

* AI-0181 Soft hyphen is a non-graphic character (2010-07-23)
From Ada 2005 on, soft hyphen is considered a non-graphic character, which means
that it has a special name (SOFT HYPHEN) in conjunction with the Image and Value
attributes for the character types. Strictly speaking this is an inconsistency with Ada
95, but in practice the use of these attributes is so obscure that it will not cause
problems.
RM References: 3.05.02 (2/2) A.01 (35/2) A.03.03 (21)

* AI-0182 Additional forms for ‘Character’Value (0000-00-00)‘
This AI allows Character’Value to accept the string ’?’ where ? is any character
including non-graphic control characters. GNAT has always accepted such strings. It
also allows strings such as HEX 00000041 to be accepted, but GNAT does not take
advantage of this permission and raises Constraint Error, as is certainly still permitted.
RM References: 3.05 (56/2)

* AI-0214 Defaulted discriminants for limited tagged (2010-10-01)
Ada 2012 relaxes the restriction that forbids discriminants of tagged types to have
default expressions by allowing them when the type is limited. It is often useful to
define a default value for a discriminant even though it can’t be changed by assignment.
RM References: 3.07 (9.1/2) 3.07.02 (3)

* AI-0102 Some implicit conversions are illegal (0000-00-00)
It is illegal to assign an anonymous access constant to an anonymous access variable.
The RM did not have a clear rule to prevent this, but GNAT has always generated an
error for this usage.
RM References: 3.07 (16) 3.07.01 (9) 6.04.01 (6) 8.06 (27/2)

* AI-0158 Generalizing membership tests (2010-09-16)
This AI extends the syntax of membership tests to simplify complex conditions that
can be expressed as membership in a subset of values of any type. It introduces syntax
for a list of expressions that may be used in loop contexts as well.
RM References: 3.08.01 (5) 4.04 (3) 4.05.02 (3) 4.05.02 (5) 4.05.02 (27)

* AI-0173 Testing if tags represent abstract types (2010-07-03)
The function Ada.Tags.Type Is Abstract returns True if invoked with the tag of an
abstract type, and False otherwise.
RM References: 3.09 (7.4/2) 3.09 (12.4/2)

Chapter 16: Implementation of Ada 2012 Features 285

* AI-0076 function with controlling result (0000-00-00)
This is an editorial change only. The RM defines calls with controlling results, but uses
the term ’function with controlling result’ without an explicit definition.
RM References: 3.09.02 (2/2)

* AI-0126 Dispatching with no declared operation (0000-00-00)
This AI clarifies dispatching rules, and simply confirms that dispatching executes the
operation of the parent type when there is no explicitly or implicitly declared operation
for the descendant type. This has always been the case in all versions of GNAT.
RM References: 3.09.02 (20/2) 3.09.02 (20.1/2) 3.09.02 (20.2/2)

* AI-0097 Treatment of abstract null extension (2010-07-19)
The RM as written implied that in some cases it was possible to create an object of
an abstract type, by having an abstract extension inherit a non- abstract constructor
from its parent type. This mistake has been corrected in GNAT and in the RM, and
this construct is now illegal.
RM References: 3.09.03 (4/2)

* AI-0203 Extended return cannot be abstract (0000-00-00)
A return subtype indication cannot denote an abstract subtype. GNAT has never
permitted such usage.
RM References: 3.09.03 (8/3)

* AI-0198 Inheriting abstract operators (0000-00-00)
This AI resolves a conflict between two rules involving inherited abstract operations
and predefined operators. If a derived numeric type inherits an abstract operator, it
overrides the predefined one. This interpretation was always the one implemented in
GNAT.
RM References: 3.09.03 (4/3)

* AI-0073 Functions returning abstract types (2010-07-10)
This AI covers a number of issues regarding returning abstract types. In particular
generic functions cannot have abstract result types or access result types designated
an abstract type. There are some other cases which are detailed in the AI. Note that
this binding interpretation has not been retrofitted to operate before Ada 2012 mode,
since it caused a significant number of regressions.
RM References: 3.09.03 (8) 3.09.03 (10) 6.05 (8/2)

* AI-0070 Elaboration of interface types (0000-00-00)
This is an editorial change only, there are no testable consequences short of checking
for the absence of generated code for an interface declaration.
RM References: 3.09.04 (18/2)

* AI-0208 Characteristics of incomplete views (0000-00-00)
The wording in the Ada 2005 RM concerning characteristics of incomplete views was
incorrect and implied that some programs intended to be legal were now illegal. GNAT
had never considered such programs illegal, so it has always implemented the intent of
this AI.
RM References: 3.10.01 (2.4/2) 3.10.01 (2.6/2)

Chapter 16: Implementation of Ada 2012 Features 286

* AI-0162 Incomplete type completed by partial view (2010-09-15)
Incomplete types are made more useful by allowing them to be completed by private
types and private extensions.
RM References: 3.10.01 (2.5/2) 3.10.01 (2.6/2) 3.10.01 (3) 3.10.01 (4/2)

* AI-0098 Anonymous subprogram access restrictions (0000-00-00)
An unintentional omission in the RM implied some inconsistent restrictions on the use
of anonymous access to subprogram values. These restrictions were not intentional,
and have never been enforced by GNAT.
RM References: 3.10.01 (6) 3.10.01 (9.2/2)

* AI-0199 Aggregate with anonymous access components (2010-07-14)
A choice list in a record aggregate can include several components of (distinct) anony-
mous access types as long as they have matching designated subtypes.
RM References: 4.03.01 (16)

* AI-0220 Needed components for aggregates (0000-00-00)
This AI addresses a wording problem in the RM that appears to permit some complex
cases of aggregates with nonstatic discriminants. GNAT has always implemented the
intended semantics.
RM References: 4.03.01 (17)

* AI-0147 Conditional expressions (2009-03-29)
Conditional expressions are permitted. The form of such an expression is:

(if expr then expr {elsif expr then expr} [else expr])

The parentheses can be omitted in contexts where parentheses are present anyway,
such as subprogram arguments and pragma arguments. If the else clause is omitted,
else True is assumed; thus (if A then B) is a way to conveniently represent (A implies
B) in standard logic.
RM References: 4.03.03 (15) 4.04 (1) 4.04 (7) 4.05.07 (0) 4.07 (2) 4.07 (3) 4.09 (12)
4.09 (33) 5.03 (3) 5.03 (4) 7.05 (2.1/2)

* AI-0037 Out-of-range box associations in aggregate (0000-00-00)
This AI confirms that an association of the form Indx => <> in an array aggregate
must raise Constraint Error if Indx is out of range. The RM specified a range check
on other associations, but not when the value of the association was defaulted. GNAT
has always inserted a constraint check on the index value.
RM References: 4.03.03 (29)

* AI-0123 Composability of equality (2010-04-13)
Equality of untagged record composes, so that the predefined equality for a composite
type that includes a component of some untagged record type R uses the equality
operation of R (which may be user-defined or predefined). This makes the behavior of
untagged records identical to that of tagged types in this respect.
This change is an incompatibility with previous versions of Ada, but it corrects a non-
uniformity that was often a source of confusion. Analysis of a large number of industrial
programs indicates that in those rare cases where a composite type had an untagged
record component with a user-defined equality, either there was no use of the composite

Chapter 16: Implementation of Ada 2012 Features 287

equality, or else the code expected the same composability as for tagged types, and thus
had a bug that would be fixed by this change.
RM References: 4.05.02 (9.7/2) 4.05.02 (14) 4.05.02 (15) 4.05.02 (24) 8.05.04 (8)

* AI-0088 The value of exponentiation (0000-00-00)
This AI clarifies the equivalence rule given for the dynamic semantics of exponentiation:
the value of the operation can be obtained by repeated multiplication, but the operation
can be implemented otherwise (for example using the familiar divide-by-two-and-square
algorithm, even if this is less accurate), and does not imply repeated reads of a volatile
base.
RM References: 4.05.06 (11)

* AI-0188 Case expressions (2010-01-09)
Case expressions are permitted. This allows use of constructs such as:

X := (case Y is when 1 => 2, when 2 => 3, when others => 31)

RM References: 4.05.07 (0) 4.05.08 (0) 4.09 (12) 4.09 (33)
* AI-0104 Null exclusion and uninitialized allocator (2010-07-15)

The assignment Ptr := new not null Some_Ptr; will raise Constraint_Error because
the default value of the allocated object is null. This useless construct is illegal in Ada
2012.
RM References: 4.08 (2)

* AI-0157 Allocation/Deallocation from empty pool (2010-07-11)
Allocation and Deallocation from an empty storage pool (i.e. allocation or deallocation
of a pointer for which a static storage size clause of zero has been given) is now illegal
and is detected as such. GNAT previously gave a warning but not an error.
RM References: 4.08 (5.3/2) 13.11.02 (4) 13.11.02 (17)

* AI-0179 Statement not required after label (2010-04-10)
It is not necessary to have a statement following a label, so a label can appear at the end
of a statement sequence without the need for putting a null statement afterwards, but
it is not allowable to have only labels and no real statements in a statement sequence.
RM References: 5.01 (2)

* AI-0139-2 Syntactic sugar for iterators (2010-09-29)
The new syntax for iterating over arrays and containers is now implemented. Iteration
over containers is for now limited to read-only iterators. Only default iterators are
supported, with the syntax: for Elem of C.
RM References: 5.05

* AI-0134 Profiles must match for full conformance (0000-00-00)
For full conformance, the profiles of anonymous-access-to-subprogram parameters must
match. GNAT has always enforced this rule.
RM References: 6.03.01 (18)

* AI-0207 Mode conformance and access constant (0000-00-00)
This AI confirms that access to constant indication must match for mode conformance.
This was implemented in GNAT when the qualifier was originally introduced in Ada
2005.

Chapter 16: Implementation of Ada 2012 Features 288

RM References: 6.03.01 (16/2)
* AI-0046 Null exclusion match for full conformance (2010-07-17)

For full conformance, in the case of access parameters, the null exclusion must match
(either both or neither must have not null).
RM References: 6.03.02 (18)

* AI-0118 The association of parameter associations (0000-00-00)
This AI clarifies the rules for named associations in subprogram calls and generic
instantiations. The rules have been in place since Ada 83.
RM References: 6.04.01 (2) 12.03 (9)

* AI-0196 Null exclusion tests for out parameters (0000-00-00)
Null exclusion checks are not made for **out** parameters when evaluating the actual
parameters. GNAT has never generated these checks.
RM References: 6.04.01 (13)

* AI-0015 Constant return objects (0000-00-00)
The return object declared in an extended return statement may be declared constant.
This was always intended, and GNAT has always allowed it.
RM References: 6.05 (2.1/2) 3.03 (10/2) 3.03 (21) 6.05 (5/2) 6.05 (5.7/2)

* AI-0032 Extended return for class-wide functions (0000-00-00)
If a function returns a class-wide type, the object of an extended return statement
can be declared with a specific type that is covered by the class- wide type. This has
been implemented in GNAT since the introduction of extended returns. Note AI-0103
complements this AI by imposing matching rules for constrained return types.
RM References: 6.05 (5.2/2) 6.05 (5.3/2) 6.05 (5.6/2) 6.05 (5.8/2) 6.05 (8/2)

* AI-0103 Static matching for extended return (2010-07-23)
If the return subtype of a function is an elementary type or a constrained type, the
subtype indication in an extended return statement must match statically this return
subtype.
RM References: 6.05 (5.2/2)

* AI-0058 Abnormal completion of an extended return (0000-00-00)
The RM had some incorrect wording implying wrong treatment of abnormal completion
in an extended return. GNAT has always implemented the intended correct semantics
as described by this AI.
RM References: 6.05 (22/2)

* AI-0050 Raising Constraint Error early for function call (0000-00-00)
The implementation permissions for raising Constraint Error early on a function call
when it was clear an exception would be raised were over-permissive and allowed mis-
handling of discriminants in some cases. GNAT did not take advantage of these incor-
rect permissions in any case.
RM References: 6.05 (24/2)

* AI-0125 Nonoverridable operations of an ancestor (2010-09-28)
In Ada 2012, the declaration of a primitive operation of a type extension or private
extension can also override an inherited primitive that is not visible at the point of this
declaration.

Chapter 16: Implementation of Ada 2012 Features 289

RM References: 7.03.01 (6) 8.03 (23) 8.03.01 (5/2) 8.03.01 (6/2)
* AI-0062 Null exclusions and deferred constants (0000-00-00)

A full constant may have a null exclusion even if its associated deferred constant does
not. GNAT has always allowed this.
RM References: 7.04 (6/2) 7.04 (7.1/2)

* AI-0178 Incomplete views are limited (0000-00-00)
This AI clarifies the role of incomplete views and plugs an omission in the RM. GNAT
always correctly restricted the use of incomplete views and types.
RM References: 7.05 (3/2) 7.05 (6/2)

* AI-0087 Actual for formal nonlimited derived type (2010-07-15)
The actual for a formal nonlimited derived type cannot be limited. In particular, a
formal derived type that extends a limited interface but which is not explicitly limited
cannot be instantiated with a limited type.
RM References: 7.05 (5/2) 12.05.01 (5.1/2)

* AI-0099 Tag determines whether finalization needed (0000-00-00)
This AI clarifies that ’needs finalization’ is part of dynamic semantics, and therefore
depends on the run-time characteristics of an object (i.e. its tag) and not on its nominal
type. As the AI indicates: "we do not expect this to affect any implementation’’.
RM References: 7.06.01 (6) 7.06.01 (7) 7.06.01 (8) 7.06.01 (9/2)

* AI-0064 Redundant finalization rule (0000-00-00)
This is an editorial change only. The intended behavior is already checked by an
existing ACATS test, which GNAT has always executed correctly.
RM References: 7.06.01 (17.1/1)

* AI-0026 Missing rules for Unchecked Union (2010-07-07)
Record representation clauses concerning Unchecked Union types cannot mention the
discriminant of the type. The type of a component declared in the variant part of an
Unchecked Union cannot be controlled, have controlled components, nor have protected
or task parts. If an Unchecked Union type is declared within the body of a generic unit
or its descendants, then the type of a component declared in the variant part cannot
be a formal private type or a formal private extension declared within the same generic
unit.
RM References: 7.06 (9.4/2) B.03.03 (9/2) B.03.03 (10/2)

* AI-0205 Extended return declares visible name (0000-00-00)
This AI corrects a simple omission in the RM. Return objects have always been visible
within an extended return statement.
RM References: 8.03 (17)

* AI-0042 Overriding versus implemented-by (0000-00-00)
This AI fixes a wording gap in the RM. An operation of a synchronized interface can
be implemented by a protected or task entry, but the abstract operation is not being
overridden in the usual sense, and it must be stated separately that this implementation
is legal. This has always been the case in GNAT.
RM References: 9.01 (9.2/2) 9.04 (11.1/2)

Chapter 16: Implementation of Ada 2012 Features 290

* AI-0030 Requeue on synchronized interfaces (2010-07-19)
Requeue is permitted to a protected, synchronized or task interface primitive providing
it is known that the overriding operation is an entry. Otherwise the requeue statement
has the same effect as a procedure call. Use of pragma Implemented provides a way
to impose a static requirement on the overriding operation by adhering to one of the
implementation kinds: entry, protected procedure or any of the above.
RM References: 9.05 (9) 9.05.04 (2) 9.05.04 (3) 9.05.04 (5) 9.05.04 (6) 9.05.04 (7)
9.05.04 (12)

* AI-0201 Independence of atomic object components (2010-07-22)
If an Atomic object has a pragma Pack or a Component Size attribute, then individual
components may not be addressable by independent tasks. However, if the represen-
tation clause has no effect (is confirming), then independence is not compromised.
Furthermore, in GNAT, specification of other appropriately addressable component
sizes (e.g. 16 for 8-bit characters) also preserves independence. GNAT now gives very
clear warnings both for the declaration of such a type, and for any assignment to its
components.
RM References: 9.10 (1/3) C.06 (22/2) C.06 (23/2)

* AI-0009 Pragma Independent[Components] (2010-07-23)
This AI introduces the new pragmas Independent and Independent Components, which
control guaranteeing independence of access to objects and components. The AI also
requires independence not unaffected by confirming rep clauses.
RM References: 9.10 (1) 13.01 (15/1) 13.02 (9) 13.03 (13) C.06 (2) C.06 (4) C.06 (6)
C.06 (9) C.06 (13) C.06 (14)

* AI-0072 Task signalling using ’Terminated (0000-00-00)
This AI clarifies that task signalling for reading ’Terminated only occurs if the result is
True. GNAT semantics has always been consistent with this notion of task signalling.
RM References: 9.10 (6.1/1)

* AI-0108 Limited incomplete view and discriminants (0000-00-00)
This AI confirms that an incomplete type from a limited view does not have discrimi-
nants. This has always been the case in GNAT.
RM References: 10.01.01 (12.3/2)

* AI-0129 Limited views and incomplete types (0000-00-00)
This AI clarifies the description of limited views: a limited view of a package includes
only one view of a type that has an incomplete declaration and a full declaration
(there is no possible ambiguity in a client package). This AI also fixes an omission: a
nested package in the private part has no limited view. GNAT always implemented
this correctly.
RM References: 10.01.01 (12.2/2) 10.01.01 (12.3/2)

* AI-0077 Limited withs and scope of declarations (0000-00-00)
This AI clarifies that a declaration does not include a context clause, and confirms
that it is illegal to have a context in which both a limited and a nonlimited view of a
package are accessible. Such double visibility was always rejected by GNAT.
RM References: 10.01.02 (12/2) 10.01.02 (21/2) 10.01.02 (22/2)

Chapter 16: Implementation of Ada 2012 Features 291

* AI-0122 Private with and children of generics (0000-00-00)
This AI clarifies the visibility of private children of generic units within instantiations
of a parent. GNAT has always handled this correctly.
RM References: 10.01.02 (12/2)

* AI-0040 Limited with clauses on descendant (0000-00-00)
This AI confirms that a limited with clause in a child unit cannot name an ancestor of
the unit. This has always been checked in GNAT.
RM References: 10.01.02 (20/2)

* AI-0132 Placement of library unit pragmas (0000-00-00)
This AI fills a gap in the description of library unit pragmas. The pragma clearly must
apply to a library unit, even if it does not carry the name of the enclosing unit. GNAT
has always enforced the required check.
RM References: 10.01.05 (7)

* AI-0034 Categorization of limited views (0000-00-00)
The RM makes certain limited with clauses illegal because of categorization consider-
ations, when the corresponding normal with would be legal. This is not intended, and
GNAT has always implemented the recommended behavior.
RM References: 10.02.01 (11/1) 10.02.01 (17/2)

* AI-0035 Inconsistencies with Pure units (0000-00-00)
This AI remedies some inconsistencies in the legality rules for Pure units. Derived
access types are legal in a pure unit (on the assumption that the rule for a zero storage
pool size has been enforced on the ancestor type). The rules are enforced in generic
instances and in subunits. GNAT has always implemented the recommended behavior.
RM References: 10.02.01 (15.1/2) 10.02.01 (15.4/2) 10.02.01 (15.5/2) 10.02.01 (17/2)

* AI-0219 Pure permissions and limited parameters (2010-05-25)
This AI refines the rules for the cases with limited parameters which do not allow the
implementations to omit ’redundant’. GNAT now properly conforms to the require-
ments of this binding interpretation.
RM References: 10.02.01 (18/2)

* AI-0043 Rules about raising exceptions (0000-00-00)
This AI covers various omissions in the RM regarding the raising of exceptions. GNAT
has always implemented the intended semantics.
RM References: 11.04.01 (10.1/2) 11 (2)

* AI-0200 Mismatches in formal package declarations (0000-00-00)
This AI plugs a gap in the RM which appeared to allow some obviously intended illegal
instantiations. GNAT has never allowed these instantiations.
RM References: 12.07 (16)

* AI-0112 Detection of duplicate pragmas (2010-07-24)
This AI concerns giving names to various representation aspects, but the practical effect
is simply to make the use of duplicate Atomic[Components], Volatile[Components],
and Independent[Components] pragmas illegal, and GNAT now performs this required
check.

Chapter 16: Implementation of Ada 2012 Features 292

RM References: 13.01 (8)
* AI-0106 No representation pragmas on generic formals (0000-00-00)

The RM appeared to allow representation pragmas on generic formal parameters, but
this was not intended, and GNAT has never permitted this usage.
RM References: 13.01 (9.1/1)

* AI-0012 Pack/Component Size for aliased/atomic (2010-07-15)
It is now illegal to give an inappropriate component size or a pragma Pack that attempts
to change the component size in the case of atomic or aliased components. Previously
GNAT ignored such an attempt with a warning.
RM References: 13.02 (6.1/2) 13.02 (7) C.06 (10) C.06 (11) C.06 (21)

* AI-0039 Stream attributes cannot be dynamic (0000-00-00)
The RM permitted the use of dynamic expressions (such as ptr.all)‘ for stream at-
tributes, but these were never useful and are now illegal. GNAT has always regarded
such expressions as illegal.
RM References: 13.03 (4) 13.03 (6) 13.13.02 (38/2)

* AI-0095 Address of intrinsic subprograms (0000-00-00)
The prefix of ’Address cannot statically denote a subprogram with convention Intrin-
sic. The use of the Address attribute raises Program Error if the prefix denotes a
subprogram with convention Intrinsic.
RM References: 13.03 (11/1)

* AI-0116 Alignment of class-wide objects (0000-00-00)
This AI requires that the alignment of a class-wide object be no greater than the
alignment of any type in the class. GNAT has always followed this recommendation.
RM References: 13.03 (29) 13.11 (16)

* AI-0146 Type invariants (2009-09-21)
Type invariants may be specified for private types using the aspect notation. Aspect
Type Invariant may be specified for any private type, Type Invariant’Class can only be
specified for tagged types, and is inherited by any descendent of the tagged types. The
invariant is a boolean expression that is tested for being true in the following situations:
conversions to the private type, object declarations for the private type that are default
initialized, and [in] out parameters and returned result on return from any primitive
operation for the type that is visible to a client. GNAT defines the synonyms Invariant
for Type Invariant and Invariant’Class for Type Invariant’Class.
RM References: 13.03.03 (00)

* AI-0078 Relax Unchecked Conversion alignment rules (0000-00-00)
In Ada 2012, compilers are required to support unchecked conversion where the target
alignment is a multiple of the source alignment. GNAT always supported this case (and
indeed all cases of differing alignments, doing copies where required if the alignment
was reduced).
RM References: 13.09 (7)

* AI-0195 Invalid value handling is implementation defined (2010-07-03)
The handling of invalid values is now designated to be implementation defined. This
is a documentation change only, requiring Annex M in the GNAT Reference Manual

Chapter 16: Implementation of Ada 2012 Features 293

to document this handling. In GNAT, checks for invalid values are made only when
necessary to avoid erroneous behavior. Operations like assignments which cannot cause
erroneous behavior ignore the possibility of invalid values and do not do a check. The
date given above applies only to the documentation change, this behavior has always
been implemented by GNAT.
RM References: 13.09.01 (10)

* AI-0193 Alignment of allocators (2010-09-16)
This AI introduces a new attribute Max Alignment For Allocation, analogous to
Max Size In Storage Elements, but for alignment instead of size.
RM References: 13.11 (16) 13.11 (21) 13.11.01 (0) 13.11.01 (1) 13.11.01 (2) 13.11.01
(3)

* AI-0177 Parameterized expressions (2010-07-10)
The new Ada 2012 notion of parameterized expressions is implemented. The form is:

function-specification is (expression)

This is exactly equivalent to the corresponding function body that returns the ex-
pression, but it can appear in a package spec. Note that the expression must be
parenthesized.
RM References: 13.11.01 (3/2)

* AI-0033 Attach/Interrupt Handler in generic (2010-07-24)
Neither of these two pragmas may appear within a generic template, because the generic
might be instantiated at other than the library level.
RM References: 13.11.02 (16) C.03.01 (7/2) C.03.01 (8/2)

* AI-0161 Restriction No Default Stream Attributes (2010-09-11)
A new restriction No Default Stream Attributes prevents the use of any of the default
stream attributes for elementary types. If this restriction is in force, then it is necessary
to provide explicit subprograms for any stream attributes used.
RM References: 13.12.01 (4/2) 13.13.02 (40/2) 13.13.02 (52/2)

* AI-0194 Value of Stream Size attribute (0000-00-00)
The Stream Size attribute returns the default number of bits in the stream representa-
tion of the given type. This value is not affected by the presence of stream subprogram
attributes for the type. GNAT has always implemented this interpretation.
RM References: 13.13.02 (1.2/2)

* AI-0109 Redundant check in S’Class’Input (0000-00-00)
This AI is an editorial change only. It removes the need for a tag check that can never
fail.
RM References: 13.13.02 (34/2)

* AI-0007 Stream read and private scalar types (0000-00-00)
The RM as written appeared to limit the possibilities of declaring read attribute pro-
cedures for private scalar types. This limitation was not intended, and has never been
enforced by GNAT.
RM References: 13.13.02 (50/2) 13.13.02 (51/2)

Chapter 16: Implementation of Ada 2012 Features 294

* AI-0065 Remote access types and external streaming (0000-00-00)
This AI clarifies the fact that all remote access types support external streaming.
This fixes an obvious oversight in the definition of the language, and GNAT always
implemented the intended correct rules.
RM References: 13.13.02 (52/2)

* AI-0019 Freezing of primitives for tagged types (0000-00-00)
The RM suggests that primitive subprograms of a specific tagged type are frozen when
the tagged type is frozen. This would be an incompatible change and is not intended.
GNAT has never attempted this kind of freezing and its behavior is consistent with the
recommendation of this AI.
RM References: 13.14 (2) 13.14 (3/1) 13.14 (8.1/1) 13.14 (10) 13.14 (14) 13.14 (15.1/2)

* AI-0017 Freezing and incomplete types (0000-00-00)
So-called ’Taft-amendment types’ (i.e., types that are completed in package bodies) are
not frozen by the occurrence of bodies in the enclosing declarative part. GNAT always
implemented this properly.
RM References: 13.14 (3/1)

* AI-0060 Extended definition of remote access types (0000-00-00)
This AI extends the definition of remote access types to include access to limited,
synchronized, protected or task class-wide interface types. GNAT already implemented
this extension.
RM References: A (4) E.02.02 (9/1) E.02.02 (9.2/1) E.02.02 (14/2) E.02.02 (18)

* AI-0114 Classification of letters (0000-00-00)
The code points 170 (FEMININE ORDINAL INDICATOR), 181 (MICRO SIGN),
and 186 (MASCULINE ORDINAL INDICATOR) are technically considered lower case
letters by Unicode. However, they are not allowed in identifiers, and they return False
to Ada.Characters.Handling.Is Letter/Is Lower. This behavior is consistent with that
defined in Ada 95.
RM References: A.03.02 (59) A.04.06 (7)

* AI-0185 Ada.Wide [Wide]Characters.Handling (2010-07-06)
Two new packages Ada.Wide [Wide]Characters.Handling provide classification func-
tions for Wide Character and Wide Wide Character, as well as providing case folding
routines for Wide [Wide]Character and Wide [Wide]String.
RM References: A.03.05 (0) A.03.06 (0)

* AI-0031 Add From parameter to Find Token (2010-07-25)
A new version of Find Token is added to all relevant string packages, with an extra
parameter From. Instead of starting at the first character of the string, the search for a
matching Token starts at the character indexed by the value of From. These procedures
are available in all versions of Ada but if used in versions earlier than Ada 2012 they
will generate a warning that an Ada 2012 subprogram is being used.
RM References: A.04.03 (16) A.04.03 (67) A.04.03 (68/1) A.04.04 (51) A.04.05 (46)

* AI-0056 Index on null string returns zero (0000-00-00)
The wording in the Ada 2005 RM implied an incompatible handling of the Index
functions, resulting in raising an exception instead of returning zero in some situations.

Chapter 16: Implementation of Ada 2012 Features 295

This was not intended and has been corrected. GNAT always returned zero, and is
thus consistent with this AI.
RM References: A.04.03 (56.2/2) A.04.03 (58.5/2)

* AI-0137 String encoding package (2010-03-25)
The packages Ada.Strings.UTF Encoding, together with its child packages, Conver-
sions, Strings, Wide Strings, and Wide Wide Strings have been implemented. These
packages (whose documentation can be found in the spec files a-stuten.ads, a-
suenco.ads, a-suenst.ads, a-suewst.ads, a-suezst.ads) allow encoding and decod-
ing of String, Wide String, and Wide Wide String values using UTF coding schemes
(including UTF-8, UTF-16LE, UTF-16BE, and UTF-16), as well as conversions be-
tween the different UTF encodings. With the exception of Wide Wide Strings, these
packages are available in Ada 95 and Ada 2005 mode as well as Ada 2012 mode. The
Wide Wide Strings package is available in Ada 2005 mode as well as Ada 2012 mode
(but not in Ada 95 mode since it uses Wide Wide Character).
RM References: A.04.11

* AI-0038 Minor errors in Text IO (0000-00-00)
These are minor errors in the description on three points. The intent on all these
points has always been clear, and GNAT has always implemented the correct intended
semantics.
RM References: A.10.05 (37) A.10.07 (8/1) A.10.07 (10) A.10.07 (12) A.10.08 (10)
A.10.08 (24)

* AI-0044 Restrictions on container instantiations (0000-00-00)
This AI places restrictions on allowed instantiations of generic containers. These re-
strictions are not checked by the compiler, so there is nothing to change in the imple-
mentation. This affects only the RM documentation.
RM References: A.18 (4/2) A.18.02 (231/2) A.18.03 (145/2) A.18.06 (56/2) A.18.08
(66/2) A.18.09 (79/2) A.18.26 (5/2) A.18.26 (9/2)

* AI-0127 Adding Locale Capabilities (2010-09-29)
This package provides an interface for identifying the current locale.
RM References: A.19 A.19.01 A.19.02 A.19.03 A.19.05 A.19.06 A.19.07 A.19.08 A.19.09
A.19.10 A.19.11 A.19.12 A.19.13

* AI-0002 Export C with unconstrained arrays (0000-00-00)
The compiler is not required to support exporting an Ada subprogram with convention
C if there are parameters or a return type of an unconstrained array type (such as
String). GNAT allows such declarations but generates warnings. It is possible, but
complicated, to write the corresponding C code and certainly such code would be
specific to GNAT and non-portable.
RM References: B.01 (17) B.03 (62) B.03 (71.1/2)

* AI-0216 No Task Hierarchy forbids local tasks (0000-00-00)
It is clearly the intention that No Task Hierarchy is intended to forbid tasks declared
locally within subprograms, or functions returning task objects, and that is the imple-
mentation that GNAT has always provided. However the language in the RM was not
sufficiently clear on this point. Thus this is a documentation change in the RM only.

Chapter 16: Implementation of Ada 2012 Features 296

RM References: D.07 (3/3)
* AI-0211 No Relative Delays forbids Set Handler use (2010-07-09)

The restriction No Relative Delays forbids any calls to the subprogram
Ada.Real Time.Timing Events.Set Handler.
RM References: D.07 (5) D.07 (10/2) D.07 (10.4/2) D.07 (10.7/2)

* AI-0190 pragma Default Storage Pool (2010-09-15)
This AI introduces a new pragma Default Storage Pool, which can be used to control
storage pools globally. In particular, you can force every access type that is used for
allocation (new) to have an explicit storage pool, or you can declare a pool globally to
be used for all access types that lack an explicit one.
RM References: D.07 (8)

* AI-0189 No Allocators After Elaboration (2010-01-23)
This AI introduces a new restriction No Allocators After Elaboration, which says that
no dynamic allocation will occur once elaboration is completed. In general this requires
a run-time check, which is not required, and which GNAT does not attempt. But the
static cases of allocators in a task body or in the body of the main program are detected
and flagged at compile or bind time.
RM References: D.07 (19.1/2) H.04 (23.3/2)

* AI-0171 Pragma CPU and Ravenscar Profile (2010-09-24)
A new package System.Multiprocessors is added, together with the definition of
pragma CPU for controlling task affinity. A new no dependence restriction, on
System.Multiprocessors.Dispatching Domains, is added to the Ravenscar profile.
RM References: D.13.01 (4/2) D.16

* AI-0210 Correct Timing Events metric (0000-00-00)
This is a documentation only issue regarding wording of metric requirements, that does
not affect the implementation of the compiler.
RM References: D.15 (24/2)

* AI-0206 Remote types packages and preelaborate (2010-07-24)
Remote types packages are now allowed to depend on preelaborated packages. This
was formerly considered illegal.
RM References: E.02.02 (6)

* AI-0152 Restriction No Anonymous Allocators (2010-09-08)
Restriction No Anonymous Allocators prevents the use of allocators where the type of
the returned value is an anonymous access type.
RM References: H.04 (8/1)

Chapter 17: Obsolescent Features 297

17 Obsolescent Features

This chapter describes features that are provided by GNAT, but are considered obsolescent
since there are preferred ways of achieving the same effect. These features are provided
solely for historical compatibility purposes.

17.1 pragma No Run Time

The pragma No Run Time is used to achieve an affect similar to the use of the "Zero Foot
Print" configurable run time, but without requiring a specially configured run time. The
result of using this pragma, which must be used for all units in a partition, is to restrict
the use of any language features requiring run-time support code. The preferred usage is
to use an appropriately configured run-time that includes just those features that are to be
made accessible.

17.2 pragma Ravenscar

The pragma Ravenscar has exactly the same effect as pragma Profile (Ravenscar). The
latter usage is preferred since it is part of the new Ada 2005 standard.

17.3 pragma Restricted Run Time

The pragma Restricted Run Time has exactly the same effect as pragma Profile (Re-
stricted). The latter usage is preferred since the Ada 2005 pragma Profile is intended
for this kind of implementation dependent addition.

17.4 pragma Task Info

The functionality provided by pragma Task Info is now part of the Ada language. The
CPU aspect and the package System.Multiprocessors offer a less system-dependent way to
specify task affinity or to query the number of processsors.
Syntax

pragma Task_Info (EXPRESSION);

This pragma appears within a task definition (like pragma Priority) and applies to the task
in which it appears. The argument must be of type System.Task Info.Task Info Type. The
Task Info pragma provides system dependent control over aspects of tasking implementa-
tion, for example, the ability to map tasks to specific processors. For details on the facilities
available for the version of GNAT that you are using, see the documentation in the spec of
package System.Task Info in the runtime library.

17.5 package System.Task Info (s-tasinf.ads)

This package provides target dependent functionality that is used to support the Task Info
pragma. The predefined Ada package System.Multiprocessors and the CPU aspect now
provide a standard replacement for GNAT’s Task Info functionality.

Chapter 18: Compatibility and Porting Guide 298

18 Compatibility and Porting Guide

This chapter presents some guidelines for developing portable Ada code, describes the com-
patibility issues that may arise between GNAT and other Ada compilation systems (includ-
ing those for Ada 83), and shows how GNAT can expedite porting applications developed
in other Ada environments.

18.1 Writing Portable Fixed-Point Declarations

The Ada Reference Manual gives an implementation freedom to choose bounds that are
narrower by Small from the given bounds. For example, if we write

type F1 is delta 1.0 range -128.0 .. +128.0;

then the implementation is allowed to choose -128.0 .. +127.0 if it likes, but is not required
to do so.
This leads to possible portability problems, so let’s have a closer look at this, and figure
out how to avoid these problems.
First, why does this freedom exist, and why would an implementation take advantage of
it? To answer this, take a closer look at the type declaration for F1 above. If the compiler
uses the given bounds, it would need 9 bits to hold the largest positive value (and typically
that means 16 bits on all machines). But if the implementation chooses the +127.0 bound
then it can fit values of the type in 8 bits.
Why not make the user write +127.0 if that’s what is wanted? The rationale is that if you
are thinking of fixed point as a kind of ’poor man’s floating-point’, then you don’t want to
be thinking about the scaled integers that are used in its representation. Let’s take another
example:

type F2 is delta 2.0**(-15) range -1.0 .. +1.0;

Looking at this declaration, it seems casually as though it should fit in 16 bits, but again
that extra positive value +1.0 has the scaled integer equivalent of 2**15 which is one too
big for signed 16 bits. The implementation can treat this as:

type F2 is delta 2.0**(-15) range -1.0 .. +1.0-(2.0**(-15));

and the Ada language design team felt that this was too annoying to require. We don’t need
to debate this decision at this point, since it is well established (the rule about narrowing
the ranges dates to Ada 83).
But the important point is that an implementation is not required to do this narrowing, so
we have a potential portability problem. We could imagine three types of implementation:
a. those that narrow the range automatically if they can figure out that the narrower

range will allow storage in a smaller machine unit,
b. those that will narrow only if forced to by a ’Size clause, and
c. those that will never narrow.

Now if we are language theoreticians, we can imagine a fourth approach: to narrow all the
time, e.g. to treat

type F3 is delta 1.0 range -10.0 .. +23.0;

as though it had been written:

Chapter 18: Compatibility and Porting Guide 299

type F3 is delta 1.0 range -9.0 .. +22.0;

But although technically allowed, such a behavior would be hostile and silly, and no real
compiler would do this. All real compilers will fall into one of the categories (a), (b) or (c)
above.

So, how do you get the compiler to do what you want? The answer is give the actual bounds
you want, and then use a ’Small clause and a ’Size clause to absolutely pin down what the
compiler does. E.g., for F2 above, we will write:

My_Small : constant := 2.0**(-15);
My_First : constant := -1.0;
My_Last : constant := +1.0 - My_Small;

type F2 is delta My_Small range My_First .. My_Last;

and then add

for F2’Small use my_Small;
for F2’Size use 16;

In practice all compilers will do the same thing here and will give you what you want, so
the above declarations are fully portable. If you really want to play language lawyer and
guard against ludicrous behavior by the compiler you could add

Test1 : constant := 1 / Boolean’Pos (F2’First = My_First);
Test2 : constant := 1 / Boolean’Pos (F2’Last = My_Last);

One or other or both are allowed to be illegal if the compiler is behaving in a silly manner,
but at least the silly compiler will not get away with silently messing with your (very clear)
intentions.

If you follow this scheme you will be guaranteed that your fixed-point types will be portable.

18.2 Compatibility with Ada 83

Ada 95 and the subsequent revisions Ada 2005 and Ada 2012 are highly upwards compatible
with Ada 83. In particular, the design intention was that the difficulties associated with
moving from Ada 83 to later versions of the standard should be no greater than those that
occur when moving from one Ada 83 system to another.

However, there are a number of points at which there are minor incompatibilities. The Ada
95 Annotated Reference Manual contains full details of these issues as they relate to Ada
95, and should be consulted for a complete treatment. In practice the following subsections
treat the most likely issues to be encountered.

18.2.1 Legal Ada 83 programs that are illegal in Ada 95

Some legal Ada 83 programs are illegal (i.e., they will fail to compile) in Ada 95 and later
versions of the standard:

* Character literals

Some uses of character literals are ambiguous. Since Ada 95 has introduced
Wide Character as a new predefined character type, some uses of character literals
that were legal in Ada 83 are illegal in Ada 95. For example:

Chapter 18: Compatibility and Porting Guide 300

for Char in ’A’ .. ’Z’ loop ... end loop;

The problem is that ’A’ and ’Z’ could be from either Character or Wide Character.
The simplest correction is to make the type explicit; e.g.:

for Char in Character range ’A’ .. ’Z’ loop ... end loop;

* New reserved words
The identifiers abstract, aliased, protected, requeue, tagged, and until are reserved in
Ada 95. Existing Ada 83 code using any of these identifiers must be edited to use some
alternative name.

* Freezing rules
The rules in Ada 95 are slightly different with regard to the point at which entities
are frozen, and representation pragmas and clauses are not permitted past the freeze
point. This shows up most typically in the form of an error message complaining that a
representation item appears too late, and the appropriate corrective action is to move
the item nearer to the declaration of the entity to which it refers.
A particular case is that representation pragmas cannot be applied to a subprogram
body. If necessary, a separate subprogram declaration must be introduced to which the
pragma can be applied.

* Optional bodies for library packages
In Ada 83, a package that did not require a package body was nevertheless allowed
to have one. This lead to certain surprises in compiling large systems (situations in
which the body could be unexpectedly ignored by the binder). In Ada 95, if a package
does not require a body then it is not permitted to have a body. To fix this problem,
simply remove a redundant body if it is empty, or, if it is non-empty, introduce a
dummy declaration into the spec that makes the body required. One approach is to
add a private part to the package declaration (if necessary), and define a parameterless
procedure called Requires Body, which must then be given a dummy procedure body
in the package body, which then becomes required. Another approach (assuming that
this does not introduce elaboration circularities) is to add an Elaborate Body pragma
to the package spec, since one effect of this pragma is to require the presence of a
package body.

* Numeric Error is the same exception as Constraint Error
In Ada 95, the exception Numeric Error is a renaming of Constraint Error. This means
that it is illegal to have separate exception handlers for the two exceptions. The fix
is simply to remove the handler for the Numeric Error case (since even in Ada 83, a
compiler was free to raise Constraint Error in place of Numeric Error in all cases).

* Indefinite subtypes in generics
In Ada 83, it was permissible to pass an indefinite type (e.g, String) as the actual for a
generic formal private type, but then the instantiation would be illegal if there were any
instances of declarations of variables of this type in the generic body. In Ada 95, to avoid
this clear violation of the methodological principle known as the ’contract model’, the
generic declaration explicitly indicates whether or not such instantiations are permitted.
If a generic formal parameter has explicit unknown discriminants, indicated by using
(<>) after the subtype name, then it can be instantiated with indefinite types, but
no stand-alone variables can be declared of this type. Any attempt to declare such

Chapter 18: Compatibility and Porting Guide 301

a variable will result in an illegality at the time the generic is declared. If the (<>)
notation is not used, then it is illegal to instantiate the generic with an indefinite type.
This is the potential incompatibility issue when porting Ada 83 code to Ada 95. It will
show up as a compile time error, and the fix is usually simply to add the (<>) to the
generic declaration.

18.2.2 More deterministic semantics

* Conversions
Conversions from real types to integer types round away from 0. In Ada 83 the conver-
sion Integer(2.5) could deliver either 2 or 3 as its value. This implementation freedom
was intended to support unbiased rounding in statistical applications, but in practice
it interfered with portability. In Ada 95 the conversion semantics are unambiguous,
and rounding away from 0 is required. Numeric code may be affected by this change
in semantics. Note, though, that this issue is no worse than already existed in Ada 83
when porting code from one vendor to another.

* Tasking
The Real-Time Annex introduces a set of policies that define the behavior of features
that were implementation dependent in Ada 83, such as the order in which open select
branches are executed.

18.2.3 Changed semantics

The worst kind of incompatibility is one where a program that is legal in Ada 83 is also legal
in Ada 95 but can have an effect in Ada 95 that was not possible in Ada 83. Fortunately
this is extremely rare, but the one situation that you should be alert to is the change in the
predefined type Character from 7-bit ASCII to 8-bit Latin-1.

* Range of type ‘Character‘
The range of Standard.Character is now the full 256 characters of Latin-1, whereas
in most Ada 83 implementations it was restricted to 128 characters. Although some
of the effects of this change will be manifest in compile-time rejection of legal Ada
83 programs it is possible for a working Ada 83 program to have a different effect
in Ada 95, one that was not permitted in Ada 83. As an example, the expression
Character’Pos(Character’Last) returned 127 in Ada 83 and now delivers 255 as its
value. In general, you should look at the logic of any character-processing Ada 83
program and see whether it needs to be adapted to work correctly with Latin-1. Note
that the predefined Ada 95 API has a character handling package that may be relevant if
code needs to be adapted to account for the additional Latin-1 elements. The desirable
fix is to modify the program to accommodate the full character set, but in some cases
it may be convenient to define a subtype or derived type of Character that covers only
the restricted range.

18.2.4 Other language compatibility issues

* -gnat83 switch
All implementations of GNAT provide a switch that causes GNAT to operate in Ada
83 mode. In this mode, some but not all compatibility problems of the type described
above are handled automatically. For example, the new reserved words introduced

Chapter 18: Compatibility and Porting Guide 302

in Ada 95 and Ada 2005 are treated simply as identifiers as in Ada 83. However, in
practice, it is usually advisable to make the necessary modifications to the program to
remove the need for using this switch. See the Compiling Different Versions of Ada
section in the GNAT User’s Guide.

* Support for removed Ada 83 pragmas and attributes
A number of pragmas and attributes from Ada 83 were removed from Ada 95, generally
because they were replaced by other mechanisms. Ada 95 and Ada 2005 compilers are
allowed, but not required, to implement these missing elements. In contrast with some
other compilers, GNAT implements all such pragmas and attributes, eliminating this
compatibility concern. These include pragma Interface and the floating point type
attributes (Emax, Mantissa, etc.), among other items.

18.3 Compatibility between Ada 95 and Ada 2005

Although Ada 2005 was designed to be upwards compatible with Ada 95, there are a number
of incompatibilities. Several are enumerated below; for a complete description please see
the Annotated Ada 2005 Reference Manual, or section 9.1.1 in Rationale for Ada 2005.

* New reserved words.
The words interface, overriding and synchronized are reserved in Ada 2005. A pre-Ada
2005 program that uses any of these as an identifier will be illegal.

* New declarations in predefined packages.
A number of packages in the predefined environment contain new decla-
rations: Ada.Exceptions, Ada.Real Time, Ada.Strings, Ada.Strings.Fixed,
Ada.Strings.Bounded, Ada.Strings.Unbounded, Ada.Strings.Wide Fixed,
Ada.Strings.Wide Bounded, Ada.Strings.Wide Unbounded, Ada.Tags, Ada.Text IO,
and Interfaces.C. If an Ada 95 program does a with and use of any of these packages,
the new declarations may cause name clashes.

* Access parameters.
A nondispatching subprogram with an access parameter cannot be renamed as a dis-
patching operation. This was permitted in Ada 95.

* Access types, discriminants, and constraints.
Rule changes in this area have led to some incompatibilities; for example, constrained
subtypes of some access types are not permitted in Ada 2005.

* Aggregates for limited types.
The allowance of aggregates for limited types in Ada 2005 raises the possibility of
ambiguities in legal Ada 95 programs, since additional types now need to be considered
in expression resolution.

* Fixed-point multiplication and division.
Certain expressions involving ’*’ or ’/’ for a fixed-point type, which were legal in Ada
95 and invoked the predefined versions of these operations, are now ambiguous. The
ambiguity may be resolved either by applying a type conversion to the expression, or
by explicitly invoking the operation from package Standard.

* Return-by-reference types.
The Ada 95 return-by-reference mechanism has been removed. Instead, the user can
declare a function returning a value from an anonymous access type.

Chapter 18: Compatibility and Porting Guide 303

18.4 Implementation-dependent characteristics

Although the Ada language defines the semantics of each construct as precisely as practical,
in some situations (for example for reasons of efficiency, or where the effect is heavily
dependent on the host or target platform) the implementation is allowed some freedom.
In porting Ada 83 code to GNAT, you need to be aware of whether / how the existing
code exercised such implementation dependencies. Such characteristics fall into several
categories, and GNAT offers specific support in assisting the transition from certain Ada
83 compilers.

18.4.1 Implementation-defined pragmas

Ada compilers are allowed to supplement the language-defined pragmas, and these are a
potential source of non-portability. All GNAT-defined pragmas are described in the Im-
plementation Defined Pragmas chapter of the GNAT Reference Manual, and these include
several that are specifically intended to correspond to other vendors’ Ada 83 pragmas.
For migrating from VADS, the pragma Use VADS Size may be useful. For compatibility
with HP Ada 83, GNAT supplies the pragmas Extend System, Ident, Inline Generic, Inter-
face Name, Passive, Suppress All, and Volatile. Other relevant pragmas include External
and Link With. Some vendor-specific Ada 83 pragmas (Share Generic, Subtitle, and Title)
are recognized, thus avoiding compiler rejection of units that contain such pragmas; they
are not relevant in a GNAT context and hence are not otherwise implemented.

18.4.2 Implementation-defined attributes

Analogous to pragmas, the set of attributes may be extended by an implementation. All
GNAT-defined attributes are described in Implementation Defined Attributes section of
the GNAT Reference Manual, and these include several that are specifically intended to
correspond to other vendors’ Ada 83 attributes. For migrating from VADS, the attribute
VADS Size may be useful. For compatibility with HP Ada 83, GNAT supplies the attributes
Bit, Machine Size and Type Class.

18.4.3 Libraries

Vendors may supply libraries to supplement the standard Ada API. If Ada 83 code uses
vendor-specific libraries then there are several ways to manage this in Ada 95 and later
versions of the standard:

* If the source code for the libraries (specs and bodies) are available, then the libraries
can be migrated in the same way as the application.

* If the source code for the specs but not the bodies are available, then you can reimple-
ment the bodies.

* Some features introduced by Ada 95 obviate the need for library support. For example
most Ada 83 vendors supplied a package for unsigned integers. The Ada 95 modular
type feature is the preferred way to handle this need, so instead of migrating or reim-
plementing the unsigned integer package it may be preferable to retrofit the application
using modular types.

18.4.4 Elaboration order

The implementation can choose any elaboration order consistent with the unit dependency
relationship. This freedom means that some orders can result in Program Error being raised

Chapter 18: Compatibility and Porting Guide 304

due to an ’Access Before Elaboration’: an attempt to invoke a subprogram before its body
has been elaborated, or to instantiate a generic before the generic body has been elaborated.
By default GNAT attempts to choose a safe order (one that will not encounter access before
elaboration problems) by implicitly inserting Elaborate or Elaborate All pragmas where
needed. However, this can lead to the creation of elaboration circularities and a resulting
rejection of the program by gnatbind. This issue is thoroughly described in the Elaboration
Order Handling in GNAT appendix in the GNAT User’s Guide. In brief, there are several
ways to deal with this situation:

* Modify the program to eliminate the circularities, e.g., by moving elaboration-time
code into explicitly-invoked procedures

* Constrain the elaboration order by including explicit Elaborate Body or Elaborate
pragmas, and then inhibit the generation of implicit Elaborate All pragmas either
globally (as an effect of the -gnatE switch) or locally (by selectively suppressing elab-
oration checks via pragma Suppress(Elaboration Check) when it is safe to do so).

18.4.5 Target-specific aspects

Low-level applications need to deal with machine addresses, data representations, interfacing
with assembler code, and similar issues. If such an Ada 83 application is being ported to
different target hardware (for example where the byte endianness has changed) then you
will need to carefully examine the program logic; the porting effort will heavily depend
on the robustness of the original design. Moreover, Ada 95 (and thus Ada 2005 and Ada
2012) are sometimes incompatible with typical Ada 83 compiler practices regarding implicit
packing, the meaning of the Size attribute, and the size of access values. GNAT’s approach
to these issues is described in [Representation Clauses], page 305.

18.5 Compatibility with Other Ada Systems

If programs avoid the use of implementation dependent and implementation defined fea-
tures, as documented in the Ada Reference Manual, there should be a high degree of porta-
bility between GNAT and other Ada systems. The following are specific items which have
proved troublesome in moving Ada 95 programs from GNAT to other Ada 95 compilers,
but do not affect porting code to GNAT. (As of January 2007, GNAT is the only compiler
available for Ada 2005; the following issues may or may not arise for Ada 2005 programs
when other compilers appear.)

* Ada 83 Pragmas and Attributes

Ada 95 compilers are allowed, but not required, to implement the missing Ada 83
pragmas and attributes that are no longer defined in Ada 95. GNAT implements all
such pragmas and attributes, eliminating this as a compatibility concern, but some
other Ada 95 compilers reject these pragmas and attributes.

* Specialized Needs Annexes

GNAT implements the full set of special needs annexes. At the current time, it is the
only Ada 95 compiler to do so. This means that programs making use of these features
may not be portable to other Ada 95 compilation systems.

* Representation Clauses

Chapter 18: Compatibility and Porting Guide 305

Some other Ada 95 compilers implement only the minimal set of representation clauses
required by the Ada 95 reference manual. GNAT goes far beyond this minimal set, as
described in the next section.

18.6 Representation Clauses

The Ada 83 reference manual was quite vague in describing both the minimal required
implementation of representation clauses, and also their precise effects. Ada 95 (and thus
also Ada 2005) are much more explicit, but the minimal set of capabilities required is still
quite limited.

GNAT implements the full required set of capabilities in Ada 95 and Ada 2005, but also
goes much further, and in particular an effort has been made to be compatible with existing
Ada 83 usage to the greatest extent possible.

A few cases exist in which Ada 83 compiler behavior is incompatible with the requirements
in Ada 95 (and thus also Ada 2005). These are instances of intentional or accidental
dependence on specific implementation dependent characteristics of these Ada 83 compilers.
The following is a list of the cases most likely to arise in existing Ada 83 code.

* Implicit Packing

Some Ada 83 compilers allowed a Size specification to cause implicit packing of an array
or record. This could cause expensive implicit conversions for change of representation
in the presence of derived types, and the Ada design intends to avoid this possibility.
Subsequent AI’s were issued to make it clear that such implicit change of representation
in response to a Size clause is inadvisable, and this recommendation is represented
explicitly in the Ada 95 (and Ada 2005) Reference Manuals as implementation advice
that is followed by GNAT. The problem will show up as an error message rejecting
the size clause. The fix is simply to provide the explicit pragma Pack, or for more fine
tuned control, provide a Component Size clause.

* Meaning of Size Attribute

The Size attribute in Ada 95 (and Ada 2005) for discrete types is defined as the minimal
number of bits required to hold values of the type. For example, on a 32-bit machine,
the size of Natural will typically be 31 and not 32 (since no sign bit is required). Some
Ada 83 compilers gave 31, and some 32 in this situation. This problem will usually
show up as a compile time error, but not always. It is a good idea to check all uses of the
’Size attribute when porting Ada 83 code. The GNAT specific attribute Object Size
can provide a useful way of duplicating the behavior of some Ada 83 compiler systems.

* Size of Access Types

A common assumption in Ada 83 code is that an access type is in fact a pointer, and
that therefore it will be the same size as a System.Address value. This assumption
is true for GNAT in most cases with one exception. For the case of a pointer to an
unconstrained array type (where the bounds may vary from one value of the access type
to another), the default is to use a ’fat pointer’, which is represented as two separate
pointers, one to the bounds, and one to the array. This representation has a number of
advantages, including improved efficiency. However, it may cause some difficulties in
porting existing Ada 83 code which makes the assumption that, for example, pointers
fit in 32 bits on a machine with 32-bit addressing.

Chapter 18: Compatibility and Porting Guide 306

To get around this problem, GNAT also permits the use of ’thin pointers’ for access
types in this case (where the designated type is an unconstrained array type). These
thin pointers are indeed the same size as a System.Address value. To specify a thin
pointer, use a size clause for the type, for example:

type X is access all String;
for X’Size use Standard’Address_Size;

which will cause the type X to be represented using a single pointer. When using this
representation, the bounds are right behind the array. This representation is slightly
less efficient, and does not allow quite such flexibility in the use of foreign pointers or in
using the Unrestricted Access attribute to create pointers to non-aliased objects. But
for any standard portable use of the access type it will work in a functionally correct
manner and allow porting of existing code. Note that another way of forcing a thin
pointer representation is to use a component size clause for the element size in an array,
or a record representation clause for an access field in a record.
See the documentation of Unrestricted Access in the GNAT RM for a full discussion
of possible problems using this attribute in conjunction with thin pointers.

18.7 Compatibility with HP Ada 83

All the HP Ada 83 pragmas and attributes are recognized, although only a subset of them
can sensibly be implemented. The description of pragmas in [Implementation Defined Prag-
mas], page 4 indicates whether or not they are applicable to GNAT.

* Default floating-point representation
In GNAT, the default floating-point format is IEEE, whereas in HP Ada 83, it is VMS
format.

* System
the package System in GNAT exactly corresponds to the definition in the Ada 95 ref-
erence manual, which means that it excludes many of the HP Ada 83 extensions. How-
ever, a separate package Aux DEC is provided that contains the additional definitions,
and a special pragma, Extend System allows this package to be treated transparently
as an extension of package System.

Chapter 19: GNU Free Documentation License 307

19 GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.
Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.
1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The Document, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as "you". You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.
A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

Chapter 19: GNU Free Documentation License 308

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.
A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not "Transparent" is called Opaque.
Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.
The "Title Page" means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, "Title Page" means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.
The "publisher" means any person or entity that distributes copies of the Document to the
public.
A section "Entitled XYZ" means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it remains a section
"Entitled XYZ" according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.
2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.

Chapter 19: GNU Free Documentation License 309

However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.
4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Chapter 19: GNU Free Documentation License 310

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled "History" in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.
You may add a section Entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes

Chapter 19: GNU Free Documentation License 311

a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".
6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.
8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations

Chapter 19: GNU Free Documentation License 312

requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History",
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A

Chapter 19: GNU Free Documentation License 313

"Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of
copyrightable works thus published on the MMC site.
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.
"Incorporate" means to publish or republish a Document, in whole or in part, as part of
another Document.
An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.
ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with
... Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 314

Index

-
-gnat12 option (gcc) . 280
-gnatR (gcc) . 215

lock file (for shared passive packages) 275

A
Abort Signal . 109
Abstract State . 101
Access . 125
Access values . 114
Accuracy . 167
Accuracy requirements . 167
Ada 2005 Language Reference Manual 3
Ada 2012 implementation status 280
Ada 83 attributes 112, 113, 115, 116, 120, 122
Ada 95 Language Reference Manual 3
Ada Extensions . 32
Ada.Characters.Handling . 158
Ada.Characters.Latin 9 (a-chlat9.ads) 248
Ada.Characters.Wide Latin 1 (a-cwila1.ads) . . 248
Ada.Characters.Wide Latin 9 (a-cwila1.ads) . . 248
Ada.Characters.Wide Wide Latin 1 (a-chzla1.ads)

. 249
Ada.Characters.Wide Wide Latin 9 (a-chzla9.ads)

. 249
Ada.Command Line.Environment (a-colien.ads)

. 251
Ada.Command Line.Remove (a-colire.ads) 251
Ada.Command Line.Response File (a-clrefi.ads)

. 251
Ada.Containers.Bounded Holders (a-coboho.ads)

. 250
Ada.Containers.Formal Doubly Linked Lists

(a-cfdlli.ads) . 249
Ada.Containers.Formal Hashed Maps

(a-cfhama.ads) . 249
Ada.Containers.Formal Hashed Sets (a-cfhase.ads)

. 249
Ada.Containers.Formal Indefinite Vectors

(a-cfinve.ads) . 250
Ada.Containers.Formal Ordered Maps

(a-cforma.ads) . 250
Ada.Containers.Formal Ordered Sets

(a-cforse.ads) . 250
Ada.Containers.Formal Vectors (a-cofove.ads)

. 250
Ada.Direct IO.C Streams (a-diocst.ads) 251
Ada.Exceptions.Is Null Occurrence (a-einuoc.ads)

. 251

Ada.Exceptions.Last Chance Handler
(a-elchha.ads) . 251

Ada.Exceptions.Traceback (a-exctra.ads) 251
Ada.Sequential IO.C Streams (a-siocst.ads) . . . 251
Ada.Streams.Stream IO.C Streams (a-ssicst.ads)

. 251
Ada.Strings.Unbounded.Text IO (a-suteio.ads)

. 252
Ada.Strings.Wide Unbounded.Wide Text IO

(a-swuwti.ads) . 252
Ada.Strings.Wide Wide Unbounded.Wide Wide Text IO

(a-szuzti.ads) . 252
Ada.Text IO.C Streams (a-tiocst.ads) 252
Ada.Text IO.Reset Standard Files (a-tirsfi.ads)

. 252
Ada.Wide Characters.Unicode (a-wichun.ads)

. 252
Ada.Wide Text IO.C Streams (a-wtcstr.ads)

. 252
Ada.Wide Text IO.Reset Standard Files

(a-wrstfi.ads) . 252
Ada.Wide Wide Characters.Unicode

(a-zchuni.ads) . 253
Ada.Wide Wide Text IO.C Streams (a-ztcstr.ads)

. 253
Ada.Wide Wide Text IO.Reset Standard Files

(a-zrstfi.ads) . 253
Ada 2012 configuration pragma 280
Address . 156
Address Clause . 208
Address clauses . 153
Address image . 264
Address of subprogram code 110
Address Size . 109
AI-0002 (Ada 2012 feature) 295
AI-0003 (Ada 2012 feature) 283
AI-0007 (Ada 2012 feature) 293
AI-0008 (Ada 2012 feature) 283
AI-0009 (Ada 2012 feature) 290
AI-0012 (Ada 2012 feature) 292
AI-0015 (Ada 2012 feature) 288
AI-0017 (Ada 2012 feature) 294
AI-0019 (Ada 2012 feature) 294
AI-0026 (Ada 2012 feature) 289
AI-0030 (Ada 2012 feature) 290
AI-0031 (Ada 2012 feature) 294
AI-0032 (Ada 2012 feature) 288
AI-0033 (Ada 2012 feature) 293
AI-0034 (Ada 2012 feature) 291
AI-0035 (Ada 2012 feature) 291
AI-0037 (Ada 2012 feature) 286
AI-0038 (Ada 2012 feature) 295
AI-0039 (Ada 2012 feature) 292
AI-0040 (Ada 2012 feature) 291
AI-0042 (Ada 2012 feature) 289

Index 315

AI-0043 (Ada 2012 feature) 291
AI-0044 (Ada 2012 feature) 295
AI-0046 (Ada 2012 feature) 288
AI-0050 (Ada 2012 feature) 288
AI-0056 (Ada 2012 feature) 294
AI-0058 (Ada 2012 feature) 288
AI-0060 (Ada 2012 feature) 294
AI-0062 (Ada 2012 feature) 289
AI-0064 (Ada 2012 feature) 289
AI-0065 (Ada 2012 feature) 294
AI-0070 (Ada 2012 feature) 285
AI-0072 (Ada 2012 feature) 290
AI-0073 (Ada 2012 feature) 285
AI-0076 (Ada 2012 feature) 285
AI-0077 (Ada 2012 feature) 290
AI-0078 (Ada 2012 feature) 292
AI-0079 (Ada 2012 feature) 280
AI-0080 (Ada 2012 feature) 281
AI-0087 (Ada 2012 feature) 289
AI-0088 (Ada 2012 feature) 287
AI-0091 (Ada 2012 feature) 280
AI-0093 (Ada 2012 feature) 284
AI-0095 (Ada 2012 feature) 292
AI-0096 (Ada 2012 feature) 284
AI-0097 (Ada 2012 feature) 285
AI-0098 (Ada 2012 feature) 286
AI-0099 (Ada 2012 feature) 289
AI-0100 (Ada 2012 feature) 280
AI-0102 (Ada 2012 feature) 284
AI-0103 (Ada 2012 feature) 288
AI-0104 (Ada 2012 feature) 287
AI-0106 (Ada 2012 feature) 292
AI-0108 (Ada 2012 feature) 290
AI-0109 (Ada 2012 feature) 293
AI-0112 (Ada 2012 feature) 291
AI-0114 (Ada 2012 feature) 294
AI-0116 (Ada 2012 feature) 292
AI-0118 (Ada 2012 feature) 288
AI-0120 (Ada 2012 feature) 283
AI-0122 (Ada 2012 feature) 291
AI-0123 (Ada 2012 feature) 286
AI-0125 (Ada 2012 feature) 288
AI-0126 (Ada 2012 feature) 285
AI-0127 (Ada 2012 feature) 295
AI-0128 (Ada 2012 feature) 283
AI-0129 (Ada 2012 feature) 290
AI-0132 (Ada 2012 feature) 291
AI-0134 (Ada 2012 feature) 287
AI-0137 (Ada 2012 feature) 295
AI-0139-2 (Ada 2012 feature) 287
AI-0146 (Ada 2012 feature) 292
AI-0147 (Ada 2012 feature) 286
AI-0152 (Ada 2012 feature) 296
AI-0157 (Ada 2012 feature) 287
AI-0158 (Ada 2012 feature) 284
AI-0161 (Ada 2012 feature) 293
AI-0162 (Ada 2012 feature) 286
AI-0163 (Ada 2012 feature) 280

AI-0171 (Ada 2012 feature) 296
AI-0173 (Ada 2012 feature) 284
AI-0176 (Ada 2012 feature) 280
AI-0177 (Ada 2012 feature) 293
AI-0178 (Ada 2012 feature) 289
AI-0179 (Ada 2012 feature) 287
AI-0181 (Ada 2012 feature) 284
AI-0182 (Ada 2012 feature) 284
AI-0183 (Ada 2012 feature) 281
AI-0185 (Ada 2012 feature) 294
AI-0188 (Ada 2012 feature) 287
AI-0189 (Ada 2012 feature) 296
AI-0190 (Ada 2012 feature) 296
AI-0193 (Ada 2012 feature) 293
AI-0194 (Ada 2012 feature) 293
AI-0195 (Ada 2012 feature) 292
AI-0196 (Ada 2012 feature) 288
AI-0198 (Ada 2012 feature) 285
AI-0199 (Ada 2012 feature) 286
AI-0200 (Ada 2012 feature) 291
AI-0201 (Ada 2012 feature) 290
AI-0203 (Ada 2012 feature) 285
AI-0205 (Ada 2012 feature) 289
AI-0206 (Ada 2012 feature) 296
AI-0207 (Ada 2012 feature) 287
AI-0208 (Ada 2012 feature) 285
AI-0210 (Ada 2012 feature) 296
AI-0211 (Ada 2012 feature) 296
AI-0214 (Ada 2012 feature) 284
AI-0219 (Ada 2012 feature) 291
AI-0220 (Ada 2012 feature) 286
AI05-0216 (Ada 2012 feature) 295
Alignment . 57, 116, 123, 189
Alignment Clause . 188
Alignment clauses . 153
Alignments of components . 18
allocator . 123
Alternative Character Sets . 149
AltiVec . 253
Annex E . 274
Annotate . 101
Anonymous access types . 214
Argument passing mechanisms 28
argument removal . 251
Array packing . 37
Array splitter . 253
Arrays . 150, 257, 262
as private type . 156
Asm Input . 109
Asm Output . 109
Assert Failure . 265
Assertions . 14, 15, 265
Async Readers . 102
Async Writers . 102
Atomic Synchronization . 25, 28
Atomic Always Lock Free . 110
Attribute . 209
Attribute Loop Entry . 90

Index 316

Attribute Old . 90
AWK . 254

B
Biased representation . 193
Big endian . 111
Bind environment . 254
Bit . 110
Bit ordering . 156
bit ordering . 197
Bit Order Clause . 197
Bit Position . 110
Boolean Entry Barriers . 141
Bounded Buffers . 254
Bounded errors . 148
Bounded-length strings . 158
Bubble sort . 254
byte ordering . 198
Byte swapping . 254

C
casing . 33
C . 160
C streams . 264
C Streams . 251, 252, 253
Calendar . 255
Casing of External names . 33
Casing utilities . 255
CGI (Common Gateway Interface) 255
CGI (Common Gateway Interface) cookie support

. 255
CGI (Common Gateway Interface) debugging

. 255
Character handling (‘GNAT.Case Util‘) 255
Character Sets . 149
Check names . 15
Check pragma control . 15
Checks . 62, 64, 65, 68, 151
Child Units . 148
COBOL . 161
COBOL support . 165
Code Address . 110
Command line . 251, 255
Compatibility (between Ada 83 and Ada 95 / Ada

2005 / Ada 2012) . 299
Compatibility between Ada 95 and Ada 2005 . . 302
Compilation Date . 185
Compilation Time . 185
Compiler Version . 255
Compiler Version . 111
complex arithmetic . 167
Complex arithmetic accuracy 167
Complex elementary functions 166
Complex types . 165
Component Clause . 205

Component Size (in pragma
Component Alignment) 19

Component Size Clause . 196
Component Size clauses . 154
Component Size 4 (in pragma

Component Alignment) 19
configuration pragma Ada 2012 280
Constant After Elaboration 102
Constrained . 111
Contract cases . 20
Contract Cases . 102
control . 15
Controlling assertions . 15
Convention . 213
Convention for anonymous access types 214
Conventions . 3, 21
Conversion . 266
Cookie support in CGI . 255
CRC32 . 255
Current exception . 256
Current time . 263
Cyclic Redundancy Check . 255

D
Debug pools . 256
Debugging . 256, 257
debugging with Initialize Scalars 41
Dec Ada 83 casing compatibility 33
DEC Ada 83 . 31
Decimal radix support . 165
Decoding strings . 256
Decoding UTF-8 strings . 256
default . 189
Default (in pragma Component Alignment) 19
default settings . 57
Default Bit Order . 111
Default Initial Condition . 102
Default Scalar Storage Order 23, 111
Default Storage Pool . 24
Deferring aborts . 5
defining . 15
Defining check names . 15
Depends . 102
Deref . 111
Descriptor . 111
Descriptor Size . 111
determination of . 215
Dimension . 102
Dimension System . 103
Directory operations . 256
Directory operations iteration 256
Disable Controlled . 103
Discriminants . 114
Distribution Systems Annex 274
Dope vector . 111
Dump Memory . 259
Duration’Small . 151

Index 317

E
effect on representation . 213
Effective Reads . 104
Effective Writes . 104
Elab Body . 112
Elab Spec . 112
Elab Subp Body . 112
Elaborated . 112
Elaboration control . 26
Elimination of unused subprograms 26
Emax . 112
Enabled . 112
Enclosing Entity . 186
Encoding strings . 257
Encoding UTF-8 strings . 257
Endianness . 120, 254
Entry queuing policies . 164
Enum Rep . 113
Enum Val . 113
enumeration . 155
Enumeration representation clauses 155
Enumeration values . 150
Environment entries . 251
Epsilon . 113
Error detection . 148
Exception . 259
exception . 67, 265
Exception actions . 257
Exception information . 151
Exception retrieval . 256
Exception traces . 257
Exception Information’ . 186
Exception Message . 67, 186
Exception Name . 186
exceptions . 257
Exceptions . 257
Export . 159, 209
extendable . 257, 262
extending . 31
extensions for unbounded strings 252
extensions for unbounded wide strings 252
extensions for unbounded wide wide strings . . . 252
Extensions Visible . 104
External Names . 33

F
Fast Math . 113
Favor Top Level . 104
File . 186
File locking . 259
Finalization Size . 114
Fixed Value . 114
Float types . 150
Floating-point overflow . 14
Floating-Point Processor . 258
foreign . 263
Foreign threads . 263

Forking a new process . 274
Formal container for doubly linked lists 249
Formal container for hashed maps 249
Formal container for hashed sets 249
Formal container for ordered maps 250
Formal container for ordered sets 250
Formal container for vectors 250
Formatted String . 258
Fortran . 161
From Any . 114

G
Get Immediate . 159, 234, 264
Ghost . 104
global . 265
Global . 104
Global storage pool . 265
GNAT Extensions . 32
GNAT.Altivec (g-altive.ads) 253
GNAT.Altivec.Conversions (g-altcon.ads) 253
GNAT.Altivec.Vector Operations (g-alveop.ads)

. 253
GNAT.Altivec.Vector Types (g-alvety.ads) 253
GNAT.Altivec.Vector Views (g-alvevi.ads) 253
GNAT.Array Split (g-arrspl.ads) 253
GNAT.AWK (g-awk.ads) . 254
GNAT.Bind Environment (g-binenv.ads) 254
GNAT.Bounded Buffers (g-boubuf.ads) 254
GNAT.Bounded Mailboxes (g-boumai.ads) 254
GNAT.Bubble Sort (g-bubsor.ads) 254
GNAT.Bubble Sort A (g-busora.ads) 254
GNAT.Bubble Sort G (g-busorg.ads) 254
GNAT.Byte Order Mark (g-byorma.ads) 254
GNAT.Byte Swapping (g-bytswa.ads) 254
GNAT.Calendar (g-calend.ads) 255
GNAT.Calendar.Time IO (g-catiio.ads) 255
GNAT.Case Util (g-casuti.ads) 255
GNAT.CGI (g-cgi.ads) . 255
GNAT.CGI.Cookie (g-cgicoo.ads) 255
GNAT.CGI.Debug (g-cgideb.ads) 255
GNAT.Command Line (g-comlin.ads) 255
GNAT.Compiler Version (g-comver.ads) 255
GNAT.CRC32 (g-crc32.ads) 255
GNAT.Ctrl C (g-ctrl c.ads) 256
GNAT.Current Exception (g-curexc.ads) 256
GNAT.Debug Pools (g-debpoo.ads) 256
GNAT.Debug Utilities (g-debuti.ads) 256
GNAT.Decode String (g-decstr.ads) 256
GNAT.Decode UTF8 String (g-deutst.ads) . . . 256
GNAT.Directory Operations (g-dirope.ads) . . . 256
GNAT.Directory Operations.Iteration

(g-diopit.ads) . 256
GNAT.Dynamic HTables (g-dynhta.ads) 256
GNAT.Dynamic Tables (g-dyntab.ads) 257
GNAT.Encode String (g-encstr.ads) 257
GNAT.Encode UTF8 String (g-enutst.ads) . . . 257
GNAT.Exception Actions (g-excact.ads) 257

Index 318

GNAT.Exception Traces (g-exctra.ads) 257
GNAT.Exceptions (g-expect.ads) 257
GNAT.Expect (g-expect.ads) 257
GNAT.Expect.TTY (g-exptty.ads) 257
GNAT.Float Control (g-flocon.ads) 258
GNAT.Formatted String (g-forstr.ads) 258
GNAT.Heap Sort (g-heasor.ads) 258
GNAT.Heap Sort A (g-hesora.ads) 258
GNAT.Heap Sort G (g-hesorg.ads) 258
GNAT.HTable (g-htable.ads) 258
GNAT.IO (g-io.ads) . 258
GNAT.IO Aux (g-io aux.ads) 258
GNAT.Lock Files (g-locfil.ads) 259
GNAT.MBBS Discrete Random (g-mbdira.ads)

. 259
GNAT.MBBS Float Random (g-mbflra.ads) . . 259
GNAT.MD5 (g-md5.ads) . 259
GNAT.Memory Dump (g-memdum.ads) 259
GNAT.Most Recent Exception (g-moreex.ads)

. 259
GNAT.OS Lib (g-os lib.ads) 259
GNAT.Perfect Hash Generators (g-pehage.ads)

. 259
GNAT.Random Numbers (g-rannum.ads) 259
GNAT.Regexp (g-regexp.ads) 260
GNAT.Registry (g-regist.ads) 260
GNAT.Regpat (g-regpat.ads) 260
GNAT.Rewrite Data (g-rewdat.ads) 260
GNAT.Secondary Stack Info (g-sestin.ads) 260
GNAT.Semaphores (g-semaph.ads) 260
GNAT.Serial Communications (g-sercom.ads)

. 260
GNAT.SHA1 (g-sha1.ads) . 260
GNAT.SHA224 (g-sha224.ads) 260
GNAT.SHA256 (g-sha256.ads) 261
GNAT.SHA384 (g-sha384.ads) 261
GNAT.SHA512 (g-sha512.ads) 261
GNAT.Signals (g-signal.ads) 261
GNAT.Sockets (g-socket.ads) 261
GNAT.Source Info (g-souinf.ads) 261
GNAT.Spelling Checker (g-speche.ads) 261
GNAT.Spelling Checker Generic (g-spchge.ads)

. 261
GNAT.Spitbol (g-spitbo.ads) 262
GNAT.Spitbol.Patterns (g-spipat.ads) 261
GNAT.Spitbol.Table Boolean (g-sptabo.ads) . . 262
GNAT.Spitbol.Table Integer (g-sptain.ads) . . . 262
GNAT.Spitbol.Table VString (g-sptavs.ads) . . 262
GNAT.SSE (g-sse.ads) . 262
GNAT.SSE.Vector Types (g-ssvety.ads) 262
GNAT.String Hash (g-strhas.ads) 262
GNAT.String Split (g-strspl.ads) 262
GNAT.Strings (g-string.ads) 262
GNAT.Table (g-table.ads) . 262
GNAT.Task Lock (g-tasloc.ads) 263
GNAT.Threads (g-thread.ads) 263
GNAT.Time Stamp (g-timsta.ads) 263
GNAT.Traceback (g-traceb.ads) 263

GNAT.Traceback.Symbolic (g-trasym.ads) 263
GNAT.UTF 32 (g-table.ads) 263
GNAT.Wide Spelling Checker (g-u3spch.ads)

. 263
GNAT.Wide Spelling Checker (g-wispch.ads)

. 263
GNAT.Wide String Split (g-wistsp.ads) 264
GNAT.Wide Wide Spelling Checker

(g-zspche.ads) . 264
GNAT.Wide Wide String Split (g-zistsp.ads)

. 264

H
handling long command lines 251
Handling of Records with Holes 206
Has Access Values . 114
Has Discriminants . 114
Hash functions . 259, 262
Hash tables . 256, 258
Heap usage . 157

I
I/O interfacing . 264
IBM Packed Format . 264
Image . 264
Img . 114
Immediate Reclamation . 131
Implementation-dependent features 2
implicit . 157
Import . 209
Initial Condition . 104
Initialization . 86
Initializes . 104
Inline Always . 104
Input/Output facilities . 258
Integer maps . 262
Integer types . 150
Integer Value . 115
Interfaces . 159
Interfaces.C.Extensions (i-cexten.ads) 264
Interfaces.C.Streams (i-cstrea.ads) 264
Interfaces.Packed Decimal (i-pacdec.ads) 264
Interfaces.VxWorks (i-vxwork.ads) 264
Interfaces.VxWorks.Int Connection (i-vxinco.ads)

. 264
Interfaces.VxWorks.IO (i-vxwoio.ads) 264
interfacing . 264
Interfacing to C++ . 22, 71
Interfacing to VxWorks . 264
Interfacing to VxWorks’ I/O 264
interfacing with . 160, 161
Interfacing with ‘Text IO‘ . 252
Interfacing with ‘Wide Text IO‘ 252
Interfacing with ‘Wide Wide Text IO‘ 253
Interfacing with C++ . 21, 22
Interfacing with Direct IO . 251

Index 319

Interfacing with Sequential IO 251
Interfacing with Stream IO 251
Interrupt . 256
Interrupt support . 162
Interrupts . 163
Intrinsic operator . 185
Intrinsic Subprograms . 185
Invalid representations . 12
Invalid values . 12
Invalid Value . 115
Invariant . 104
Invariant’Class . 104
IO support . 252
Iterable . 105, 115

L
Large . 115
Latin-1 . 301
Latin 1 constants for Wide Character 248
Latin 1 constants for Wide Wide Character . . 249
Latin 9 constants for Character 248
Latin 9 constants for Wide Character 248
Latin 9 constants for Wide Wide Character . . 249
Library Level . 115
License checking . 46
Line . 186
Linker Section . 105
Little endian . 111
local . 265
Local storage pool . 265
Lock Free . 105, 116
Locking . 263
Locking Policies . 164
Locking using files . 259
Loop Entry . 116

M
Machine Code insertions . 271
Machine operations . 161
Machine Size . 116
Mailboxes . 254
Mantissa . 116
Maps . 262
Max Asynchronous Select Nesting 131
Max Entry Queue Depth . 131
Max Entry Queue Length . 131
Max Protected Entries . 131
Max Queue Length . 105
Max Select Alternatives . 131
Max Storage At Blocking . 132
Max Task Entries . 132
Max Tasks . 132
maximum . 116
Maximum Alignment . 116
Maximum Alignment attribute 188
Mechanism Code . 116

Memory allocation . 265
Memory corruption debugging 256
Memory-mapped I/O . 212
Message Digest MD5 . 259
monotonic . 164
multidimensional . 150
Multidimensional arrays . 150
Multiprocessor interface . 265

N
Named assertions . 14, 15
Named numbers . 124
No Abort Statements . 132
No Access Parameter Allocators 132
No Access Subprograms . 132
No Allocators . 132
No Anonymous Allocators . 132
No Asynchronous Control . 132
No Calendar . 132
No Coextensions . 132
No Default Initialization . 133
No Delay . 133
No Dependence . 133
No Direct Boolean Operators 133
No Dispatch . 133
No Dispatching Calls . 133
No Dynamic Attachment . 134
No Dynamic Interrupts . 134
No Dynamic Priorities . 134
No Dynamic Sized Objects 142
No Elaboration Code . 141
No Elaboration Code All . 105
No Entry Calls In Elaboration Code 134
No Entry Queue . 142
No Enumeration Maps . 135
No Exception Handlers . 135
No Exception Propagation 135
No Exception Registration 135
No Exceptions . 135
No Finalization . 135
No Fixed Point . 136
No Floating Point . 136
No Implementation Aspect Specifications 142
No Implementation Attributes 142
No Implementation Identifiers 142
No Implementation Pragmas 143
No Implementation Restrictions 143
No Implementation Units . 143
No Implicit Aliasing . 143
No Implicit Conditionals . 136
No Implicit Dynamic Code 136
No Implicit Heap Allocations 136
No Implicit Loops . 143
No Implicit Protected Object Allocations 137
No Implicit Task Allocations 137
No Initialize Scalars . 137
No IO . 137

Index 320

No Local Allocators . 137
No Local Protected Objects 137
No Local Timing Events . 137
No Long Long Integers . 137
No Multiple Elaboration . 137
No Nested Finalization . 137
No Obsolescent Features . 143
No Protected Type Allocators 138
No Protected Types . 138
No Recursion . 138
No Reentrancy . 138
No Relative Delay . 138
No Requeue . 138
No Requeue Statements . 138
No Secondary Stack . 138
No Select Statements . 138
No Specific Termination Handlers 138
No Specification of Aspect 138
No Standard Allocators After Elaboration . . . 139
No Standard Storage Pools 139
No Stream Optimizations . 139
No Streams . 139
No Tagged Streams . 106
No Task Allocators . 139
No Task At Interrupt Priority 139
No Task Attributes . 139
No Task Attributes Package 139
No Task Hierarchy . 139
No Task Termination . 140
No Tasking . 140
No Terminate Alternatives 140
No Unchecked Access . 140
No Unchecked Conversion . 140
No Unchecked Deallocation 140
No Use Of Entity . 140
No Wide Characters . 143
Null Occurrence . 251
Null Parameter . 117
Numerics . 165

O
Object Size . 106, 117, 193
Obsolsecent . 106
obtaining most recent . 259
of an address . 264
of bits . 197
of bytes . 198
of compiler . 255
of objects . 193
Old . 118
on ‘Address‘ . 156
Operating System interface 259
Operations . 156
operations of . 156
ordering . 197, 198
Overlaying of objects . 210

P
Package ‘Interrupts‘ . 163
Package Interfaces . 159
Package Task Attributes . 163
Packed Decimal . 264
Packed types . 152
Parameters . 116, 118
Parsing . 254
Part Of . 106
Partition communication subsystem 165
Partition interfacing functions 265
Passed By Reference . 118
passing . 117
Passing by copy . 13
passing mechanism . 116
Pattern matching . 260, 261
PCS . 165
Persistent BSS . 106
Pool Address . 118
Portability . 2
Post . 62, 64
Postcondition . 62
postconditions . 62, 64
Pragma . 188
pragma Ada 2012 . 280
Pragma Component Alignment 18
Pragma Pack (for arrays) . 202
Pragma Pack (for records) . 204
Pragma Pack (for type Natural) 203
Pragma Pack warning . 203
pragma Shared Passive . 274
Pragmas . 65, 148
Pre . 65
Pre-elaboration requirements 163
Pre Class . 68
Preconditions . 65
preconditions . 65, 68
Predicate . 106
Preemptive abort . 164
Prefix Exception Messages . 67
Protected procedure handlers 163
Pure . 257
Pure packages . 257
Pure Barriers . 140
Pure Function . 106

R
Random number generation 158, 259
Range Length . 118
Rational compatibility . 60
Rational Profile . 37
Rational profile . 60, 93
Read attribute . 158
Real-Time Systems Annex compliance 274
Record Representation Clause 205
Record representation clauses 155
records . 155

Index 321

Refined Depends . 106
Refined Global . 106
Refined Post . 106
Refined State . 106
Regular expressions . 260
Remote Access Type . 106
Removing command line arguments 251
Representation . 215, 266
representation . 188
Representation Clause . 188
Representation clauses 152, 155
Representation Clauses . 188
representation of . 124
Representation of enums . 113
Representation of wide characters 266
Representation Pragma . 188
response file . 251
Response file for command line 251
Restriction Set . 119
Restrictions . 119
Restrictions definitions . 266
Result . 119
Return values . 116
Rewrite data . 260
Rotate Left . 186
Rotate Right . 186
Run-time restrictions access 266

S
Safe Emax . 120
Safe Large . 120
Safe Small . 120
Scalar storage order . 120
Scalar Storage Order 23, 107, 120
Secondary Stack Info . 260
Secondary Stack Size . 107
Secure Hash Algorithm SHA-1 260
Secure Hash Algorithm SHA-224 260
Secure Hash Algorithm SHA-256 261
Secure Hash Algorithm SHA-384 261
Secure Hash Algorithm SHA-512 261
Semaphores . 260
Sequential elaboration policy 167
Serial Communications . 260
Sets of strings . 262
setting for not-first subtype 129
Shared . 107
Shared passive packages . 274
SHARED MEMORY DIRECTORY environment

variable . 275
Shift operators . 71
Shift Left . 186
Shift Right . 186
Shift Right Arithmetic . 186
Signals . 261
simple . 78, 122
Simple I/O . 258

Simple storage pool . 78, 122
Simple Barriers . 141
Simple Storage Pool . 107, 122
Simple Storage Pool Type 107
Size . 93, 117, 129, 191, 193
size . 191
Size Clause . 189
Size clauses . 154
Size for biased representation 193
Size of ‘Address‘ . 109
Small . 122
Sockets . 261
Sorting . 254, 258
Source Information . 261
Source Location . 187
SPARK . 144
SPARK 05 . 143
SPARK Mode . 107
Spawn capability . 259
Spell checking . 261, 263, 264
SPITBOL interface . 262
SPITBOL pattern matching 261
SPITBOL Tables . 262
Static Priorities . 141
Static Storage Size . 141
Storage place attributes . 156
Storage pool . 78, 122, 265
Storage Size Clause . 190
Storage Unit . 122
Storage Unit (in pragma Component Alignment)

. 19
Stream files . 234
Stream operations . 266
Stream oriented attributes 157, 158
String decoding . 256
String encoding . 257
String maps . 262
String splitter . 262
String stream operations . 266
Stub Type . 123
Subprogram address . 110
subtypes . 189
Suppress Debug Info . 107
Suppress Initialization . 107
Suppressing external name 29, 30, 31
Suppressing initialization . 86
suppression of . 86, 151
Suppression of checks . 151
synonyms . 21, 65
System . 31
System.Address Image (s-addima.ads) 264
System.Assertions (s-assert.ads) 265
System.Atomic Counters (s-atocou.ads) 265
System.Memory (s-memory.ads) 265
System.Multiprocessors (s-multip.ads) 265
System.Multiprocessors.Dispatching Domains

(s-mudido.ads) . 265
System.Partition Interface (s-parint.ads) 265

Index 322

System.Pool Global (s-pooglo.ads) 265
System.Pool Local (s-pooloc.ads) 265
System.Restrictions (s-restri.ads) 266
System.Rident (s-rident.ads) 266
System.Strings.Stream Ops (s-ststop.ads) 266
System.Unsigned Types (s-unstyp.ads) 266
System.Wch Cnv (s-wchcnv.ads) 266
System.Wch Con (s-wchcon.ads) 266
System Allocator Alignment 123

T
Table implementation . 257, 262
Target Name . 123
Task locking . 263
Task specific storage . 88
Task synchronization . 263
Task Attributes . 88, 163
Tasking restrictions . 164
Test cases . 87
Test Case . 107
testing for . 114, 251
Text IO . 252, 258
Text IO extensions . 234
Text IO for unbounded strings 234
Text IO operations . 234
Text IO resetting standard files 252
Thread Local Storage . 107
Threads . 263
Time . 164, 255
Time stamp . 263
TLS (Thread Local Storage) 88
To Address . 123, 209
To Any . 123
Trace back facilities . 263
Traceback for Exception Occurrence 251
trampoline . 136
Type Class . 123
Type Key . 124
TypeCode . 124
typographical . 3
Typographical conventions . 3

U
Unbounded String . 234, 252
Unbounded Wide String . 252
Unbounded Wide Wide String 252
Unchecked conversion . 156
Unchecked deallocation . 157
Unconstrained Array . 124
Unevaluated Use Of Old . 90
Unicode . 256, 257
Unicode categorization 252, 253
Unions in C . 89
Universal Aliasing . 107
Universal Data . 107

Universal Literal String . 124
unmodified . 91
Unmodified . 107
Unreferenced . 108
unreferenced . 91, 92
Unreferenced Objects . 108
unrestricted . 125
Unrestricted Access . 125
unused . 94
Update . 128
used for objects . 117
UTF-8 . 256, 257
UTF-8 representation . 254
UTF-8 string decoding . 256
UTF-8 string encoding . 257

V
VADS compatibility . 93, 129
VADS Size . 129
Valid Scalars . 129
Value Size . 108, 129, 193
variant record objects . 191
Variant record objects . 191
Version . 255
Volatile Full Access . 108
Volatile Function . 108
VxWorks . 264

W
Warnings . 91, 92, 94, 108
Wchar T Size . 129
when passed by reference . 118
Wide characte representations 254
Wide Character . 266
Wide character codes . 263
Wide character decoding . 256
Wide character encoding 256, 257
Wide String . 266
Wide Character . 252
Wide String splitter . 264
Wide Text IO resetting standard files 252
Wide Wide Character . 253
Wide Wide String splitter . 264
Wide Wide Text IO resetting standard files . . 253
Windows Registry . 260
Word Size . 130
Write attribute . 158

X
XDR representation . 158

Z
Zero address . 117

	About This Guide
	What This Reference Manual Contains
	Conventions
	Related Information

	Implementation Defined Pragmas
	Pragma Abort_Defer
	Pragma Abstract_State
	Pragma Ada_83
	Pragma Ada_95
	Pragma Ada_05
	Pragma Ada_2005
	Pragma Ada_12
	Pragma Ada_2012
	Pragma Allow_Integer_Address
	Pragma Annotate
	Pragma Assert
	Pragma Assert_And_Cut
	Pragma Assertion_Policy
	Pragma Assume
	Pragma Assume_No_Invalid_Values
	Pragma Async_Readers
	Pragma Async_Writers
	Pragma Attribute_Definition
	Pragma C_Pass_By_Copy
	Pragma Check
	Pragma Check_Float_Overflow
	Pragma Check_Name
	Pragma Check_Policy
	Pragma Comment
	Pragma Common_Object
	Pragma Compile_Time_Error
	Pragma Compile_Time_Warning
	Pragma Compiler_Unit
	Pragma Compiler_Unit_Warning
	Pragma Complete_Representation
	Pragma Complex_Representation
	Pragma Component_Alignment
	Pragma Constant_After_Elaboration
	Pragma Contract_Cases
	Pragma Convention_Identifier
	Pragma CPP_Class
	Pragma CPP_Constructor
	Pragma CPP_Virtual
	Pragma CPP_Vtable
	Pragma CPU
	Pragma Default_Initial_Condition
	Pragma Debug
	Pragma Debug_Policy
	Pragma Default_Scalar_Storage_Order
	Pragma Default_Storage_Pool
	Pragma Depends
	Pragma Detect_Blocking
	Pragma Disable_Atomic_Synchronization
	Pragma Dispatching_Domain
	Pragma Effective_Reads
	Pragma Effective_Writes
	Pragma Elaboration_Checks
	Pragma Eliminate
	Pragma Enable_Atomic_Synchronization
	Pragma Export_Function
	Pragma Export_Object
	Pragma Export_Procedure
	Pragma Export_Value
	Pragma Export_Valued_Procedure
	Pragma Extend_System
	Pragma Extensions_Allowed
	Pragma Extensions_Visible
	Pragma External
	Pragma External_Name_Casing
	Pragma Fast_Math
	Pragma Favor_Top_Level
	Pragma Finalize_Storage_Only
	Pragma Float_Representation
	Pragma Ghost
	Pragma Global
	Pragma Ident
	Pragma Ignore_Pragma
	Pragma Implementation_Defined
	Pragma Implemented
	Pragma Implicit_Packing
	Pragma Import_Function
	Pragma Import_Object
	Pragma Import_Procedure
	Pragma Import_Valued_Procedure
	Pragma Independent
	Pragma Independent_Components
	Pragma Initial_Condition
	Pragma Initialize_Scalars
	Pragma Initializes
	Pragma Inline_Always
	Pragma Inline_Generic
	Pragma Interface
	Pragma Interface_Name
	Pragma Interrupt_Handler
	Pragma Interrupt_State
	Pragma Invariant
	Pragma Keep_Names
	Pragma License
	Pragma Link_With
	Pragma Linker_Alias
	Pragma Linker_Constructor
	Pragma Linker_Destructor
	Pragma Linker_Section
	Pragma Lock_Free
	Pragma Loop_Invariant
	Pragma Loop_Optimize
	Pragma Loop_Variant
	Pragma Machine_Attribute
	Pragma Main
	Pragma Main_Storage
	Pragma Max_Queue_Length
	Pragma No_Body
	Pragma No_Elaboration_Code_All
	Pragma No_Inline
	Pragma No_Return
	Pragma No_Run_Time
	Pragma No_Strict_Aliasing
	Pragma No_Tagged_Streams
	Pragma Normalize_Scalars
	Pragma Obsolescent
	Pragma Optimize_Alignment
	Pragma Ordered
	Pragma Overflow_Mode
	Pragma Overriding_Renamings
	Pragma Partition_Elaboration_Policy
	Pragma Part_Of
	Pragma Passive
	Pragma Persistent_BSS
	Pragma Polling
	Pragma Post
	Pragma Postcondition
	Pragma Post_Class
	Pragma Rename_Pragma
	Pragma Pre
	Pragma Precondition
	Pragma Predicate
	Pragma Predicate_Failure
	Pragma Preelaborable_Initialization
	Pragma Prefix_Exception_Messages
	Pragma Pre_Class
	Pragma Priority_Specific_Dispatching
	Pragma Profile
	Pragma Profile_Warnings
	Pragma Propagate_Exceptions
	Pragma Provide_Shift_Operators
	Pragma Psect_Object
	Pragma Pure_Function
	Pragma Rational
	Pragma Ravenscar
	Pragma Refined_Depends
	Pragma Refined_Global
	Pragma Refined_Post
	Pragma Refined_State
	Pragma Relative_Deadline
	Pragma Remote_Access_Type
	Pragma Restricted_Run_Time
	Pragma Restriction_Warnings
	Pragma Reviewable
	Pragma Secondary_Stack_Size
	Pragma Share_Generic
	Pragma Shared
	Pragma Short_Circuit_And_Or
	Pragma Short_Descriptors
	Pragma Simple_Storage_Pool_Type
	Pragma Source_File_Name
	Pragma Source_File_Name_Project
	Pragma Source_Reference
	Pragma SPARK_Mode
	Pragma Static_Elaboration_Desired
	Pragma Stream_Convert
	Pragma Style_Checks
	Pragma Subtitle
	Pragma Suppress
	Pragma Suppress_All
	Pragma Suppress_Debug_Info
	Pragma Suppress_Exception_Locations
	Pragma Suppress_Initialization
	Pragma Task_Name
	Pragma Task_Storage
	Pragma Test_Case
	Pragma Thread_Local_Storage
	Pragma Time_Slice
	Pragma Title
	Pragma Type_Invariant
	Pragma Type_Invariant_Class
	Pragma Unchecked_Union
	Pragma Unevaluated_Use_Of_Old
	Pragma Unimplemented_Unit
	Pragma Universal_Aliasing
	Pragma Universal_Data
	Pragma Unmodified
	Pragma Unreferenced
	Pragma Unreferenced_Objects
	Pragma Unreserve_All_Interrupts
	Pragma Unsuppress
	Pragma Use_VADS_Size
	Pragma Unused
	Pragma Validity_Checks
	Pragma Volatile
	Pragma Volatile_Full_Access
	Pragma Volatile_Function
	Pragma Warning_As_Error
	Pragma Warnings
	Pragma Weak_External
	Pragma Wide_Character_Encoding

	Implementation Defined Aspects
	Aspect Abstract_State
	Annotate
	Aspect Async_Readers
	Aspect Async_Writers
	Aspect Constant_After_Elaboration
	Aspect Contract_Cases
	Aspect Depends
	Aspect Default_Initial_Condition
	Aspect Dimension
	Aspect Dimension_System
	Aspect Disable_Controlled
	Aspect Effective_Reads
	Aspect Effective_Writes
	Aspect Extensions_Visible
	Aspect Favor_Top_Level
	Aspect Ghost
	Aspect Global
	Aspect Initial_Condition
	Aspect Initializes
	Aspect Inline_Always
	Aspect Invariant
	Aspect Invariant'Class
	Aspect Iterable
	Aspect Linker_Section
	Aspect Lock_Free
	Aspect Max_Queue_Length
	Aspect No_Elaboration_Code_All
	Aspect No_Tagged_Streams
	Aspect Object_Size
	Aspect Obsolescent
	Aspect Part_Of
	Aspect Persistent_BSS
	Aspect Predicate
	Aspect Pure_Function
	Aspect Refined_Depends
	Aspect Refined_Global
	Aspect Refined_Post
	Aspect Refined_State
	Aspect Remote_Access_Type
	Aspect Secondary_Stack_Size
	Aspect Scalar_Storage_Order
	Aspect Shared
	Aspect Simple_Storage_Pool
	Aspect Simple_Storage_Pool_Type
	Aspect SPARK_Mode
	Aspect Suppress_Debug_Info
	Aspect Suppress_Initialization
	Aspect Test_Case
	Aspect Thread_Local_Storage
	Aspect Universal_Aliasing
	Aspect Universal_Data
	Aspect Unmodified
	Aspect Unreferenced
	Aspect Unreferenced_Objects
	Aspect Value_Size
	Aspect Volatile_Full_Access
	Aspect Volatile_Function
	Aspect Warnings

	Implementation Defined Attributes
	Attribute Abort_Signal
	Attribute Address_Size
	Attribute Asm_Input
	Attribute Asm_Output
	Attribute Atomic_Always_Lock_Free
	Attribute Bit
	Attribute Bit_Position
	Attribute Code_Address
	Attribute Compiler_Version
	Attribute Constrained
	Attribute Default_Bit_Order
	Attribute Default_Scalar_Storage_Order
	Attribute Deref
	Attribute Descriptor_Size
	Attribute Elaborated
	Attribute Elab_Body
	Attribute Elab_Spec
	Attribute Elab_Subp_Body
	Attribute Emax
	Attribute Enabled
	Attribute Enum_Rep
	Attribute Enum_Val
	Attribute Epsilon
	Attribute Fast_Math
	Attribute Finalization_Size
	Attribute Fixed_Value
	Attribute From_Any
	Attribute Has_Access_Values
	Attribute Has_Discriminants
	Attribute Img
	Attribute Integer_Value
	Attribute Invalid_Value
	Attribute Iterable
	Attribute Large
	Attribute Library_Level
	Attribute Lock_Free
	Attribute Loop_Entry
	Attribute Machine_Size
	Attribute Mantissa
	Attribute Maximum_Alignment
	Attribute Mechanism_Code
	Attribute Null_Parameter
	Attribute Object_Size
	Attribute Old
	Attribute Passed_By_Reference
	Attribute Pool_Address
	Attribute Range_Length
	Attribute Restriction_Set
	Attribute Result
	Attribute Safe_Emax
	Attribute Safe_Large
	Attribute Safe_Small
	Attribute Scalar_Storage_Order
	Attribute Simple_Storage_Pool
	Attribute Small
	Attribute Storage_Unit
	Attribute Stub_Type
	Attribute System_Allocator_Alignment
	Attribute Target_Name
	Attribute To_Address
	Attribute To_Any
	Attribute Type_Class
	Attribute Type_Key
	Attribute TypeCode
	Attribute Unconstrained_Array
	Attribute Universal_Literal_String
	Attribute Unrestricted_Access
	Attribute Update
	Attribute Valid_Scalars
	Attribute VADS_Size
	Attribute Value_Size
	Attribute Wchar_T_Size
	Attribute Word_Size

	Standard and Implementation Defined Restrictions
	Partition-Wide Restrictions
	Immediate_Reclamation
	Max_Asynchronous_Select_Nesting
	Max_Entry_Queue_Length
	Max_Protected_Entries
	Max_Select_Alternatives
	Max_Storage_At_Blocking
	Max_Task_Entries
	Max_Tasks
	No_Abort_Statements
	No_Access_Parameter_Allocators
	No_Access_Subprograms
	No_Allocators
	No_Anonymous_Allocators
	No_Asynchronous_Control
	No_Calendar
	No_Coextensions
	No_Default_Initialization
	No_Delay
	No_Dependence
	No_Direct_Boolean_Operators
	No_Dispatch
	No_Dispatching_Calls
	No_Dynamic_Attachment
	No_Dynamic_Priorities
	No_Entry_Calls_In_Elaboration_Code
	No_Enumeration_Maps
	No_Exception_Handlers
	No_Exception_Propagation
	No_Exception_Registration
	No_Exceptions
	No_Finalization
	No_Fixed_Point
	No_Floating_Point
	No_Implicit_Conditionals
	No_Implicit_Dynamic_Code
	No_Implicit_Heap_Allocations
	No_Implicit_Protected_Object_Allocations
	No_Implicit_Task_Allocations
	No_Initialize_Scalars
	No_IO
	No_Local_Allocators
	No_Local_Protected_Objects
	No_Local_Timing_Events
	No_Long_Long_Integers
	No_Multiple_Elaboration
	No_Nested_Finalization
	No_Protected_Type_Allocators
	No_Protected_Types
	No_Recursion
	No_Reentrancy
	No_Relative_Delay
	No_Requeue_Statements
	No_Secondary_Stack
	No_Select_Statements
	No_Specific_Termination_Handlers
	No_Specification_of_Aspect
	No_Standard_Allocators_After_Elaboration
	No_Standard_Storage_Pools
	No_Stream_Optimizations
	No_Streams
	No_Task_Allocators
	No_Task_At_Interrupt_Priority
	No_Task_Attributes_Package
	No_Task_Hierarchy
	No_Task_Termination
	No_Tasking
	No_Terminate_Alternatives
	No_Unchecked_Access
	No_Unchecked_Conversion
	No_Unchecked_Deallocation
	No_Use_Of_Entity
	Pure_Barriers
	Simple_Barriers
	Static_Priorities
	Static_Storage_Size

	Program Unit Level Restrictions
	No_Elaboration_Code
	No_Dynamic_Sized_Objects
	No_Entry_Queue
	No_Implementation_Aspect_Specifications
	No_Implementation_Attributes
	No_Implementation_Identifiers
	No_Implementation_Pragmas
	No_Implementation_Restrictions
	No_Implementation_Units
	No_Implicit_Aliasing
	No_Implicit_Loops
	No_Obsolescent_Features
	No_Wide_Characters
	SPARK_05

	Implementation Advice
	RM 1.1.3(20): Error Detection
	RM 1.1.3(31): Child Units
	RM 1.1.5(12): Bounded Errors
	RM 2.8(16): Pragmas
	RM 2.8(17-19): Pragmas
	RM 3.5.2(5): Alternative Character Sets
	RM 3.5.4(28): Integer Types
	RM 3.5.4(29): Integer Types
	RM 3.5.5(8): Enumeration Values
	RM 3.5.7(17): Float Types
	RM 3.6.2(11): Multidimensional Arrays
	RM 9.6(30-31): Duration'Small
	RM 10.2.1(12): Consistent Representation
	RM 11.4.1(19): Exception Information
	RM 11.5(28): Suppression of Checks
	RM 13.1 (21-24): Representation Clauses
	RM 13.2(6-8): Packed Types
	RM 13.3(14-19): Address Clauses
	RM 13.3(29-35): Alignment Clauses
	RM 13.3(42-43): Size Clauses
	RM 13.3(50-56): Size Clauses
	RM 13.3(71-73): Component Size Clauses
	RM 13.4(9-10): Enumeration Representation Clauses
	RM 13.5.1(17-22): Record Representation Clauses
	RM 13.5.2(5): Storage Place Attributes
	RM 13.5.3(7-8): Bit Ordering
	RM 13.7(37): Address as Private
	RM 13.7.1(16): Address Operations
	RM 13.9(14-17): Unchecked Conversion
	RM 13.11(23-25): Implicit Heap Usage
	RM 13.11.2(17): Unchecked Deallocation
	RM 13.13.2(17): Stream Oriented Attributes
	RM A.1(52): Names of Predefined Numeric Types
	RM A.3.2(49): Ada.Characters.Handling
	RM A.4.4(106): Bounded-Length String Handling
	RM A.5.2(46-47): Random Number Generation
	RM A.10.7(23): Get_Immediate
	RM B.1(39-41): Pragma Export
	RM B.2(12-13): Package Interfaces
	RM B.3(63-71): Interfacing with C
	RM B.4(95-98): Interfacing with COBOL
	RM B.5(22-26): Interfacing with Fortran
	RM C.1(3-5): Access to Machine Operations
	RM C.1(10-16): Access to Machine Operations
	RM C.3(28): Interrupt Support
	RM C.3.1(20-21): Protected Procedure Handlers
	RM C.3.2(25): Package Interrupts
	RM C.4(14): Pre-elaboration Requirements
	RM C.5(8): Pragma Discard_Names
	RM C.7.2(30): The Package Task_Attributes
	RM D.3(17): Locking Policies
	RM D.4(16): Entry Queuing Policies
	RM D.6(9-10): Preemptive Abort
	RM D.7(21): Tasking Restrictions
	RM D.8(47-49): Monotonic Time
	RM E.5(28-29): Partition Communication Subsystem
	RM F(7): COBOL Support
	RM F.1(2): Decimal Radix Support
	RM G: Numerics
	RM G.1.1(56-58): Complex Types
	RM G.1.2(49): Complex Elementary Functions
	RM G.2.4(19): Accuracy Requirements
	RM G.2.6(15): Complex Arithmetic Accuracy
	RM H.6(15/2): Pragma Partition_Elaboration_Policy

	Implementation Defined Characteristics
	Intrinsic Subprograms
	Intrinsic Operators
	Compilation_Date
	Compilation_Time
	Enclosing_Entity
	Exception_Information
	Exception_Message
	Exception_Name
	File
	Line
	Shifts and Rotates
	Source_Location

	Representation Clauses and Pragmas
	Alignment Clauses
	Size Clauses
	Storage_Size Clauses
	Size of Variant Record Objects
	Biased Representation
	Value_Size and Object_Size Clauses
	Component_Size Clauses
	Bit_Order Clauses
	Effect of Bit_Order on Byte Ordering
	Pragma Pack for Arrays
	Pragma Pack for Records
	Record Representation Clauses
	Handling of Records with Holes
	Enumeration Clauses
	Address Clauses
	Use of Address Clauses for Memory-Mapped I/O
	Effect of Convention on Representation
	Conventions and Anonymous Access Types
	Determining the Representations chosen by GNAT

	Standard Library Routines
	The Implementation of Standard I/O
	Standard I/O Packages
	FORM Strings
	Direct_IO
	Sequential_IO
	Text_IO
	Stream Pointer Positioning
	Reading and Writing Non-Regular Files
	Get_Immediate
	Treating Text_IO Files as Streams
	Text_IO Extensions
	Text_IO Facilities for Unbounded Strings

	Wide_Text_IO
	Stream Pointer Positioning
	Reading and Writing Non-Regular Files

	Wide_Wide_Text_IO
	Stream Pointer Positioning
	Reading and Writing Non-Regular Files

	Stream_IO
	Text Translation
	Shared Files
	Filenames encoding
	File content encoding
	Open Modes
	Operations on C Streams
	Interfacing to C Streams

	The GNAT Library
	Ada.Characters.Latin_9 (a-chlat9.ads)
	Ada.Characters.Wide_Latin_1 (a-cwila1.ads)
	Ada.Characters.Wide_Latin_9 (a-cwila1.ads)
	Ada.Characters.Wide_Wide_Latin_1 (a-chzla1.ads)
	Ada.Characters.Wide_Wide_Latin_9 (a-chzla9.ads)
	Ada.Containers.Formal_Doubly_Linked_Lists (a-cfdlli.ads)
	Ada.Containers.Formal_Hashed_Maps (a-cfhama.ads)
	Ada.Containers.Formal_Hashed_Sets (a-cfhase.ads)
	Ada.Containers.Formal_Ordered_Maps (a-cforma.ads)
	Ada.Containers.Formal_Ordered_Sets (a-cforse.ads)
	Ada.Containers.Formal_Vectors (a-cofove.ads)
	Ada.Containers.Formal_Indefinite_Vectors (a-cfinve.ads)
	Ada.Containers.Bounded_Holders (a-coboho.ads)
	Ada.Command_Line.Environment (a-colien.ads)
	Ada.Command_Line.Remove (a-colire.ads)
	Ada.Command_Line.Response_File (a-clrefi.ads)
	Ada.Direct_IO.C_Streams (a-diocst.ads)
	Ada.Exceptions.Is_Null_Occurrence (a-einuoc.ads)
	Ada.Exceptions.Last_Chance_Handler (a-elchha.ads)
	Ada.Exceptions.Traceback (a-exctra.ads)
	Ada.Sequential_IO.C_Streams (a-siocst.ads)
	Ada.Streams.Stream_IO.C_Streams (a-ssicst.ads)
	Ada.Strings.Unbounded.Text_IO (a-suteio.ads)
	Ada.Strings.Wide_Unbounded.Wide_Text_IO (a-swuwti.ads)
	Ada.Strings.Wide_Wide_Unbounded.Wide_Wide_Text_IO (a-szuzti.ads)
	Ada.Text_IO.C_Streams (a-tiocst.ads)
	Ada.Text_IO.Reset_Standard_Files (a-tirsfi.ads)
	Ada.Wide_Characters.Unicode (a-wichun.ads)
	Ada.Wide_Text_IO.C_Streams (a-wtcstr.ads)
	Ada.Wide_Text_IO.Reset_Standard_Files (a-wrstfi.ads)
	Ada.Wide_Wide_Characters.Unicode (a-zchuni.ads)
	Ada.Wide_Wide_Text_IO.C_Streams (a-ztcstr.ads)
	Ada.Wide_Wide_Text_IO.Reset_Standard_Files (a-zrstfi.ads)
	GNAT.Altivec (g-altive.ads)
	GNAT.Altivec.Conversions (g-altcon.ads)
	GNAT.Altivec.Vector_Operations (g-alveop.ads)
	GNAT.Altivec.Vector_Types (g-alvety.ads)
	GNAT.Altivec.Vector_Views (g-alvevi.ads)
	GNAT.Array_Split (g-arrspl.ads)
	GNAT.AWK (g-awk.ads)
	GNAT.Bind_Environment (g-binenv.ads)
	GNAT.Bounded_Buffers (g-boubuf.ads)
	GNAT.Bounded_Mailboxes (g-boumai.ads)
	GNAT.Bubble_Sort (g-bubsor.ads)
	GNAT.Bubble_Sort_A (g-busora.ads)
	GNAT.Bubble_Sort_G (g-busorg.ads)
	GNAT.Byte_Order_Mark (g-byorma.ads)
	GNAT.Byte_Swapping (g-bytswa.ads)
	GNAT.Calendar (g-calend.ads)
	GNAT.Calendar.Time_IO (g-catiio.ads)
	GNAT.CRC32 (g-crc32.ads)
	GNAT.Case_Util (g-casuti.ads)
	GNAT.CGI (g-cgi.ads)
	GNAT.CGI.Cookie (g-cgicoo.ads)
	GNAT.CGI.Debug (g-cgideb.ads)
	GNAT.Command_Line (g-comlin.ads)
	GNAT.Compiler_Version (g-comver.ads)
	GNAT.Ctrl_C (g-ctrl_c.ads)
	GNAT.Current_Exception (g-curexc.ads)
	GNAT.Debug_Pools (g-debpoo.ads)
	GNAT.Debug_Utilities (g-debuti.ads)
	GNAT.Decode_String (g-decstr.ads)
	GNAT.Decode_UTF8_String (g-deutst.ads)
	GNAT.Directory_Operations (g-dirope.ads)
	GNAT.Directory_Operations.Iteration (g-diopit.ads)
	GNAT.Dynamic_HTables (g-dynhta.ads)
	GNAT.Dynamic_Tables (g-dyntab.ads)
	GNAT.Encode_String (g-encstr.ads)
	GNAT.Encode_UTF8_String (g-enutst.ads)
	GNAT.Exception_Actions (g-excact.ads)
	GNAT.Exception_Traces (g-exctra.ads)
	GNAT.Exceptions (g-expect.ads)
	GNAT.Expect (g-expect.ads)
	GNAT.Expect.TTY (g-exptty.ads)
	GNAT.Float_Control (g-flocon.ads)
	GNAT.Formatted_String (g-forstr.ads)
	GNAT.Heap_Sort (g-heasor.ads)
	GNAT.Heap_Sort_A (g-hesora.ads)
	GNAT.Heap_Sort_G (g-hesorg.ads)
	GNAT.HTable (g-htable.ads)
	GNAT.IO (g-io.ads)
	GNAT.IO_Aux (g-io_aux.ads)
	GNAT.Lock_Files (g-locfil.ads)
	GNAT.MBBS_Discrete_Random (g-mbdira.ads)
	GNAT.MBBS_Float_Random (g-mbflra.ads)
	GNAT.MD5 (g-md5.ads)
	GNAT.Memory_Dump (g-memdum.ads)
	GNAT.Most_Recent_Exception (g-moreex.ads)
	GNAT.OS_Lib (g-os_lib.ads)
	GNAT.Perfect_Hash_Generators (g-pehage.ads)
	GNAT.Random_Numbers (g-rannum.ads)
	GNAT.Regexp (g-regexp.ads)
	GNAT.Registry (g-regist.ads)
	GNAT.Regpat (g-regpat.ads)
	GNAT.Rewrite_Data (g-rewdat.ads)
	GNAT.Secondary_Stack_Info (g-sestin.ads)
	GNAT.Semaphores (g-semaph.ads)
	GNAT.Serial_Communications (g-sercom.ads)
	GNAT.SHA1 (g-sha1.ads)
	GNAT.SHA224 (g-sha224.ads)
	GNAT.SHA256 (g-sha256.ads)
	GNAT.SHA384 (g-sha384.ads)
	GNAT.SHA512 (g-sha512.ads)
	GNAT.Signals (g-signal.ads)
	GNAT.Sockets (g-socket.ads)
	GNAT.Source_Info (g-souinf.ads)
	GNAT.Spelling_Checker (g-speche.ads)
	GNAT.Spelling_Checker_Generic (g-spchge.ads)
	GNAT.Spitbol.Patterns (g-spipat.ads)
	GNAT.Spitbol (g-spitbo.ads)
	GNAT.Spitbol.Table_Boolean (g-sptabo.ads)
	GNAT.Spitbol.Table_Integer (g-sptain.ads)
	GNAT.Spitbol.Table_VString (g-sptavs.ads)
	GNAT.SSE (g-sse.ads)
	GNAT.SSE.Vector_Types (g-ssvety.ads)
	GNAT.String_Hash (g-strhas.ads)
	GNAT.Strings (g-string.ads)
	GNAT.String_Split (g-strspl.ads)
	GNAT.Table (g-table.ads)
	GNAT.Task_Lock (g-tasloc.ads)
	GNAT.Time_Stamp (g-timsta.ads)
	GNAT.Threads (g-thread.ads)
	GNAT.Traceback (g-traceb.ads)
	GNAT.Traceback.Symbolic (g-trasym.ads)
	GNAT.UTF_32 (g-table.ads)
	GNAT.Wide_Spelling_Checker (g-u3spch.ads)
	GNAT.Wide_Spelling_Checker (g-wispch.ads)
	GNAT.Wide_String_Split (g-wistsp.ads)
	GNAT.Wide_Wide_Spelling_Checker (g-zspche.ads)
	GNAT.Wide_Wide_String_Split (g-zistsp.ads)
	Interfaces.C.Extensions (i-cexten.ads)
	Interfaces.C.Streams (i-cstrea.ads)
	Interfaces.Packed_Decimal (i-pacdec.ads)
	Interfaces.VxWorks (i-vxwork.ads)
	Interfaces.VxWorks.Int_Connection (i-vxinco.ads)
	Interfaces.VxWorks.IO (i-vxwoio.ads)
	System.Address_Image (s-addima.ads)
	System.Assertions (s-assert.ads)
	System.Atomic_Counters (s-atocou.ads)
	System.Memory (s-memory.ads)
	System.Multiprocessors (s-multip.ads)
	System.Multiprocessors.Dispatching_Domains (s-mudido.ads)
	System.Partition_Interface (s-parint.ads)
	System.Pool_Global (s-pooglo.ads)
	System.Pool_Local (s-pooloc.ads)
	System.Restrictions (s-restri.ads)
	System.Rident (s-rident.ads)
	System.Strings.Stream_Ops (s-ststop.ads)
	System.Unsigned_Types (s-unstyp.ads)
	System.Wch_Cnv (s-wchcnv.ads)
	System.Wch_Con (s-wchcon.ads)

	Interfacing to Other Languages
	Interfacing to C
	Interfacing to C++
	Interfacing to COBOL
	Interfacing to Fortran
	Interfacing to non-GNAT Ada code

	Specialized Needs Annexes
	Implementation of Specific Ada Features
	Machine Code Insertions
	GNAT Implementation of Tasking
	Mapping Ada Tasks onto the Underlying Kernel Threads
	Ensuring Compliance with the Real-Time Annex

	GNAT Implementation of Shared Passive Packages
	Code Generation for Array Aggregates
	Static constant aggregates with static bounds
	Constant aggregates with unconstrained nominal types
	Aggregates with static bounds
	Aggregates with nonstatic bounds
	Aggregates in assignment statements

	The Size of Discriminated Records with Default Discriminants
	Strict Conformance to the Ada Reference Manual

	Implementation of Ada 2012 Features
	Obsolescent Features
	pragma No_Run_Time
	pragma Ravenscar
	pragma Restricted_Run_Time
	pragma Task_Info
	package System.Task_Info (s-tasinf.ads)

	Compatibility and Porting Guide
	Writing Portable Fixed-Point Declarations
	Compatibility with Ada 83
	Legal Ada 83 programs that are illegal in Ada 95
	More deterministic semantics
	Changed semantics
	Other language compatibility issues

	Compatibility between Ada 95 and Ada 2005
	Implementation-dependent characteristics
	Implementation-defined pragmas
	Implementation-defined attributes
	Libraries
	Elaboration order
	Target-specific aspects

	Compatibility with Other Ada Systems
	Representation Clauses
	Compatibility with HP Ada 83

	GNU Free Documentation License
	Index

