Many Fortran compilers including GNU Fortran allow passing the source code through a C preprocessor (CPP; sometimes also called the Fortran preprocessor, FPP) to allow for conditional compilation. In the case of GNU Fortran, this is the GNU C Preprocessor in the traditional mode. On systems with case-preserving file names, the preprocessor is automatically invoked if the filename extension is .F, .FOR, .FTN, .fpp, .FPP, .F90, .F95, .F03 or .F08. To manually invoke the preprocessor on any file, use -cpp, to disable preprocessing on files where the preprocessor is run automatically, use -nocpp.
If a preprocessed file includes another file with the Fortran INCLUDE
statement, the included file is not preprocessed. To preprocess included
files, use the equivalent preprocessor statement #include
.
If GNU Fortran invokes the preprocessor, __GFORTRAN__
is defined. The macros __GNUC__
, __GNUC_MINOR__
and
__GNUC_PATCHLEVEL__
can be used to determine the version of the
compiler. See Overview in The C Preprocessor for details.
GNU Fortran supports a number of INTEGER
and REAL
kind types
in additional to the kind types required by the Fortran standard.
The availability of any given kind type is architecture dependent. The
following pre-defined preprocessor macros can be used to conditionally
include code for these additional kind types: __GFC_INT_1__
,
__GFC_INT_2__
, __GFC_INT_8__
, __GFC_INT_16__
,
__GFC_REAL_10__
, and __GFC_REAL_16__
.
While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely used and not directly supported by the GNU Fortran compiler. You can use the program coco to preprocess such files (http://www.daniellnagle.com/coco.html).
The following options control preprocessing of Fortran code:
-cpp
-nocpp
Enable preprocessing. The preprocessor is automatically invoked if the file extension is .fpp, .FPP, .F, .FOR, .FTN, .F90, .F95, .F03 or .F08. Use this option to manually enable preprocessing of any kind of Fortran file.
To disable preprocessing of files with any of the above listed extensions, use the negative form: -nocpp.
The preprocessor is run in traditional mode. Any restrictions of the file-format, especially the limits on line length, apply for preprocessed output as well, so it might be advisable to use the -ffree-line-length-none or -ffixed-line-length-none options.
-dM
Instead of the normal output, generate a list of '#define'
directives for all the macros defined during the execution of the
preprocessor, including predefined macros. This gives you a way
of finding out what is predefined in your version of the preprocessor.
Assuming you have no file foo.f90, the command
touch foo.f90; gfortran -cpp -E -dM foo.f90
will show all the predefined macros.
-dD
Like -dM except in two respects: it does not include the
predefined macros, and it outputs both the #define
directives
and the result of preprocessing. Both kinds of output go to the
standard output file.
-dN
Like -dD, but emit only the macro names, not their expansions.
-dU
Like dD except that only macros that are expanded, or whose
definedness is tested in preprocessor directives, are output; the
output is delayed until the use or test of the macro; and '#undef'
directives are also output for macros tested but undefined at the time.
-dI
Output '#include'
directives in addition to the result
of preprocessing.
-fworking-directory
Enable generation of linemarkers in the preprocessor output that will
let the compiler know the current working directory at the time of
preprocessing. When this option is enabled, the preprocessor will emit,
after the initial linemarker, a second linemarker with the current
working directory followed by two slashes. GCC will use this directory,
when it is present in the preprocessed input, as the directory emitted
as the current working directory in some debugging information formats.
This option is implicitly enabled if debugging information is enabled,
but this can be inhibited with the negated form
-fno-working-directory. If the -P flag is present
in the command line, this option has no effect, since no #line
directives are emitted whatsoever.
-idirafter dir
Search dir for include files, but do it after all directories
specified with -I and the standard system directories have
been exhausted. dir is treated as a system include directory.
If dir begins with =
, then the =
will be replaced by
the sysroot prefix; see --sysroot and -isysroot.
-imultilib dir
Use dir as a subdirectory of the directory containing target-specific C++ headers.
-iprefix prefix
Specify prefix as the prefix for subsequent -iwithprefix
options. If the prefix represents a directory, you should include
the final '/'
.
-isysroot dir
This option is like the --sysroot option, but applies only to header files. See the --sysroot option for more information.
-iquote dir
Search dir only for header files requested with #include "file"
;
they are not searched for #include <file>
, before all directories
specified by -I and before the standard system directories. If
dir begins with =
, then the =
will be replaced by the
sysroot prefix; see --sysroot and -isysroot.
-isystem dir
Search dir for header files, after all directories specified by
-I but before the standard system directories. Mark it as a
system directory, so that it gets the same special treatment as is
applied to the standard system directories. If dir begins with
=
, then the =
will be replaced by the sysroot prefix;
see --sysroot and -isysroot.
-nostdinc
Do not search the standard system directories for header files. Only the directories you have specified with -I options (and the directory of the current file, if appropriate) are searched.
-undef
Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined.
-Apredicate=answer
Make an assertion with the predicate predicate and answer answer. This form is preferred to the older form -A predicate(answer), which is still supported, because it does not use shell special characters.
-A-predicate=answer
Cancel an assertion with the predicate predicate and answer answer.
-C
Do not discard comments. All comments are passed through to the output file, except for comments in processed directives, which are deleted along with the directive.
You should be prepared for side effects when using -C; it causes
the preprocessor to treat comments as tokens in their own right. For example,
comments appearing at the start of what would be a directive line have the
effect of turning that line into an ordinary source line, since the first
token on the line is no longer a '#'
.
Warning: this currently handles C-Style comments only. The preprocessor does not yet recognize Fortran-style comments.
-CC
Do not discard comments, including during macro expansion. This is like -C, except that comments contained within macros are also passed through to the output file where the macro is expanded.
In addition to the side-effects of the -C option, the -CC option causes all C++-style comments inside a macro to be converted to C-style comments. This is to prevent later use of that macro from inadvertently commenting out the remainder of the source line. The -CC option is generally used to support lint comments.
Warning: this currently handles C- and C++-Style comments only. The preprocessor does not yet recognize Fortran-style comments.
-Dname
Predefine name as a macro, with definition 1
.
-Dname=definition
The contents of definition are tokenized and processed as if they
appeared during translation phase three in a '#define'
directive.
In particular, the definition will be truncated by embedded newline
characters.
If you are invoking the preprocessor from a shell or shell-like program you may need to use the shell’s quoting syntax to protect characters such as spaces that have a meaning in the shell syntax.
If you wish to define a function-like macro on the command line, write
its argument list with surrounding parentheses before the equals sign
(if any). Parentheses are meaningful to most shells, so you will need
to quote the option. With sh and csh, -D'name(args...)=definition'
works.
-D and -U options are processed in the order they are given on the command line. All -imacros file and -include file options are processed after all -D and -U options.
-H
Print the name of each header file used, in addition to other normal
activities. Each name is indented to show how deep in the '#include'
stack it is.
-P
Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers.
-Uname
Cancel any previous definition of name, either built in or provided with a -D option.