The RTL representation of the code for a function is a doubly-linked
chain of objects called insns. Insns are expressions with
special codes that are used for no other purpose. Some insns are
actual instructions; others represent dispatch tables for switch
statements; others represent labels to jump to or various sorts of
declarative information.
In addition to its own specific data, each insn must have a unique
id-number that distinguishes it from all other insns in the current
function (after delayed branch scheduling, copies of an insn with the
same id-number may be present in multiple places in a function, but
these copies will always be identical and will only appear inside a
sequence
), and chain pointers to the preceding and following
insns. These three fields occupy the same position in every insn,
independent of the expression code of the insn. They could be accessed
with XEXP
and XINT
, but instead three special macros are
always used:
INSN_UID (i)
¶Accesses the unique id of insn i.
PREV_INSN (i)
¶Accesses the chain pointer to the insn preceding i. If i is the first insn, this is a null pointer.
NEXT_INSN (i)
¶Accesses the chain pointer to the insn following i. If i is the last insn, this is a null pointer.
The first insn in the chain is obtained by calling get_insns
; the
last insn is the result of calling get_last_insn
. Within the
chain delimited by these insns, the NEXT_INSN
and
PREV_INSN
pointers must always correspond: if insn is not
the first insn,
NEXT_INSN (PREV_INSN (insn)) == insn
is always true and if insn is not the last insn,
PREV_INSN (NEXT_INSN (insn)) == insn
is always true.
After delay slot scheduling, some of the insns in the chain might be
sequence
expressions, which contain a vector of insns. The value
of NEXT_INSN
in all but the last of these insns is the next insn
in the vector; the value of NEXT_INSN
of the last insn in the vector
is the same as the value of NEXT_INSN
for the sequence
in
which it is contained. Similar rules apply for PREV_INSN
.
This means that the above invariants are not necessarily true for insns
inside sequence
expressions. Specifically, if insn is the
first insn in a sequence
, NEXT_INSN (PREV_INSN (insn))
is the insn containing the sequence
expression, as is the value
of PREV_INSN (NEXT_INSN (insn))
if insn is the last
insn in the sequence
expression. You can use these expressions
to find the containing sequence
expression.
Every insn has one of the following expression codes:
insn
¶The expression code insn
is used for instructions that do not jump
and do not do function calls. sequence
expressions are always
contained in insns with code insn
even if one of those insns
should jump or do function calls.
Insns with code insn
have four additional fields beyond the three
mandatory ones listed above. These four are described in a table below.
jump_insn
¶The expression code jump_insn
is used for instructions that may
jump (or, more generally, may contain label_ref
expressions to
which pc
can be set in that instruction). If there is an
instruction to return from the current function, it is recorded as a
jump_insn
.
jump_insn
insns have the same extra fields as insn
insns,
accessed in the same way and in addition contain a field
JUMP_LABEL
which is defined once jump optimization has completed.
For simple conditional and unconditional jumps, this field contains
the code_label
to which this insn will (possibly conditionally)
branch. In a more complex jump, JUMP_LABEL
records one of the
labels that the insn refers to; other jump target labels are recorded
as REG_LABEL_TARGET
notes. The exception is addr_vec
and addr_diff_vec
, where JUMP_LABEL
is NULL_RTX
and the only way to find the labels is to scan the entire body of the
insn.
Return insns count as jumps, but their JUMP_LABEL
is RETURN
or SIMPLE_RETURN
.
call_insn
¶The expression code call_insn
is used for instructions that may do
function calls. It is important to distinguish these instructions because
they imply that certain registers and memory locations may be altered
unpredictably.
call_insn
insns have the same extra fields as insn
insns,
accessed in the same way and in addition contain a field
CALL_INSN_FUNCTION_USAGE
, which contains a list (chain of
expr_list
expressions) containing use
, clobber
and
sometimes set
expressions that denote hard registers and
mem
s used or clobbered by the called function.
A mem
generally points to a stack slot in which arguments passed
to the libcall by reference (see TARGET_PASS_BY_REFERENCE) are stored. If the argument is
caller-copied (see TARGET_CALLEE_COPIES),
the stack slot will be mentioned in clobber
and use
entries; if it’s callee-copied, only a use
will appear, and the
mem
may point to addresses that are not stack slots.
Registers occurring inside a clobber
in this list augment
registers specified in CALL_USED_REGISTERS
(see Basic Characteristics of Registers).
If the list contains a set
involving two registers, it indicates
that the function returns one of its arguments. Such a set
may
look like a no-op if the same register holds the argument and the return
value.
code_label
¶A code_label
insn represents a label that a jump insn can jump
to. It contains two special fields of data in addition to the three
standard ones. CODE_LABEL_NUMBER
is used to hold the label
number, a number that identifies this label uniquely among all the
labels in the compilation (not just in the current function).
Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form ‘Ln’ where n is
the label number.
When a code_label
appears in an RTL expression, it normally
appears within a label_ref
which represents the address of
the label, as a number.
Besides as a code_label
, a label can also be represented as a
note
of type NOTE_INSN_DELETED_LABEL
.
The field LABEL_NUSES
is only defined once the jump optimization
phase is completed. It contains the number of times this label is
referenced in the current function.
The field LABEL_KIND
differentiates four different types of
labels: LABEL_NORMAL
, LABEL_STATIC_ENTRY
,
LABEL_GLOBAL_ENTRY
, and LABEL_WEAK_ENTRY
. The only labels
that do not have type LABEL_NORMAL
are alternate entry
points to the current function. These may be static (visible only in
the containing translation unit), global (exposed to all translation
units), or weak (global, but can be overridden by another symbol with the
same name).
Much of the compiler treats all four kinds of label identically. Some
of it needs to know whether or not a label is an alternate entry point;
for this purpose, the macro LABEL_ALT_ENTRY_P
is provided. It is
equivalent to testing whether ‘LABEL_KIND (label) == LABEL_NORMAL’.
The only place that cares about the distinction between static, global,
and weak alternate entry points, besides the front-end code that creates
them, is the function output_alternate_entry_point
, in
final.cc.
To set the kind of a label, use the SET_LABEL_KIND
macro.
jump_table_data
¶A jump_table_data
insn is a placeholder for the jump-table data
of a casesi
or tablejump
insn. They are placed after
a tablejump_p
insn. A jump_table_data
insn is not part o
a basic blockm but it is associated with the basic block that ends with
the tablejump_p
insn. The PATTERN
of a jump_table_data
is always either an addr_vec
or an addr_diff_vec
, and a
jump_table_data
insn is always preceded by a code_label
.
The tablejump_p
insn refers to that code_label
via its
JUMP_LABEL
.
barrier
¶Barriers are placed in the instruction stream when control cannot flow
past them. They are placed after unconditional jump instructions to
indicate that the jumps are unconditional and after calls to
volatile
functions, which do not return (e.g., exit
).
They contain no information beyond the three standard fields.
note
¶note
insns are used to represent additional debugging and
declarative information. They contain two nonstandard fields, an
integer which is accessed with the macro NOTE_LINE_NUMBER
and a
string accessed with NOTE_SOURCE_FILE
.
If NOTE_LINE_NUMBER
is positive, the note represents the
position of a source line and NOTE_SOURCE_FILE
is the source file name
that the line came from. These notes control generation of line
number data in the assembler output.
Otherwise, NOTE_LINE_NUMBER
is not really a line number but a
code with one of the following values (and NOTE_SOURCE_FILE
must contain a null pointer):
NOTE_INSN_DELETED
¶Such a note is completely ignorable. Some passes of the compiler delete insns by altering them into notes of this kind.
NOTE_INSN_DELETED_LABEL
¶This marks what used to be a code_label
, but was not used for other
purposes than taking its address and was transformed to mark that no
code jumps to it.
NOTE_INSN_BLOCK_BEG
¶NOTE_INSN_BLOCK_END
These types of notes indicate the position of the beginning and end of a level of scoping of variable names. They control the output of debugging information.
NOTE_INSN_EH_REGION_BEG
¶NOTE_INSN_EH_REGION_END
These types of notes indicate the position of the beginning and end of a
level of scoping for exception handling. NOTE_EH_HANDLER
identifies which region is associated with these notes.
NOTE_INSN_FUNCTION_BEG
¶Appears at the start of the function body, after the function prologue.
NOTE_INSN_VAR_LOCATION
¶This note is used to generate variable location debugging information.
It indicates that the user variable in its VAR_LOCATION
operand
is at the location given in the RTL expression, or holds a value that
can be computed by evaluating the RTL expression from that static
point in the program up to the next such note for the same user
variable.
NOTE_INSN_BEGIN_STMT
¶This note is used to generate is_stmt
markers in line number
debugging information. It indicates the beginning of a user
statement.
NOTE_INSN_INLINE_ENTRY
¶This note is used to generate entry_pc
for inlined subroutines in
debugging information. It indicates an inspection point at which all
arguments for the inlined function have been bound, and before its first
statement.
These codes are printed symbolically when they appear in debugging dumps.
debug_insn
¶The expression code debug_insn
is used for pseudo-instructions
that hold debugging information for variable tracking at assignments
(see -fvar-tracking-assignments option). They are the RTL
representation of GIMPLE_DEBUG
statements
(GIMPLE_DEBUG
), with a VAR_LOCATION
operand that
binds a user variable tree to an RTL representation of the
value
in the corresponding statement. A DEBUG_EXPR
in
it stands for the value bound to the corresponding
DEBUG_EXPR_DECL
.
GIMPLE_DEBUG_BEGIN_STMT
and GIMPLE_DEBUG_INLINE_ENTRY
are
expanded to RTL as a DEBUG_INSN
with a DEBUG_MARKER
PATTERN
; the difference is the RTL mode: the former’s
DEBUG_MARKER
is VOIDmode
, whereas the latter is
BLKmode
; information about the inlined function can be taken from
the lexical block encoded in the INSN_LOCATION
. These
DEBUG_INSN
s, that do not carry VAR_LOCATION
information,
just DEBUG_MARKER
s, can be detected by testing
DEBUG_MARKER_INSN_P
, whereas those that do can be recognized as
DEBUG_BIND_INSN_P
.
Throughout optimization passes, DEBUG_INSN
s are not reordered
with respect to each other, particularly during scheduling. Binding
information is kept in pseudo-instruction form, so that, unlike notes,
it gets the same treatment and adjustments that regular instructions
would. It is the variable tracking pass that turns these
pseudo-instructions into NOTE_INSN_VAR_LOCATION
,
NOTE_INSN_BEGIN_STMT
and NOTE_INSN_INLINE_ENTRY
notes,
analyzing control flow, value equivalences and changes to registers and
memory referenced in value expressions, propagating the values of debug
temporaries and determining expressions that can be used to compute the
value of each user variable at as many points (ranges, actually) in the
program as possible.
Unlike NOTE_INSN_VAR_LOCATION
, the value expression in an
INSN_VAR_LOCATION
denotes a value at that specific point in the
program, rather than an expression that can be evaluated at any later
point before an overriding VAR_LOCATION
is encountered. E.g.,
if a user variable is bound to a REG
and then a subsequent insn
modifies the REG
, the note location would keep mapping the user
variable to the register across the insn, whereas the insn location
would keep the variable bound to the value, so that the variable
tracking pass would emit another location note for the variable at the
point in which the register is modified.
The machine mode of an insn is normally VOIDmode
, but some
phases use the mode for various purposes.
The common subexpression elimination pass sets the mode of an insn to
QImode
when it is the first insn in a block that has already
been processed.
The second Haifa scheduling pass, for targets that can multiple issue,
sets the mode of an insn to TImode
when it is believed that the
instruction begins an issue group. That is, when the instruction
cannot issue simultaneously with the previous. This may be relied on
by later passes, in particular machine-dependent reorg.
Here is a table of the extra fields of insn
, jump_insn
and call_insn
insns:
PATTERN (i)
¶An expression for the side effect performed by this insn. This must
be one of the following codes: set
, call
, use
,
clobber
, return
, simple_return
, asm_input
,
asm_output
, addr_vec
, addr_diff_vec
,
trap_if
, unspec
, unspec_volatile
,
parallel
, cond_exec
, or sequence
. If it is a
parallel
, each element of the parallel
must be one these
codes, except that parallel
expressions cannot be nested and
addr_vec
and addr_diff_vec
are not permitted inside a
parallel
expression.
INSN_CODE (i)
¶An integer that says which pattern in the machine description matches this insn, or −1 if the matching has not yet been attempted.
Such matching is never attempted and this field remains −1 on an insn
whose pattern consists of a single use
, clobber
,
asm_input
, addr_vec
or addr_diff_vec
expression.
Matching is also never attempted on insns that result from an asm
statement. These contain at least one asm_operands
expression.
The function asm_noperands
returns a non-negative value for
such insns.
In the debugging output, this field is printed as a number followed by a symbolic representation that locates the pattern in the md file as some small positive or negative offset from a named pattern.
REG_NOTES (i)
¶A list (chain of expr_list
, insn_list
and int_list
expressions) giving miscellaneous information about the insn. It is often
information pertaining to the registers used in this insn.
The REG_NOTES
field of an insn is a chain that includes
expr_list
and int_list
expressions as well as insn_list
expressions. There are several
kinds of register notes, which are distinguished by the machine mode, which
in a register note is really understood as being an enum reg_note
.
The first operand op of the note is data whose meaning depends on
the kind of note.
The macro REG_NOTE_KIND (x)
returns the kind of
register note. Its counterpart, the macro PUT_REG_NOTE_KIND
(x, newkind)
sets the register note type of x to be
newkind.
Register notes are of three classes: They may say something about an input to an insn, they may say something about an output of an insn, or they may create a linkage between two insns.
These register notes annotate inputs to an insn:
REG_DEAD
¶The value in op dies in this insn; that is to say, altering the value immediately after this insn would not affect the future behavior of the program.
It does not follow that the register op has no useful value after this insn since op is not necessarily modified by this insn. Rather, no subsequent instruction uses the contents of op.
REG_UNUSED
¶The register op being set by this insn will not be used in a
subsequent insn. This differs from a REG_DEAD
note, which
indicates that the value in an input will not be used subsequently.
These two notes are independent; both may be present for the same
register.
REG_INC
¶The register op is incremented (or decremented; at this level
there is no distinction) by an embedded side effect inside this insn.
This means it appears in a post_inc
, pre_inc
,
post_dec
or pre_dec
expression.
REG_NONNEG
¶The register op is known to have a nonnegative value when this insn is reached. This is used by special looping instructions that terminate when the register goes negative.
The REG_NONNEG
note is added only to ‘doloop_end’
insns, if its pattern uses a ge
condition.
REG_LABEL_OPERAND
¶This insn uses op, a code_label
or a note
of type
NOTE_INSN_DELETED_LABEL
, but is not a jump_insn
, or it
is a jump_insn
that refers to the operand as an ordinary
operand. The label may still eventually be a jump target, but if so
in an indirect jump in a subsequent insn. The presence of this note
allows jump optimization to be aware that op is, in fact, being
used, and flow optimization to build an accurate flow graph.
REG_LABEL_TARGET
¶This insn is a jump_insn
but not an addr_vec
or
addr_diff_vec
. It uses op, a code_label
as a
direct or indirect jump target. Its purpose is similar to that of
REG_LABEL_OPERAND
. This note is only present if the insn has
multiple targets; the last label in the insn (in the highest numbered
insn-field) goes into the JUMP_LABEL
field and does not have a
REG_LABEL_TARGET
note. See JUMP_LABEL.
REG_SETJMP
¶Appears attached to each CALL_INSN
to setjmp
or a
related function.
The following notes describe attributes of outputs of an insn:
REG_EQUIV
¶REG_EQUAL
This note is only valid on an insn that sets only one register and
indicates that that register will be equal to op at run time; the
scope of this equivalence differs between the two types of notes. The
value which the insn explicitly copies into the register may look
different from op, but they will be equal at run time. If the
output of the single set
is a strict_low_part
or
zero_extract
expression, the note refers to the register that
is contained in its first operand.
For REG_EQUIV
, the register is equivalent to op throughout
the entire function, and could validly be replaced in all its
occurrences by op. (“Validly” here refers to the data flow of
the program; simple replacement may make some insns invalid.) For
example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.
When a parameter is copied into a pseudo-register at entry to a function, a note of this kind records that the register is equivalent to the stack slot where the parameter was passed. Although in this case the register may be set by other insns, it is still valid to replace the register by the stack slot throughout the function.
A REG_EQUIV
note is also used on an instruction which copies a
register parameter into a pseudo-register at entry to a function, if
there is a stack slot where that parameter could be stored. Although
other insns may set the pseudo-register, it is valid for the compiler to
replace the pseudo-register by stack slot throughout the function,
provided the compiler ensures that the stack slot is properly
initialized by making the replacement in the initial copy instruction as
well. This is used on machines for which the calling convention
allocates stack space for register parameters. See
REG_PARM_STACK_SPACE
in Passing Function Arguments on the Stack.
In the case of REG_EQUAL
, the register that is set by this insn
will be equal to op at run time at the end of this insn but not
necessarily elsewhere in the function. In this case, op
is typically an arithmetic expression. For example, when a sequence of
insns such as a library call is used to perform an arithmetic operation,
this kind of note is attached to the insn that produces or copies the
final value.
These two notes are used in different ways by the compiler passes.
REG_EQUAL
is used by passes prior to register allocation (such as
common subexpression elimination and loop optimization) to tell them how
to think of that value. REG_EQUIV
notes are used by register
allocation to indicate that there is an available substitute expression
(either a constant or a mem
expression for the location of a
parameter on the stack) that may be used in place of a register if
insufficient registers are available.
Except for stack homes for parameters, which are indicated by a
REG_EQUIV
note and are not useful to the early optimization
passes and pseudo registers that are equivalent to a memory location
throughout their entire life, which is not detected until later in
the compilation, all equivalences are initially indicated by an attached
REG_EQUAL
note. In the early stages of register allocation, a
REG_EQUAL
note is changed into a REG_EQUIV
note if
op is a constant and the insn represents the only set of its
destination register.
Thus, compiler passes prior to register allocation need only check for
REG_EQUAL
notes and passes subsequent to register allocation
need only check for REG_EQUIV
notes.
These notes describe linkages between insns. They occur in pairs: one insn has one of a pair of notes that points to a second insn, which has the inverse note pointing back to the first insn.
REG_DEP_TRUE
¶This indicates a true dependence (a read after write dependence).
REG_DEP_OUTPUT
¶This indicates an output dependence (a write after write dependence).
REG_DEP_ANTI
¶This indicates an anti dependence (a write after read dependence).
These notes describe information gathered from gcov profile data. They
are stored in the REG_NOTES
field of an insn.
REG_BR_PROB
¶This is used to specify the ratio of branches to non-branches of a
branch insn according to the profile data. The note is represented
as an int_list
expression whose integer value is an encoding
of profile_probability
type. profile_probability
provide
member function from_reg_br_prob_note
and to_reg_br_prob_note
to extract and store the probability into the RTL encoding.
REG_BR_PRED
¶These notes are found in JUMP insns after delayed branch scheduling has taken place. They indicate both the direction and the likelihood of the JUMP. The format is a bitmask of ATTR_FLAG_* values.
REG_FRAME_RELATED_EXPR
¶This is used on an RTX_FRAME_RELATED_P insn wherein the attached expression is used in place of the actual insn pattern. This is done in cases where the pattern is either complex or misleading.
The note REG_CALL_NOCF_CHECK
is used in conjunction with the
-fcf-protection=branch option. The note is set if a
nocf_check
attribute is specified for a function type or a
pointer to function type. The note is stored in the REG_NOTES
field of an insn.
REG_CALL_NOCF_CHECK
¶Users have control through the nocf_check
attribute to identify
which calls to a function should be skipped from control-flow instrumentation
when the option -fcf-protection=branch is specified. The compiler
puts a REG_CALL_NOCF_CHECK
note on each CALL_INSN
instruction
that has a function type marked with a nocf_check
attribute.
For convenience, the machine mode in an insn_list
or
expr_list
is printed using these symbolic codes in debugging dumps.
The only difference between the expression codes insn_list
and
expr_list
is that the first operand of an insn_list
is
assumed to be an insn and is printed in debugging dumps as the insn’s
unique id; the first operand of an expr_list
is printed in the
ordinary way as an expression.