Go to the first, previous, next, last section, table of contents.


Features for Debugging DJGPP Programs

DJGPP is the port of GNU development tools to MS-DOS and MS-Windows. DJGPP programs are 32-bit protected-mode programs that use the DPMI (DOS Protected-Mode Interface) API to run on top of real-mode DOS systems and their emulations.

supports native debugging of DJGPP programs, and defines a few commands specific to the DJGPP port. This subsection describes those commands.

info dos
This is a prefix of DJGPP-specific commands which print information about the target system and important OS structures.
info dos sysinfo
This command displays assorted information about the underlying platform: the CPU type and features, the OS version and flavor, the DPMI version, and the available conventional and DPMI memory.
info dos gdt
info dos ldt
info dos idt
These 3 commands display entries from, respectively, Global, Local, and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor tables are data structures which store a descriptor for each segment that is currently in use. The segment's selector is an index into a descriptor table; the table entry for that index holds the descriptor's base address and limit, and its attributes and access rights. A typical DJGPP program uses 3 segments: a code segment, a data segment (used for both data and the stack), and a DOS segment (which allows access to DOS/BIOS data structures and absolute addresses in conventional memory). However, the DPMI host will usually define additional segments in order to support the DPMI environment. These commands allow to display entries from the descriptor tables. Without an argument, all entries from the specified table are displayed. An argument, which should be an integer expression, means display a single entry whose index is given by the argument. For example, here's a convenient way to display information about the debugged program's data segment:
() info dos ldt $ds
0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)
This comes in handy when you want to see whether a pointer is outside the data segment's limit (i.e. garbled).
info dos pde
info dos pte
These two commands display entries from, respectively, the Page Directory and the Page Tables. Page Directories and Page Tables are data structures which control how virtual memory addresses are mapped into physical addresses. A Page Table includes an entry for every page of memory that is mapped into the program's address space; there may be several Page Tables, each one holding up to 4096 entries. A Page Directory has up to 4096 entries, one each for every Page Table that is currently in use. Without an argument, info dos pde displays the entire Page Directory, and info dos pte displays all the entries in all of the Page Tables. An argument, an integer expression, given to the info dos pde command means display only that entry from the Page Directory table. An argument given to the info dos pte command means display entries from a single Page Table, the one pointed to by the specified entry in the Page Directory. These commands are useful when your program uses DMA (Direct Memory Access), which needs physical addresses to program the DMA controller. These commands are supported only with some DPMI servers.
info dos address-pte
This command displays the Page Table entry for a specified linear address. The argument linear address should already have the appropriate segment's base address added to it, because this command accepts addresses which may belong to any segment. For example, here's how to display the Page Table entry for the page where the variable i is stored:
() info dos address-pte __djgpp_base_address + (char *)&i
Page Table entry for address 0x11a00d30:
Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30
This says that i is stored at offset 0xd30 from the page whose physical base address is 0x02698000, and prints all the attributes of that page. Note that you must cast the addresses of variables to a char *, since otherwise the value of __djgpp_base_address, the base address of all variables and functions in a DJGPP program, will be added using the rules of C pointer arithmetics: if i is declared an int, will add 4 times the value of __djgpp_base_address to the address of i. Here's another example, it displays the Page Table entry for the transfer buffer:
() info dos address-pte *((unsigned *)&_go32_info_block + 3)
Page Table entry for address 0x29110:
Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110
(The + 3 offset is because the transfer buffer's address is the 3rd member of the _go32_info_block structure.) The output of this command clearly shows that addresses in conventional memory are mapped 1:1, i.e. the physical and linear addresses are identical. This command is supported only with some DPMI servers.


Go to the first, previous, next, last section, table of contents.