libstdc++
tr1/cmath
Go to the documentation of this file.
1 // TR1 cmath -*- C++ -*-
2 
3 // Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11 
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16 
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20 
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25 
26 /** @file tr1/cmath
27  * This is a TR1 C++ Library header.
28  */
29 
30 #ifndef _GLIBCXX_TR1_CMATH
31 #define _GLIBCXX_TR1_CMATH 1
32 
33 #pragma GCC system_header
34 
35 #include <cmath>
36 
37 #ifdef _GLIBCXX_USE_C99_MATH_TR1
38 
39 #undef acosh
40 #undef acoshf
41 #undef acoshl
42 #undef asinh
43 #undef asinhf
44 #undef asinhl
45 #undef atanh
46 #undef atanhf
47 #undef atanhl
48 #undef cbrt
49 #undef cbrtf
50 #undef cbrtl
51 #undef copysign
52 #undef copysignf
53 #undef copysignl
54 #undef erf
55 #undef erff
56 #undef erfl
57 #undef erfc
58 #undef erfcf
59 #undef erfcl
60 #undef exp2
61 #undef exp2f
62 #undef exp2l
63 #undef expm1
64 #undef expm1f
65 #undef expm1l
66 #undef fdim
67 #undef fdimf
68 #undef fdiml
69 #undef fma
70 #undef fmaf
71 #undef fmal
72 #undef fmax
73 #undef fmaxf
74 #undef fmaxl
75 #undef fmin
76 #undef fminf
77 #undef fminl
78 #undef hypot
79 #undef hypotf
80 #undef hypotl
81 #undef ilogb
82 #undef ilogbf
83 #undef ilogbl
84 #undef lgamma
85 #undef lgammaf
86 #undef lgammal
87 #undef llrint
88 #undef llrintf
89 #undef llrintl
90 #undef llround
91 #undef llroundf
92 #undef llroundl
93 #undef log1p
94 #undef log1pf
95 #undef log1pl
96 #undef log2
97 #undef log2f
98 #undef log2l
99 #undef logb
100 #undef logbf
101 #undef logbl
102 #undef lrint
103 #undef lrintf
104 #undef lrintl
105 #undef lround
106 #undef lroundf
107 #undef lroundl
108 #undef nan
109 #undef nanf
110 #undef nanl
111 #undef nearbyint
112 #undef nearbyintf
113 #undef nearbyintl
114 #undef nextafter
115 #undef nextafterf
116 #undef nextafterl
117 #undef nexttoward
118 #undef nexttowardf
119 #undef nexttowardl
120 #undef remainder
121 #undef remainderf
122 #undef remainderl
123 #undef remquo
124 #undef remquof
125 #undef remquol
126 #undef rint
127 #undef rintf
128 #undef rintl
129 #undef round
130 #undef roundf
131 #undef roundl
132 #undef scalbln
133 #undef scalblnf
134 #undef scalblnl
135 #undef scalbn
136 #undef scalbnf
137 #undef scalbnl
138 #undef tgamma
139 #undef tgammaf
140 #undef tgammal
141 #undef trunc
142 #undef truncf
143 #undef truncl
144 
145 #endif
146 
147 namespace std _GLIBCXX_VISIBILITY(default)
148 {
149 namespace tr1
150 {
151 _GLIBCXX_BEGIN_NAMESPACE_VERSION
152 
153 #if _GLIBCXX_USE_C99_MATH_TR1
154 
155  // types
156  using ::double_t;
157  using ::float_t;
158 
159  // functions
161  using ::acoshf;
162  using ::acoshl;
163 
165  using ::asinhf;
166  using ::asinhl;
167 
169  using ::atanhf;
170  using ::atanhl;
171 
172  using ::cbrt;
173  using ::cbrtf;
174  using ::cbrtl;
175 
176  using ::copysign;
177  using ::copysignf;
178  using ::copysignl;
179 
180  using ::erf;
181  using ::erff;
182  using ::erfl;
183 
184  using ::erfc;
185  using ::erfcf;
186  using ::erfcl;
187 
188  using ::exp2;
189  using ::exp2f;
190  using ::exp2l;
191 
192  using ::expm1;
193  using ::expm1f;
194  using ::expm1l;
195 
196  using ::fdim;
197  using ::fdimf;
198  using ::fdiml;
199 
200  using ::fma;
201  using ::fmaf;
202  using ::fmal;
203 
204  using ::fmax;
205  using ::fmaxf;
206  using ::fmaxl;
207 
208  using ::fmin;
209  using ::fminf;
210  using ::fminl;
211 
212  using ::hypot;
213  using ::hypotf;
214  using ::hypotl;
215 
216  using ::ilogb;
217  using ::ilogbf;
218  using ::ilogbl;
219 
220  using ::lgamma;
221  using ::lgammaf;
222  using ::lgammal;
223 
224  using ::llrint;
225  using ::llrintf;
226  using ::llrintl;
227 
228  using ::llround;
229  using ::llroundf;
230  using ::llroundl;
231 
232  using ::log1p;
233  using ::log1pf;
234  using ::log1pl;
235 
236  using ::log2;
237  using ::log2f;
238  using ::log2l;
239 
240  using ::logb;
241  using ::logbf;
242  using ::logbl;
243 
244  using ::lrint;
245  using ::lrintf;
246  using ::lrintl;
247 
248  using ::lround;
249  using ::lroundf;
250  using ::lroundl;
251 
252  using ::nan;
253  using ::nanf;
254  using ::nanl;
255 
256  using ::nearbyint;
257  using ::nearbyintf;
258  using ::nearbyintl;
259 
260  using ::nextafter;
261  using ::nextafterf;
262  using ::nextafterl;
263 
264  using ::nexttoward;
265  using ::nexttowardf;
266  using ::nexttowardl;
267 
268  using ::remainder;
269  using ::remainderf;
270  using ::remainderl;
271 
272  using ::remquo;
273  using ::remquof;
274  using ::remquol;
275 
276  using ::rint;
277  using ::rintf;
278  using ::rintl;
279 
280  using ::round;
281  using ::roundf;
282  using ::roundl;
283 
284  using ::scalbln;
285  using ::scalblnf;
286  using ::scalblnl;
287 
288  using ::scalbn;
289  using ::scalbnf;
290  using ::scalbnl;
291 
292  using ::tgamma;
293  using ::tgammaf;
294  using ::tgammal;
295 
296  using ::trunc;
297  using ::truncf;
298  using ::truncl;
299 
300 #endif
301 
302 #if _GLIBCXX_USE_C99_MATH
303 #if !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC
304 
305  /// Function template definitions [8.16.3].
306  template<typename _Tp>
307  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
308  int>::__type
309  fpclassify(_Tp __f)
310  {
311  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
312  return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL,
313  FP_SUBNORMAL, FP_ZERO, __type(__f));
314  }
315 
316  template<typename _Tp>
317  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
318  int>::__type
319  isfinite(_Tp __f)
320  {
321  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
322  return __builtin_isfinite(__type(__f));
323  }
324 
325  template<typename _Tp>
326  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
327  int>::__type
328  isinf(_Tp __f)
329  {
330  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
331  return __builtin_isinf(__type(__f));
332  }
333 
334  template<typename _Tp>
335  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
336  int>::__type
337  isnan(_Tp __f)
338  {
339  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
340  return __builtin_isnan(__type(__f));
341  }
342 
343  template<typename _Tp>
344  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
345  int>::__type
346  isnormal(_Tp __f)
347  {
348  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
349  return __builtin_isnormal(__type(__f));
350  }
351 
352  template<typename _Tp>
353  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
354  int>::__type
355  signbit(_Tp __f)
356  {
357  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
358  return __builtin_signbit(__type(__f));
359  }
360 
361  template<typename _Tp>
362  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
363  int>::__type
364  isgreater(_Tp __f1, _Tp __f2)
365  {
366  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
367  return __builtin_isgreater(__type(__f1), __type(__f2));
368  }
369 
370  template<typename _Tp>
371  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
372  int>::__type
373  isgreaterequal(_Tp __f1, _Tp __f2)
374  {
375  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
376  return __builtin_isgreaterequal(__type(__f1), __type(__f2));
377  }
378 
379  template<typename _Tp>
380  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
381  int>::__type
382  isless(_Tp __f1, _Tp __f2)
383  {
384  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
385  return __builtin_isless(__type(__f1), __type(__f2));
386  }
387 
388  template<typename _Tp>
389  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
390  int>::__type
391  islessequal(_Tp __f1, _Tp __f2)
392  {
393  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
394  return __builtin_islessequal(__type(__f1), __type(__f2));
395  }
396 
397  template<typename _Tp>
398  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
399  int>::__type
400  islessgreater(_Tp __f1, _Tp __f2)
401  {
402  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
403  return __builtin_islessgreater(__type(__f1), __type(__f2));
404  }
405 
406  template<typename _Tp>
407  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
408  int>::__type
409  isunordered(_Tp __f1, _Tp __f2)
410  {
411  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
412  return __builtin_isunordered(__type(__f1), __type(__f2));
413  }
414 
415 #endif
416 #endif
417 
418 #if _GLIBCXX_USE_C99_MATH_TR1
419 
420  /// Additional overloads [8.16.4].
421  using std::acos;
422 
423  inline float
424  acosh(float __x)
425  { return __builtin_acoshf(__x); }
426 
427  inline long double
428  acosh(long double __x)
429  { return __builtin_acoshl(__x); }
430 
431  template<typename _Tp>
432  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
433  double>::__type
434  acosh(_Tp __x)
435  { return __builtin_acosh(__x); }
436 
437  using std::asin;
438 
439  inline float
440  asinh(float __x)
441  { return __builtin_asinhf(__x); }
442 
443  inline long double
444  asinh(long double __x)
445  { return __builtin_asinhl(__x); }
446 
447  template<typename _Tp>
448  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
449  double>::__type
450  asinh(_Tp __x)
451  { return __builtin_asinh(__x); }
452 
453  using std::atan;
454  using std::atan2;
455 
456  inline float
457  atanh(float __x)
458  { return __builtin_atanhf(__x); }
459 
460  inline long double
461  atanh(long double __x)
462  { return __builtin_atanhl(__x); }
463 
464  template<typename _Tp>
465  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
466  double>::__type
467  atanh(_Tp __x)
468  { return __builtin_atanh(__x); }
469 
470  inline float
471  cbrt(float __x)
472  { return __builtin_cbrtf(__x); }
473 
474  inline long double
475  cbrt(long double __x)
476  { return __builtin_cbrtl(__x); }
477 
478  template<typename _Tp>
479  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
480  double>::__type
481  cbrt(_Tp __x)
482  { return __builtin_cbrt(__x); }
483 
484  using std::ceil;
485 
486  inline float
487  copysign(float __x, float __y)
488  { return __builtin_copysignf(__x, __y); }
489 
490  inline long double
491  copysign(long double __x, long double __y)
492  { return __builtin_copysignl(__x, __y); }
493 
494  template<typename _Tp, typename _Up>
495  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
496  copysign(_Tp __x, _Up __y)
497  {
498  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
499  return copysign(__type(__x), __type(__y));
500  }
501 
502  using std::cos;
503  using std::cosh;
504 
505  inline float
506  erf(float __x)
507  { return __builtin_erff(__x); }
508 
509  inline long double
510  erf(long double __x)
511  { return __builtin_erfl(__x); }
512 
513  template<typename _Tp>
514  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
515  double>::__type
516  erf(_Tp __x)
517  { return __builtin_erf(__x); }
518 
519  inline float
520  erfc(float __x)
521  { return __builtin_erfcf(__x); }
522 
523  inline long double
524  erfc(long double __x)
525  { return __builtin_erfcl(__x); }
526 
527  template<typename _Tp>
528  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
529  double>::__type
530  erfc(_Tp __x)
531  { return __builtin_erfc(__x); }
532 
533  using std::exp;
534 
535  inline float
536  exp2(float __x)
537  { return __builtin_exp2f(__x); }
538 
539  inline long double
540  exp2(long double __x)
541  { return __builtin_exp2l(__x); }
542 
543  template<typename _Tp>
544  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
545  double>::__type
546  exp2(_Tp __x)
547  { return __builtin_exp2(__x); }
548 
549  inline float
550  expm1(float __x)
551  { return __builtin_expm1f(__x); }
552 
553  inline long double
554  expm1(long double __x)
555  { return __builtin_expm1l(__x); }
556 
557  template<typename _Tp>
558  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
559  double>::__type
560  expm1(_Tp __x)
561  { return __builtin_expm1(__x); }
562 
563  // Note: we deal with fabs in a special way, because an using std::fabs
564  // would bring in also the overloads for complex types, which in C++0x
565  // mode have a different return type.
566  // With __CORRECT_ISO_CPP_MATH_H_PROTO1, math.h imports std::fabs in the
567  // global namespace after the declarations of the float / double / long
568  // double overloads but before the std::complex overloads.
569  using ::fabs;
570 
571 #ifndef __CORRECT_ISO_CPP_MATH_H_PROTO1
572  inline float
573  fabs(float __x)
574  { return __builtin_fabsf(__x); }
575 
576  inline long double
577  fabs(long double __x)
578  { return __builtin_fabsl(__x); }
579 
580  template<typename _Tp>
581  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
582  double>::__type
583  fabs(_Tp __x)
584  { return __builtin_fabs(__x); }
585 #endif
586 
587  inline float
588  fdim(float __x, float __y)
589  { return __builtin_fdimf(__x, __y); }
590 
591  inline long double
592  fdim(long double __x, long double __y)
593  { return __builtin_fdiml(__x, __y); }
594 
595  template<typename _Tp, typename _Up>
596  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
597  fdim(_Tp __x, _Up __y)
598  {
599  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
600  return fdim(__type(__x), __type(__y));
601  }
602 
603  using std::floor;
604 
605  inline float
606  fma(float __x, float __y, float __z)
607  { return __builtin_fmaf(__x, __y, __z); }
608 
609  inline long double
610  fma(long double __x, long double __y, long double __z)
611  { return __builtin_fmal(__x, __y, __z); }
612 
613  template<typename _Tp, typename _Up, typename _Vp>
614  inline typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type
615  fma(_Tp __x, _Up __y, _Vp __z)
616  {
617  typedef typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type __type;
618  return fma(__type(__x), __type(__y), __type(__z));
619  }
620 
621  inline float
622  fmax(float __x, float __y)
623  { return __builtin_fmaxf(__x, __y); }
624 
625  inline long double
626  fmax(long double __x, long double __y)
627  { return __builtin_fmaxl(__x, __y); }
628 
629  template<typename _Tp, typename _Up>
630  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
631  fmax(_Tp __x, _Up __y)
632  {
633  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
634  return fmax(__type(__x), __type(__y));
635  }
636 
637  inline float
638  fmin(float __x, float __y)
639  { return __builtin_fminf(__x, __y); }
640 
641  inline long double
642  fmin(long double __x, long double __y)
643  { return __builtin_fminl(__x, __y); }
644 
645  template<typename _Tp, typename _Up>
646  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
647  fmin(_Tp __x, _Up __y)
648  {
649  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
650  return fmin(__type(__x), __type(__y));
651  }
652 
653  using std::fmod;
654  using std::frexp;
655 
656  inline float
657  hypot(float __x, float __y)
658  { return __builtin_hypotf(__x, __y); }
659 
660  inline long double
661  hypot(long double __x, long double __y)
662  { return __builtin_hypotl(__x, __y); }
663 
664  template<typename _Tp, typename _Up>
665  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
666  hypot(_Tp __y, _Up __x)
667  {
668  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
669  return hypot(__type(__y), __type(__x));
670  }
671 
672  inline int
673  ilogb(float __x)
674  { return __builtin_ilogbf(__x); }
675 
676  inline int
677  ilogb(long double __x)
678  { return __builtin_ilogbl(__x); }
679 
680  template<typename _Tp>
681  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
682  int>::__type
683  ilogb(_Tp __x)
684  { return __builtin_ilogb(__x); }
685 
686  using std::ldexp;
687 
688  inline float
689  lgamma(float __x)
690  { return __builtin_lgammaf(__x); }
691 
692  inline long double
693  lgamma(long double __x)
694  { return __builtin_lgammal(__x); }
695 
696  template<typename _Tp>
697  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
698  double>::__type
699  lgamma(_Tp __x)
700  { return __builtin_lgamma(__x); }
701 
702  inline long long
703  llrint(float __x)
704  { return __builtin_llrintf(__x); }
705 
706  inline long long
707  llrint(long double __x)
708  { return __builtin_llrintl(__x); }
709 
710  template<typename _Tp>
711  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
712  long long>::__type
713  llrint(_Tp __x)
714  { return __builtin_llrint(__x); }
715 
716  inline long long
717  llround(float __x)
718  { return __builtin_llroundf(__x); }
719 
720  inline long long
721  llround(long double __x)
722  { return __builtin_llroundl(__x); }
723 
724  template<typename _Tp>
725  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
726  long long>::__type
727  llround(_Tp __x)
728  { return __builtin_llround(__x); }
729 
730  using std::log;
731  using std::log10;
732 
733  inline float
734  log1p(float __x)
735  { return __builtin_log1pf(__x); }
736 
737  inline long double
738  log1p(long double __x)
739  { return __builtin_log1pl(__x); }
740 
741  template<typename _Tp>
742  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
743  double>::__type
744  log1p(_Tp __x)
745  { return __builtin_log1p(__x); }
746 
747  // DR 568.
748  inline float
749  log2(float __x)
750  { return __builtin_log2f(__x); }
751 
752  inline long double
753  log2(long double __x)
754  { return __builtin_log2l(__x); }
755 
756  template<typename _Tp>
757  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
758  double>::__type
759  log2(_Tp __x)
760  { return __builtin_log2(__x); }
761 
762  inline float
763  logb(float __x)
764  { return __builtin_logbf(__x); }
765 
766  inline long double
767  logb(long double __x)
768  { return __builtin_logbl(__x); }
769 
770  template<typename _Tp>
771  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
772  double>::__type
773  logb(_Tp __x)
774  {
775  return __builtin_logb(__x);
776  }
777 
778  inline long
779  lrint(float __x)
780  { return __builtin_lrintf(__x); }
781 
782  inline long
783  lrint(long double __x)
784  { return __builtin_lrintl(__x); }
785 
786  template<typename _Tp>
787  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
788  long>::__type
789  lrint(_Tp __x)
790  { return __builtin_lrint(__x); }
791 
792  inline long
793  lround(float __x)
794  { return __builtin_lroundf(__x); }
795 
796  inline long
797  lround(long double __x)
798  { return __builtin_lroundl(__x); }
799 
800  template<typename _Tp>
801  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
802  long>::__type
803  lround(_Tp __x)
804  { return __builtin_lround(__x); }
805 
806  inline float
807  nearbyint(float __x)
808  { return __builtin_nearbyintf(__x); }
809 
810  inline long double
811  nearbyint(long double __x)
812  { return __builtin_nearbyintl(__x); }
813 
814  template<typename _Tp>
815  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
816  double>::__type
817  nearbyint(_Tp __x)
818  { return __builtin_nearbyint(__x); }
819 
820  inline float
821  nextafter(float __x, float __y)
822  { return __builtin_nextafterf(__x, __y); }
823 
824  inline long double
825  nextafter(long double __x, long double __y)
826  { return __builtin_nextafterl(__x, __y); }
827 
828  template<typename _Tp, typename _Up>
829  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
830  nextafter(_Tp __x, _Up __y)
831  {
832  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
833  return nextafter(__type(__x), __type(__y));
834  }
835 
836  inline float
837  nexttoward(float __x, long double __y)
838  { return __builtin_nexttowardf(__x, __y); }
839 
840  inline long double
841  nexttoward(long double __x, long double __y)
842  { return __builtin_nexttowardl(__x, __y); }
843 
844  template<typename _Tp>
845  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
846  double>::__type
847  nexttoward(_Tp __x, long double __y)
848  { return __builtin_nexttoward(__x, __y); }
849 
850  // DR 550. What should the return type of pow(float,int) be?
851  // NB: C++0x and TR1 != C++03.
852  // using std::pow;
853 
854  inline float
855  remainder(float __x, float __y)
856  { return __builtin_remainderf(__x, __y); }
857 
858  inline long double
859  remainder(long double __x, long double __y)
860  { return __builtin_remainderl(__x, __y); }
861 
862  template<typename _Tp, typename _Up>
863  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
864  remainder(_Tp __x, _Up __y)
865  {
866  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
867  return remainder(__type(__x), __type(__y));
868  }
869 
870  inline float
871  remquo(float __x, float __y, int* __pquo)
872  { return __builtin_remquof(__x, __y, __pquo); }
873 
874  inline long double
875  remquo(long double __x, long double __y, int* __pquo)
876  { return __builtin_remquol(__x, __y, __pquo); }
877 
878  template<typename _Tp, typename _Up>
879  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
880  remquo(_Tp __x, _Up __y, int* __pquo)
881  {
882  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
883  return remquo(__type(__x), __type(__y), __pquo);
884  }
885 
886  inline float
887  rint(float __x)
888  { return __builtin_rintf(__x); }
889 
890  inline long double
891  rint(long double __x)
892  { return __builtin_rintl(__x); }
893 
894  template<typename _Tp>
895  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
896  double>::__type
897  rint(_Tp __x)
898  { return __builtin_rint(__x); }
899 
900  inline float
901  round(float __x)
902  { return __builtin_roundf(__x); }
903 
904  inline long double
905  round(long double __x)
906  { return __builtin_roundl(__x); }
907 
908  template<typename _Tp>
909  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
910  double>::__type
911  round(_Tp __x)
912  { return __builtin_round(__x); }
913 
914  inline float
915  scalbln(float __x, long __ex)
916  { return __builtin_scalblnf(__x, __ex); }
917 
918  inline long double
919  scalbln(long double __x, long __ex)
920  { return __builtin_scalblnl(__x, __ex); }
921 
922  template<typename _Tp>
923  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
924  double>::__type
925  scalbln(_Tp __x, long __ex)
926  { return __builtin_scalbln(__x, __ex); }
927 
928  inline float
929  scalbn(float __x, int __ex)
930  { return __builtin_scalbnf(__x, __ex); }
931 
932  inline long double
933  scalbn(long double __x, int __ex)
934  { return __builtin_scalbnl(__x, __ex); }
935 
936  template<typename _Tp>
937  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
938  double>::__type
939  scalbn(_Tp __x, int __ex)
940  { return __builtin_scalbn(__x, __ex); }
941 
942  using std::sin;
943  using std::sinh;
944  using std::sqrt;
945  using std::tan;
946  using std::tanh;
947 
948  inline float
949  tgamma(float __x)
950  { return __builtin_tgammaf(__x); }
951 
952  inline long double
953  tgamma(long double __x)
954  { return __builtin_tgammal(__x); }
955 
956  template<typename _Tp>
957  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
958  double>::__type
959  tgamma(_Tp __x)
960  { return __builtin_tgamma(__x); }
961 
962  inline float
963  trunc(float __x)
964  { return __builtin_truncf(__x); }
965 
966  inline long double
967  trunc(long double __x)
968  { return __builtin_truncl(__x); }
969 
970  template<typename _Tp>
971  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
972  double>::__type
973  trunc(_Tp __x)
974  { return __builtin_trunc(__x); }
975 
976 #endif
977 _GLIBCXX_END_NAMESPACE_VERSION
978 }
979 }
980 
981 namespace std _GLIBCXX_VISIBILITY(default)
982 {
983 namespace tr1
984 {
985 _GLIBCXX_BEGIN_NAMESPACE_VERSION
986 
987  // DR 550. What should the return type of pow(float,int) be?
988  // NB: C++0x and TR1 != C++03.
989  inline double
990  pow(double __x, double __y)
991  { return std::pow(__x, __y); }
992 
993  inline float
994  pow(float __x, float __y)
995  { return std::pow(__x, __y); }
996 
997  inline long double
998  pow(long double __x, long double __y)
999  { return std::pow(__x, __y); }
1000 
1001  template<typename _Tp, typename _Up>
1002  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
1003  pow(_Tp __x, _Up __y)
1004  {
1005  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
1006  return std::pow(__type(__x), __type(__y));
1007  }
1008 
1009 _GLIBCXX_END_NAMESPACE_VERSION
1010 }
1011 }
1012 
1013 #include <bits/stl_algobase.h>
1014 #include <limits>
1015 #include <tr1/type_traits>
1016 
1017 #include <tr1/gamma.tcc>
1018 #include <tr1/bessel_function.tcc>
1019 #include <tr1/beta_function.tcc>
1020 #include <tr1/ell_integral.tcc>
1021 #include <tr1/exp_integral.tcc>
1022 #include <tr1/hypergeometric.tcc>
1023 #include <tr1/legendre_function.tcc>
1024 #include <tr1/modified_bessel_func.tcc>
1025 #include <tr1/poly_hermite.tcc>
1026 #include <tr1/poly_laguerre.tcc>
1027 #include <tr1/riemann_zeta.tcc>
1028 
1029 namespace std _GLIBCXX_VISIBILITY(default)
1030 {
1031 namespace tr1
1032 {
1033 _GLIBCXX_BEGIN_NAMESPACE_VERSION
1034 
1035  /**
1036  * @defgroup tr1_math_spec_func Mathematical Special Functions
1037  * @ingroup numerics
1038  *
1039  * A collection of advanced mathematical special functions.
1040  * @{
1041  */
1042 
1043  inline float
1044  assoc_laguerref(unsigned int __n, unsigned int __m, float __x)
1045  { return __detail::__assoc_laguerre<float>(__n, __m, __x); }
1046 
1047  inline long double
1048  assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x)
1049  {
1050  return __detail::__assoc_laguerre<long double>(__n, __m, __x);
1051  }
1052 
1053  /// 5.2.1.1 Associated Laguerre polynomials.
1054  template<typename _Tp>
1055  inline typename __gnu_cxx::__promote<_Tp>::__type
1056  assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
1057  {
1058  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1059  return __detail::__assoc_laguerre<__type>(__n, __m, __x);
1060  }
1061 
1062  inline float
1063  assoc_legendref(unsigned int __l, unsigned int __m, float __x)
1064  { return __detail::__assoc_legendre_p<float>(__l, __m, __x); }
1065 
1066  inline long double
1067  assoc_legendrel(unsigned int __l, unsigned int __m, long double __x)
1068  { return __detail::__assoc_legendre_p<long double>(__l, __m, __x); }
1069 
1070  /// 5.2.1.2 Associated Legendre functions.
1071  template<typename _Tp>
1072  inline typename __gnu_cxx::__promote<_Tp>::__type
1073  assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
1074  {
1075  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1076  return __detail::__assoc_legendre_p<__type>(__l, __m, __x);
1077  }
1078 
1079  inline float
1080  betaf(float __x, float __y)
1081  { return __detail::__beta<float>(__x, __y); }
1082 
1083  inline long double
1084  betal(long double __x, long double __y)
1085  { return __detail::__beta<long double>(__x, __y); }
1086 
1087  /// 5.2.1.3 Beta functions.
1088  template<typename _Tpx, typename _Tpy>
1089  inline typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type
1090  beta(_Tpx __x, _Tpy __y)
1091  {
1092  typedef typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type __type;
1093  return __detail::__beta<__type>(__x, __y);
1094  }
1095 
1096  inline float
1097  comp_ellint_1f(float __k)
1098  { return __detail::__comp_ellint_1<float>(__k); }
1099 
1100  inline long double
1101  comp_ellint_1l(long double __k)
1102  { return __detail::__comp_ellint_1<long double>(__k); }
1103 
1104  /// 5.2.1.4 Complete elliptic integrals of the first kind.
1105  template<typename _Tp>
1106  inline typename __gnu_cxx::__promote<_Tp>::__type
1107  comp_ellint_1(_Tp __k)
1108  {
1109  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1110  return __detail::__comp_ellint_1<__type>(__k);
1111  }
1112 
1113  inline float
1114  comp_ellint_2f(float __k)
1115  { return __detail::__comp_ellint_2<float>(__k); }
1116 
1117  inline long double
1118  comp_ellint_2l(long double __k)
1119  { return __detail::__comp_ellint_2<long double>(__k); }
1120 
1121  /// 5.2.1.5 Complete elliptic integrals of the second kind.
1122  template<typename _Tp>
1123  inline typename __gnu_cxx::__promote<_Tp>::__type
1124  comp_ellint_2(_Tp __k)
1125  {
1126  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1127  return __detail::__comp_ellint_2<__type>(__k);
1128  }
1129 
1130  inline float
1131  comp_ellint_3f(float __k, float __nu)
1132  { return __detail::__comp_ellint_3<float>(__k, __nu); }
1133 
1134  inline long double
1135  comp_ellint_3l(long double __k, long double __nu)
1136  { return __detail::__comp_ellint_3<long double>(__k, __nu); }
1137 
1138  /// 5.2.1.6 Complete elliptic integrals of the third kind.
1139  template<typename _Tp, typename _Tpn>
1140  inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type
1141  comp_ellint_3(_Tp __k, _Tpn __nu)
1142  {
1143  typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type;
1144  return __detail::__comp_ellint_3<__type>(__k, __nu);
1145  }
1146 
1147  inline float
1148  conf_hypergf(float __a, float __c, float __x)
1149  { return __detail::__conf_hyperg<float>(__a, __c, __x); }
1150 
1151  inline long double
1152  conf_hypergl(long double __a, long double __c, long double __x)
1153  { return __detail::__conf_hyperg<long double>(__a, __c, __x); }
1154 
1155  /// 5.2.1.7 Confluent hypergeometric functions.
1156  template<typename _Tpa, typename _Tpc, typename _Tp>
1157  inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type
1158  conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
1159  {
1160  typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type;
1161  return __detail::__conf_hyperg<__type>(__a, __c, __x);
1162  }
1163 
1164  inline float
1165  cyl_bessel_if(float __nu, float __x)
1166  { return __detail::__cyl_bessel_i<float>(__nu, __x); }
1167 
1168  inline long double
1169  cyl_bessel_il(long double __nu, long double __x)
1170  { return __detail::__cyl_bessel_i<long double>(__nu, __x); }
1171 
1172  /// 5.2.1.8 Regular modified cylindrical Bessel functions.
1173  template<typename _Tpnu, typename _Tp>
1174  inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
1175  cyl_bessel_i(_Tpnu __nu, _Tp __x)
1176  {
1177  typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
1178  return __detail::__cyl_bessel_i<__type>(__nu, __x);
1179  }
1180 
1181  inline float
1182  cyl_bessel_jf(float __nu, float __x)
1183  { return __detail::__cyl_bessel_j<float>(__nu, __x); }
1184 
1185  inline long double
1186  cyl_bessel_jl(long double __nu, long double __x)
1187  { return __detail::__cyl_bessel_j<long double>(__nu, __x); }
1188 
1189  /// 5.2.1.9 Cylindrical Bessel functions (of the first kind).
1190  template<typename _Tpnu, typename _Tp>
1191  inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
1192  cyl_bessel_j(_Tpnu __nu, _Tp __x)
1193  {
1194  typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
1195  return __detail::__cyl_bessel_j<__type>(__nu, __x);
1196  }
1197 
1198  inline float
1199  cyl_bessel_kf(float __nu, float __x)
1200  { return __detail::__cyl_bessel_k<float>(__nu, __x); }
1201 
1202  inline long double
1203  cyl_bessel_kl(long double __nu, long double __x)
1204  { return __detail::__cyl_bessel_k<long double>(__nu, __x); }
1205 
1206  /// 5.2.1.10 Irregular modified cylindrical Bessel functions.
1207  template<typename _Tpnu, typename _Tp>
1208  inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
1209  cyl_bessel_k(_Tpnu __nu, _Tp __x)
1210  {
1211  typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
1212  return __detail::__cyl_bessel_k<__type>(__nu, __x);
1213  }
1214 
1215  inline float
1216  cyl_neumannf(float __nu, float __x)
1217  { return __detail::__cyl_neumann_n<float>(__nu, __x); }
1218 
1219  inline long double
1220  cyl_neumannl(long double __nu, long double __x)
1221  { return __detail::__cyl_neumann_n<long double>(__nu, __x); }
1222 
1223  /// 5.2.1.11 Cylindrical Neumann functions.
1224  template<typename _Tpnu, typename _Tp>
1225  inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
1226  cyl_neumann(_Tpnu __nu, _Tp __x)
1227  {
1228  typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
1229  return __detail::__cyl_neumann_n<__type>(__nu, __x);
1230  }
1231 
1232  inline float
1233  ellint_1f(float __k, float __phi)
1234  { return __detail::__ellint_1<float>(__k, __phi); }
1235 
1236  inline long double
1237  ellint_1l(long double __k, long double __phi)
1238  { return __detail::__ellint_1<long double>(__k, __phi); }
1239 
1240  /// 5.2.1.12 Incomplete elliptic integrals of the first kind.
1241  template<typename _Tp, typename _Tpp>
1242  inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
1243  ellint_1(_Tp __k, _Tpp __phi)
1244  {
1245  typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
1246  return __detail::__ellint_1<__type>(__k, __phi);
1247  }
1248 
1249  inline float
1250  ellint_2f(float __k, float __phi)
1251  { return __detail::__ellint_2<float>(__k, __phi); }
1252 
1253  inline long double
1254  ellint_2l(long double __k, long double __phi)
1255  { return __detail::__ellint_2<long double>(__k, __phi); }
1256 
1257  /// 5.2.1.13 Incomplete elliptic integrals of the second kind.
1258  template<typename _Tp, typename _Tpp>
1259  inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
1260  ellint_2(_Tp __k, _Tpp __phi)
1261  {
1262  typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
1263  return __detail::__ellint_2<__type>(__k, __phi);
1264  }
1265 
1266  inline float
1267  ellint_3f(float __k, float __nu, float __phi)
1268  { return __detail::__ellint_3<float>(__k, __nu, __phi); }
1269 
1270  inline long double
1271  ellint_3l(long double __k, long double __nu, long double __phi)
1272  { return __detail::__ellint_3<long double>(__k, __nu, __phi); }
1273 
1274  /// 5.2.1.14 Incomplete elliptic integrals of the third kind.
1275  template<typename _Tp, typename _Tpn, typename _Tpp>
1276  inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type
1277  ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
1278  {
1279  typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type;
1280  return __detail::__ellint_3<__type>(__k, __nu, __phi);
1281  }
1282 
1283  inline float
1284  expintf(float __x)
1285  { return __detail::__expint<float>(__x); }
1286 
1287  inline long double
1288  expintl(long double __x)
1289  { return __detail::__expint<long double>(__x); }
1290 
1291  /// 5.2.1.15 Exponential integrals.
1292  template<typename _Tp>
1293  inline typename __gnu_cxx::__promote<_Tp>::__type
1294  expint(_Tp __x)
1295  {
1296  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1297  return __detail::__expint<__type>(__x);
1298  }
1299 
1300  inline float
1301  hermitef(unsigned int __n, float __x)
1302  { return __detail::__poly_hermite<float>(__n, __x); }
1303 
1304  inline long double
1305  hermitel(unsigned int __n, long double __x)
1306  { return __detail::__poly_hermite<long double>(__n, __x); }
1307 
1308  /// 5.2.1.16 Hermite polynomials.
1309  template<typename _Tp>
1310  inline typename __gnu_cxx::__promote<_Tp>::__type
1311  hermite(unsigned int __n, _Tp __x)
1312  {
1313  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1314  return __detail::__poly_hermite<__type>(__n, __x);
1315  }
1316 
1317  inline float
1318  hypergf(float __a, float __b, float __c, float __x)
1319  { return __detail::__hyperg<float>(__a, __b, __c, __x); }
1320 
1321  inline long double
1322  hypergl(long double __a, long double __b, long double __c, long double __x)
1323  { return __detail::__hyperg<long double>(__a, __b, __c, __x); }
1324 
1325  /// 5.2.1.17 Hypergeometric functions.
1326  template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp>
1327  inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type
1328  hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
1329  {
1330  typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type __type;
1331  return __detail::__hyperg<__type>(__a, __b, __c, __x);
1332  }
1333 
1334  inline float
1335  laguerref(unsigned int __n, float __x)
1336  { return __detail::__laguerre<float>(__n, __x); }
1337 
1338  inline long double
1339  laguerrel(unsigned int __n, long double __x)
1340  { return __detail::__laguerre<long double>(__n, __x); }
1341 
1342  /// 5.2.1.18 Laguerre polynomials.
1343  template<typename _Tp>
1344  inline typename __gnu_cxx::__promote<_Tp>::__type
1345  laguerre(unsigned int __n, _Tp __x)
1346  {
1347  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1348  return __detail::__laguerre<__type>(__n, __x);
1349  }
1350 
1351  inline float
1352  legendref(unsigned int __n, float __x)
1353  { return __detail::__poly_legendre_p<float>(__n, __x); }
1354 
1355  inline long double
1356  legendrel(unsigned int __n, long double __x)
1357  { return __detail::__poly_legendre_p<long double>(__n, __x); }
1358 
1359  /// 5.2.1.19 Legendre polynomials.
1360  template<typename _Tp>
1361  inline typename __gnu_cxx::__promote<_Tp>::__type
1362  legendre(unsigned int __n, _Tp __x)
1363  {
1364  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1365  return __detail::__poly_legendre_p<__type>(__n, __x);
1366  }
1367 
1368  inline float
1369  riemann_zetaf(float __x)
1370  { return __detail::__riemann_zeta<float>(__x); }
1371 
1372  inline long double
1373  riemann_zetal(long double __x)
1374  { return __detail::__riemann_zeta<long double>(__x); }
1375 
1376  /// 5.2.1.20 Riemann zeta function.
1377  template<typename _Tp>
1378  inline typename __gnu_cxx::__promote<_Tp>::__type
1379  riemann_zeta(_Tp __x)
1380  {
1381  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1382  return __detail::__riemann_zeta<__type>(__x);
1383  }
1384 
1385  inline float
1386  sph_besself(unsigned int __n, float __x)
1387  { return __detail::__sph_bessel<float>(__n, __x); }
1388 
1389  inline long double
1390  sph_bessell(unsigned int __n, long double __x)
1391  { return __detail::__sph_bessel<long double>(__n, __x); }
1392 
1393  /// 5.2.1.21 Spherical Bessel functions.
1394  template<typename _Tp>
1395  inline typename __gnu_cxx::__promote<_Tp>::__type
1396  sph_bessel(unsigned int __n, _Tp __x)
1397  {
1398  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1399  return __detail::__sph_bessel<__type>(__n, __x);
1400  }
1401 
1402  inline float
1403  sph_legendref(unsigned int __l, unsigned int __m, float __theta)
1404  { return __detail::__sph_legendre<float>(__l, __m, __theta); }
1405 
1406  inline long double
1407  sph_legendrel(unsigned int __l, unsigned int __m, long double __theta)
1408  { return __detail::__sph_legendre<long double>(__l, __m, __theta); }
1409 
1410  /// 5.2.1.22 Spherical associated Legendre functions.
1411  template<typename _Tp>
1412  inline typename __gnu_cxx::__promote<_Tp>::__type
1413  sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
1414  {
1415  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1416  return __detail::__sph_legendre<__type>(__l, __m, __theta);
1417  }
1418 
1419  inline float
1420  sph_neumannf(unsigned int __n, float __x)
1421  { return __detail::__sph_neumann<float>(__n, __x); }
1422 
1423  inline long double
1424  sph_neumannl(unsigned int __n, long double __x)
1425  { return __detail::__sph_neumann<long double>(__n, __x); }
1426 
1427  /// 5.2.1.23 Spherical Neumann functions.
1428  template<typename _Tp>
1429  inline typename __gnu_cxx::__promote<_Tp>::__type
1430  sph_neumann(unsigned int __n, _Tp __x)
1431  {
1432  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1433  return __detail::__sph_neumann<__type>(__n, __x);
1434  }
1435 
1436  /* @} */ // tr1_math_spec_func
1437 _GLIBCXX_END_NAMESPACE_VERSION
1438 }
1439 }
1440 
1441 #endif // _GLIBCXX_TR1_CMATH
__gnu_cxx::__promote< _Tp >::__type legendre(unsigned int __n, _Tp __x)
5.2.1.19 Legendre polynomials.
Definition: tr1/cmath:1362
__gnu_cxx::__promote_2< _Tpx, _Tpy >::__type beta(_Tpx __x, _Tpy __y)
5.2.1.3 Beta functions.
Definition: tr1/cmath:1090
std::complex< _Tp > fabs(const std::complex< _Tp > &)
fabs(__z) [8.1.8].
Definition: tr1/complex:308
__gnu_cxx::__promote_3< _Tp, _Tpn, _Tpp >::__type ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
5.2.1.14 Incomplete elliptic integrals of the third kind.
Definition: tr1/cmath:1277
__gnu_cxx::__promote< _Tp >::__type comp_ellint_1(_Tp __k)
5.2.1.4 Complete elliptic integrals of the first kind.
Definition: tr1/cmath:1107
__gnu_cxx::__promote< _Tp >::__type sph_bessel(unsigned int __n, _Tp __x)
5.2.1.21 Spherical Bessel functions.
Definition: tr1/cmath:1396
complex< _Tp > sin(const complex< _Tp > &)
Return complex sine of z.
Definition: complex:817
__gnu_cxx::__promote< _Tp >::__type laguerre(unsigned int __n, _Tp __x)
5.2.1.18 Laguerre polynomials.
Definition: tr1/cmath:1345
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_k(_Tpnu __nu, _Tp __x)
5.2.1.10 Irregular modified cylindrical Bessel functions.
Definition: tr1/cmath:1209
std::complex< _Tp > asinh(const std::complex< _Tp > &)
asinh(__z) [8.1.6].
Definition: complex:1754
__gnu_cxx::__promote_3< _Tpa, _Tpc, _Tp >::__type conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
5.2.1.7 Confluent hypergeometric functions.
Definition: tr1/cmath:1158
complex< _Tp > tan(const complex< _Tp > &)
Return complex tangent of z.
Definition: complex:918
std::complex< _Tp > atanh(const std::complex< _Tp > &)
atanh(__z) [8.1.7].
Definition: tr1/complex:299
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_i(_Tpnu __nu, _Tp __x)
5.2.1.8 Regular modified cylindrical Bessel functions.
Definition: tr1/cmath:1175
__gnu_cxx::__promote< _Tp >::__type sph_neumann(unsigned int __n, _Tp __x)
5.2.1.23 Spherical Neumann functions.
Definition: tr1/cmath:1430
__gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_1(_Tp __k, _Tpp __phi)
5.2.1.12 Incomplete elliptic integrals of the first kind.
Definition: tr1/cmath:1243
std::complex< _Tp > atan(const std::complex< _Tp > &)
atan(__z) [8.1.4].
Definition: complex:1679
std::complex< _Tp > asinh(const std::complex< _Tp > &)
asinh(__z) [8.1.6].
Definition: tr1/complex:255
complex< _Tp > exp(const complex< _Tp > &)
Return complex base e exponential of z.
Definition: complex:755
std::complex< _Tp > acosh(const std::complex< _Tp > &)
acosh(__z) [8.1.5].
Definition: tr1/complex:216
complex< _Tp > log10(const complex< _Tp > &)
Return complex base 10 logarithm of z.
Definition: complex:787
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_j(_Tpnu __nu, _Tp __x)
5.2.1.9 Cylindrical Bessel functions (of the first kind).
Definition: tr1/cmath:1192
__gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_2(_Tp __k, _Tpp __phi)
5.2.1.13 Incomplete elliptic integrals of the second kind.
Definition: tr1/cmath:1260
std::complex< _Tp > asin(const std::complex< _Tp > &)
asin(__z) [8.1.3].
Definition: complex:1635
complex< _Tp > sinh(const complex< _Tp > &)
Return complex hyperbolic sine of z.
Definition: complex:847
__gnu_cxx::__promote< _Tp >::__type expint(_Tp __x)
5.2.1.15 Exponential integrals.
Definition: tr1/cmath:1294
__gnu_cxx::__promote< _Tp >::__type assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
5.2.1.1 Associated Laguerre polynomials.
Definition: tr1/cmath:1056
complex< _Tp > log(const complex< _Tp > &)
Return complex natural logarithm of z.
Definition: complex:782
complex< _Tp > cos(const complex< _Tp > &)
Return complex cosine of z.
Definition: complex:699
__gnu_cxx::__promote< _Tp >::__type sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
5.2.1.22 Spherical associated Legendre functions.
Definition: tr1/cmath:1413
std::complex< _Tp > acos(const std::complex< _Tp > &)
acos(__z) [8.1.2].
Definition: complex:1599
complex< _Tp > sqrt(const complex< _Tp > &)
Return complex square root of z.
Definition: complex:891
__gnu_cxx::__promote_4< _Tpa, _Tpb, _Tpc, _Tp >::__type hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
5.2.1.17 Hypergeometric functions.
Definition: tr1/cmath:1328
__gnu_cxx::__promote< _Tp >::__type hermite(unsigned int __n, _Tp __x)
5.2.1.16 Hermite polynomials.
Definition: tr1/cmath:1311
__gnu_cxx::__promote< _Tp >::__type comp_ellint_2(_Tp __k)
5.2.1.5 Complete elliptic integrals of the second kind.
Definition: tr1/cmath:1124
std::complex< _Tp > atanh(const std::complex< _Tp > &)
atanh(__z) [8.1.7].
Definition: complex:1798
_Tp fabs(const std::complex< _Tp > &)
fabs(__z) [8.1.8].
Definition: complex:1807
complex< _Tp > pow(const complex< _Tp > &, const _Tp &)
Return x to the y'th power.
Definition: complex:984
std::complex< _Tp > acosh(const std::complex< _Tp > &)
acosh(__z) [8.1.5].
Definition: complex:1715
__gnu_cxx::__promote_2< _Tp, _Tpn >::__type comp_ellint_3(_Tp __k, _Tpn __nu)
5.2.1.6 Complete elliptic integrals of the third kind.
Definition: tr1/cmath:1141
complex< _Tp > tanh(const complex< _Tp > &)
Return complex hyperbolic tangent of z.
Definition: complex:946
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_neumann(_Tpnu __nu, _Tp __x)
5.2.1.11 Cylindrical Neumann functions.
Definition: tr1/cmath:1226
complex< _Tp > cosh(const complex< _Tp > &)
Return complex hyperbolic cosine of z.
Definition: complex:729
__gnu_cxx::__promote< _Tp >::__type assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
5.2.1.2 Associated Legendre functions.
Definition: tr1/cmath:1073
__gnu_cxx::__promote< _Tp >::__type riemann_zeta(_Tp __x)
5.2.1.20 Riemann zeta function.
Definition: tr1/cmath:1379