Go to the first, previous, next, last section, table of contents.


C++ expressions

expression handling can interpret most C++ expressions.

Warning: can only debug C++ code if you use the proper compiler. Typically, C++ debugging depends on the use of additional debugging information in the symbol table, and thus requires special support. In particular, if your compiler generates a.out, MIPS ECOFF, RS/6000 XCOFF, or ELF with stabs extensions to the symbol table, these facilities are all available. (With GNU CC, you can use the `-gstabs' option to request stabs debugging extensions explicitly.) Where the object code format is standard COFF or DWARF in ELF, on the other hand, most of the C++ support in does not work.

  1. Member function calls are allowed; you can use expressions like
    count = aml->GetOriginal(x, y)
    
  2. While a member function is active (in the selected stack frame), your expressions have the same namespace available as the member function; that is, allows implicit references to the class instance pointer this following the same rules as C++.
  3. You can call overloaded functions; resolves the function call to the right definition, with some restrictions. does not perform overload resolution involving user-defined type conversions, calls to constructors, or instantiations of templates that do not exist in the program. It also cannot handle ellipsis argument lists or default arguments. It does perform integral conversions and promotions, floating-point promotions, arithmetic conversions, pointer conversions, conversions of class objects to base classes, and standard conversions such as those of functions or arrays to pointers; it requires an exact match on the number of function arguments. Overload resolution is always performed, unless you have specified set overload-resolution off. See section features for C++. You must specify set overload-resolution off in order to use an explicit function signature to call an overloaded function, as in
    p 'foo(char,int)'('x', 13)
    
    The command-completion facility can simplify this; see section Command completion.
  4. understands variables declared as C++ references; you can use them in expressions just as you do in C++ source--they are automatically dereferenced. In the parameter list shown when displays a frame, the values of reference variables are not displayed (unlike other variables); this avoids clutter, since references are often used for large structures. The address of a reference variable is always shown, unless you have specified `set print address off'.
  5. supports the C++ name resolution operator ::---your expressions can use it just as expressions in your program do. Since one scope may be defined in another, you can use :: repeatedly if necessary, for example in an expression like `scope1::scope2::name'. also allows resolving name scope by reference to source files, in both C and C++ debugging (see section Program variables).

In addition, when used with HP's C++ compiler, supports calling virtual functions correctly, printing out virtual bases of objects, calling functions in a base subobject, casting objects, and invoking user-defined operators.


Go to the first, previous, next, last section, table of contents.