libstdc++
bits/hashtable.h
Go to the documentation of this file.
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2013 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 
37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 
41  template<typename _Tp, typename _Hash>
42  using __cache_default
43  = __not_<__and_<// Do not cache for fast hasher.
44  __is_fast_hash<_Hash>,
45  // Mandatory to make local_iterator default
46  // constructible and assignable.
47  is_default_constructible<_Hash>,
48  is_copy_assignable<_Hash>,
49  // Mandatory to have erase not throwing.
50  __detail::__is_noexcept_hash<_Tp, _Hash>>>;
51 
52  /**
53  * Primary class template _Hashtable.
54  *
55  * @ingroup hashtable-detail
56  *
57  * @tparam _Value CopyConstructible type.
58  *
59  * @tparam _Key CopyConstructible type.
60  *
61  * @tparam _Alloc An allocator type
62  * ([lib.allocator.requirements]) whose _Alloc::value_type is
63  * _Value. As a conforming extension, we allow for
64  * _Alloc::value_type != _Value.
65  *
66  * @tparam _ExtractKey Function object that takes an object of type
67  * _Value and returns a value of type _Key.
68  *
69  * @tparam _Equal Function object that takes two objects of type k
70  * and returns a bool-like value that is true if the two objects
71  * are considered equal.
72  *
73  * @tparam _H1 The hash function. A unary function object with
74  * argument type _Key and result type size_t. Return values should
75  * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
76  *
77  * @tparam _H2 The range-hashing function (in the terminology of
78  * Tavori and Dreizin). A binary function object whose argument
79  * types and result type are all size_t. Given arguments r and N,
80  * the return value is in the range [0, N).
81  *
82  * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
83  * binary function whose argument types are _Key and size_t and
84  * whose result type is size_t. Given arguments k and N, the
85  * return value is in the range [0, N). Default: hash(k, N) =
86  * h2(h1(k), N). If _Hash is anything other than the default, _H1
87  * and _H2 are ignored.
88  *
89  * @tparam _RehashPolicy Policy class with three members, all of
90  * which govern the bucket count. _M_next_bkt(n) returns a bucket
91  * count no smaller than n. _M_bkt_for_elements(n) returns a
92  * bucket count appropriate for an element count of n.
93  * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
94  * current bucket count is n_bkt and the current element count is
95  * n_elt, we need to increase the bucket count. If so, returns
96  * make_pair(true, n), where n is the new bucket count. If not,
97  * returns make_pair(false, <anything>)
98  *
99  * @tparam _Traits Compile-time class with three boolean
100  * std::integral_constant members: __cache_hash_code, __constant_iterators,
101  * __unique_keys.
102  *
103  * Each _Hashtable data structure has:
104  *
105  * - _Bucket[] _M_buckets
106  * - _Hash_node_base _M_bbegin
107  * - size_type _M_bucket_count
108  * - size_type _M_element_count
109  *
110  * with _Bucket being _Hash_node* and _Hash_node containing:
111  *
112  * - _Hash_node* _M_next
113  * - Tp _M_value
114  * - size_t _M_hash_code if cache_hash_code is true
115  *
116  * In terms of Standard containers the hashtable is like the aggregation of:
117  *
118  * - std::forward_list<_Node> containing the elements
119  * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
120  *
121  * The non-empty buckets contain the node before the first node in the
122  * bucket. This design makes it possible to implement something like a
123  * std::forward_list::insert_after on container insertion and
124  * std::forward_list::erase_after on container erase
125  * calls. _M_before_begin is equivalent to
126  * std::forward_list::before_begin. Empty buckets contain
127  * nullptr. Note that one of the non-empty buckets contains
128  * &_M_before_begin which is not a dereferenceable node so the
129  * node pointer in a bucket shall never be dereferenced, only its
130  * next node can be.
131  *
132  * Walking through a bucket's nodes requires a check on the hash code to
133  * see if each node is still in the bucket. Such a design assumes a
134  * quite efficient hash functor and is one of the reasons it is
135  * highly advisable to set __cache_hash_code to true.
136  *
137  * The container iterators are simply built from nodes. This way
138  * incrementing the iterator is perfectly efficient independent of
139  * how many empty buckets there are in the container.
140  *
141  * On insert we compute the element's hash code and use it to find the
142  * bucket index. If the element must be inserted in an empty bucket
143  * we add it at the beginning of the singly linked list and make the
144  * bucket point to _M_before_begin. The bucket that used to point to
145  * _M_before_begin, if any, is updated to point to its new before
146  * begin node.
147  *
148  * On erase, the simple iterator design requires using the hash
149  * functor to get the index of the bucket to update. For this
150  * reason, when __cache_hash_code is set to false the hash functor must
151  * not throw and this is enforced by a static assertion.
152  *
153  * Functionality is implemented by decomposition into base classes,
154  * where the derived _Hashtable class is used in _Map_base,
155  * _Insert, _Rehash_base, and _Equality base classes to access the
156  * "this" pointer. _Hashtable_base is used in the base classes as a
157  * non-recursive, fully-completed-type so that detailed nested type
158  * information, such as iterator type and node type, can be
159  * used. This is similar to the "Curiously Recurring Template
160  * Pattern" (CRTP) technique, but uses a reconstructed, not
161  * explicitly passed, template pattern.
162  *
163  * Base class templates are:
164  * - __detail::_Hashtable_base
165  * - __detail::_Map_base
166  * - __detail::_Insert
167  * - __detail::_Rehash_base
168  * - __detail::_Equality
169  */
170  template<typename _Key, typename _Value, typename _Alloc,
171  typename _ExtractKey, typename _Equal,
172  typename _H1, typename _H2, typename _Hash,
173  typename _RehashPolicy, typename _Traits>
175  : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
176  _H1, _H2, _Hash, _Traits>,
177  public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179  public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181  public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
182  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
183  public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
184  _H1, _H2, _Hash, _RehashPolicy, _Traits>
185  {
186  public:
187  typedef _Key key_type;
188  typedef _Value value_type;
189  typedef _Alloc allocator_type;
190  typedef _Equal key_equal;
191 
192  // mapped_type, if present, comes from _Map_base.
193  // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
194  typedef typename _Alloc::pointer pointer;
195  typedef typename _Alloc::const_pointer const_pointer;
196  typedef typename _Alloc::reference reference;
197  typedef typename _Alloc::const_reference const_reference;
198 
199  private:
200  using __rehash_type = _RehashPolicy;
201  using __rehash_state = typename __rehash_type::_State;
202 
203  using __traits_type = _Traits;
204  using __hash_cached = typename __traits_type::__hash_cached;
205  using __constant_iterators = typename __traits_type::__constant_iterators;
206  using __unique_keys = typename __traits_type::__unique_keys;
207 
208  using __key_extract = typename std::conditional<
209  __constant_iterators::value,
210  __detail::_Identity,
211  __detail::_Select1st>::type;
212 
214  _Hashtable_base<_Key, _Value, _ExtractKey,
215  _Equal, _H1, _H2, _Hash, _Traits>;
216 
217  using __hash_code_base = typename __hashtable_base::__hash_code_base;
218  using __hash_code = typename __hashtable_base::__hash_code;
219  using __node_type = typename __hashtable_base::__node_type;
220  using __node_base = typename __hashtable_base::__node_base;
221  using __bucket_type = typename __hashtable_base::__bucket_type;
222  using __ireturn_type = typename __hashtable_base::__ireturn_type;
223  using __iconv_type = typename __hashtable_base::__iconv_type;
224 
225  using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
226  _Equal, _H1, _H2, _Hash,
227  _RehashPolicy, _Traits>;
228 
229  using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
230  _ExtractKey, _Equal,
231  _H1, _H2, _Hash,
232  _RehashPolicy, _Traits>;
233 
234  using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
235  _Equal, _H1, _H2, _Hash,
236  _RehashPolicy, _Traits>;
237 
238  // Metaprogramming for picking apart hash caching.
239  using __hash_noexcept = __detail::__is_noexcept_hash<_Key, _H1>;
240 
241  template<typename _Cond>
242  using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
243 
244  template<typename _Cond>
245  using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
246 
247  // Compile-time diagnostics.
248 
249  // When hash codes are not cached the hash functor shall not
250  // throw because it is used in methods (erase, swap...) that
251  // shall not throw.
252  static_assert(__if_hash_not_cached<__hash_noexcept>::value,
253  "Cache the hash code"
254  " or qualify your hash functor with noexcept");
255 
256  // Following two static assertions are necessary to guarantee
257  // that local_iterator will be default constructible.
258 
259  // When hash codes are cached local iterator inherits from H2 functor
260  // which must then be default constructible.
261  static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
262  "Functor used to map hash code to bucket index"
263  " must be default constructible");
264 
265  // When hash codes are not cached local iterator inherits from
266  // __hash_code_base above to compute node bucket index so it has to be
267  // default constructible.
268  static_assert(__if_hash_not_cached<
269  is_default_constructible<
270  // We use _Hashtable_ebo_helper to access the protected
271  // default constructor.
273  "Cache the hash code or make functors involved in hash code"
274  " and bucket index computation default constructible");
275 
276  // When hash codes are not cached local iterator inherits from
277  // __hash_code_base above to compute node bucket index so it has to be
278  // assignable.
279  static_assert(__if_hash_not_cached<
280  is_copy_assignable<__hash_code_base>>::value,
281  "Cache the hash code or make functors involved in hash code"
282  " and bucket index computation copy assignable");
283 
284  public:
285  template<typename _Keya, typename _Valuea, typename _Alloca,
286  typename _ExtractKeya, typename _Equala,
287  typename _H1a, typename _H2a, typename _Hasha,
288  typename _RehashPolicya, typename _Traitsa,
289  bool _Unique_keysa>
290  friend struct __detail::_Map_base;
291 
292  template<typename _Keya, typename _Valuea, typename _Alloca,
293  typename _ExtractKeya, typename _Equala,
294  typename _H1a, typename _H2a, typename _Hasha,
295  typename _RehashPolicya, typename _Traitsa>
296  friend struct __detail::_Insert_base;
297 
298  template<typename _Keya, typename _Valuea, typename _Alloca,
299  typename _ExtractKeya, typename _Equala,
300  typename _H1a, typename _H2a, typename _Hasha,
301  typename _RehashPolicya, typename _Traitsa,
302  bool _Constant_iteratorsa, bool _Unique_keysa>
303  friend struct __detail::_Insert;
304 
305  using size_type = typename __hashtable_base::size_type;
306  using difference_type = typename __hashtable_base::difference_type;
307 
308  using iterator = typename __hashtable_base::iterator;
309  using const_iterator = typename __hashtable_base::const_iterator;
310 
311  using local_iterator = typename __hashtable_base::local_iterator;
312  using const_local_iterator = typename __hashtable_base::
314 
315  private:
316  typedef typename _Alloc::template rebind<__node_type>::other
317  _Node_allocator_type;
318  typedef typename _Alloc::template rebind<__bucket_type>::other
319  _Bucket_allocator_type;
320 
322 
323  __bucket_type* _M_buckets;
324  size_type _M_bucket_count;
325  __before_begin _M_bbegin;
326  size_type _M_element_count;
327  _RehashPolicy _M_rehash_policy;
328 
329  _Node_allocator_type&
330  _M_node_allocator()
331  { return _M_bbegin; }
332 
333  const _Node_allocator_type&
334  _M_node_allocator() const
335  { return _M_bbegin; }
336 
337  __node_base&
338  _M_before_begin()
339  { return _M_bbegin._M_node; }
340 
341  const __node_base&
342  _M_before_begin() const
343  { return _M_bbegin._M_node; }
344 
345  template<typename... _Args>
346  __node_type*
347  _M_allocate_node(_Args&&... __args);
348 
349  void
350  _M_deallocate_node(__node_type* __n);
351 
352  // Deallocate the linked list of nodes pointed to by __n
353  void
354  _M_deallocate_nodes(__node_type* __n);
355 
356  __bucket_type*
357  _M_allocate_buckets(size_type __n);
358 
359  void
360  _M_deallocate_buckets(__bucket_type*, size_type __n);
361 
362  // Gets bucket begin, deals with the fact that non-empty buckets contain
363  // their before begin node.
364  __node_type*
365  _M_bucket_begin(size_type __bkt) const;
366 
367  __node_type*
368  _M_begin() const
369  { return static_cast<__node_type*>(_M_before_begin()._M_nxt); }
370 
371  public:
372  // Constructor, destructor, assignment, swap
373  _Hashtable(size_type __bucket_hint,
374  const _H1&, const _H2&, const _Hash&,
375  const _Equal&, const _ExtractKey&,
376  const allocator_type&);
377 
378  template<typename _InputIterator>
379  _Hashtable(_InputIterator __first, _InputIterator __last,
380  size_type __bucket_hint,
381  const _H1&, const _H2&, const _Hash&,
382  const _Equal&, const _ExtractKey&,
383  const allocator_type&);
384 
385  _Hashtable(const _Hashtable&);
386 
388 
389  // Use delegating constructors.
390  explicit
391  _Hashtable(size_type __n = 10,
392  const _H1& __hf = _H1(),
393  const key_equal& __eql = key_equal(),
394  const allocator_type& __a = allocator_type())
397  __key_extract(), __a)
398  { }
399 
400  template<typename _InputIterator>
401  _Hashtable(_InputIterator __f, _InputIterator __l,
402  size_type __n = 0,
403  const _H1& __hf = _H1(),
404  const key_equal& __eql = key_equal(),
405  const allocator_type& __a = allocator_type())
406  : _Hashtable(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
408  __key_extract(), __a)
409  { }
410 
411  _Hashtable(initializer_list<value_type> __l,
412  size_type __n = 0,
413  const _H1& __hf = _H1(),
414  const key_equal& __eql = key_equal(),
415  const allocator_type& __a = allocator_type())
416  : _Hashtable(__l.begin(), __l.end(), __n, __hf,
419  __key_extract(), __a)
420  { }
421 
422  _Hashtable&
423  operator=(const _Hashtable& __ht)
424  {
425  _Hashtable __tmp(__ht);
426  this->swap(__tmp);
427  return *this;
428  }
429 
430  _Hashtable&
431  operator=(_Hashtable&& __ht)
432  {
433  // NB: DR 1204.
434  // NB: DR 675.
435  this->clear();
436  this->swap(__ht);
437  return *this;
438  }
439 
440  _Hashtable&
441  operator=(initializer_list<value_type> __l)
442  {
443  this->clear();
444  this->insert(__l.begin(), __l.end());
445  return *this;
446  }
447 
448  ~_Hashtable() noexcept;
449 
450  void swap(_Hashtable&);
451 
452  // Basic container operations
453  iterator
454  begin() noexcept
455  { return iterator(_M_begin()); }
456 
457  const_iterator
458  begin() const noexcept
459  { return const_iterator(_M_begin()); }
460 
461  iterator
462  end() noexcept
463  { return iterator(nullptr); }
464 
465  const_iterator
466  end() const noexcept
467  { return const_iterator(nullptr); }
468 
469  const_iterator
470  cbegin() const noexcept
471  { return const_iterator(_M_begin()); }
472 
473  const_iterator
474  cend() const noexcept
475  { return const_iterator(nullptr); }
476 
477  size_type
478  size() const noexcept
479  { return _M_element_count; }
480 
481  bool
482  empty() const noexcept
483  { return size() == 0; }
484 
485  allocator_type
486  get_allocator() const noexcept
487  { return allocator_type(_M_node_allocator()); }
488 
489  size_type
490  max_size() const noexcept
491  { return _M_node_allocator().max_size(); }
492 
493  // Observers
494  key_equal
495  key_eq() const
496  { return this->_M_eq(); }
497 
498  // hash_function, if present, comes from _Hash_code_base.
499 
500  // Bucket operations
501  size_type
502  bucket_count() const noexcept
503  { return _M_bucket_count; }
504 
505  size_type
506  max_bucket_count() const noexcept
507  { return max_size(); }
508 
509  size_type
510  bucket_size(size_type __n) const
511  { return std::distance(begin(__n), end(__n)); }
512 
513  size_type
514  bucket(const key_type& __k) const
515  { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
516 
517  local_iterator
518  begin(size_type __n)
519  {
520  return local_iterator(*this, _M_bucket_begin(__n),
521  __n, _M_bucket_count);
522  }
523 
524  local_iterator
525  end(size_type __n)
526  { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
527 
528  const_local_iterator
529  begin(size_type __n) const
530  {
531  return const_local_iterator(*this, _M_bucket_begin(__n),
532  __n, _M_bucket_count);
533  }
534 
535  const_local_iterator
536  end(size_type __n) const
537  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
538 
539  // DR 691.
540  const_local_iterator
541  cbegin(size_type __n) const
542  {
543  return const_local_iterator(*this, _M_bucket_begin(__n),
544  __n, _M_bucket_count);
545  }
546 
547  const_local_iterator
548  cend(size_type __n) const
549  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
550 
551  float
552  load_factor() const noexcept
553  {
554  return static_cast<float>(size()) / static_cast<float>(bucket_count());
555  }
556 
557  // max_load_factor, if present, comes from _Rehash_base.
558 
559  // Generalization of max_load_factor. Extension, not found in
560  // TR1. Only useful if _RehashPolicy is something other than
561  // the default.
562  const _RehashPolicy&
563  __rehash_policy() const
564  { return _M_rehash_policy; }
565 
566  void
567  __rehash_policy(const _RehashPolicy&);
568 
569  // Lookup.
570  iterator
571  find(const key_type& __k);
572 
573  const_iterator
574  find(const key_type& __k) const;
575 
576  size_type
577  count(const key_type& __k) const;
578 
580  equal_range(const key_type& __k);
581 
583  equal_range(const key_type& __k) const;
584 
585  protected:
586  // Bucket index computation helpers.
587  size_type
588  _M_bucket_index(__node_type* __n) const
589  { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
590 
591  size_type
592  _M_bucket_index(const key_type& __k, __hash_code __c) const
593  { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
594 
595  // Find and insert helper functions and types
596  // Find the node before the one matching the criteria.
597  __node_base*
598  _M_find_before_node(size_type, const key_type&, __hash_code) const;
599 
600  __node_type*
601  _M_find_node(size_type __bkt, const key_type& __key,
602  __hash_code __c) const
603  {
604  __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
605  if (__before_n)
606  return static_cast<__node_type*>(__before_n->_M_nxt);
607  return nullptr;
608  }
609 
610  // Insert a node at the beginning of a bucket.
611  void
612  _M_insert_bucket_begin(size_type, __node_type*);
613 
614  // Remove the bucket first node
615  void
616  _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
617  size_type __next_bkt);
618 
619  // Get the node before __n in the bucket __bkt
620  __node_base*
621  _M_get_previous_node(size_type __bkt, __node_base* __n);
622 
623  // Insert node with hash code __code, in bucket bkt if no rehash (assumes
624  // no element with its key already present). Take ownership of the node,
625  // deallocate it on exception.
626  iterator
627  _M_insert_unique_node(size_type __bkt, __hash_code __code,
628  __node_type* __n);
629 
630  // Insert node with hash code __code. Take ownership of the node,
631  // deallocate it on exception.
632  iterator
633  _M_insert_multi_node(__hash_code __code, __node_type* __n);
634 
635  template<typename... _Args>
637  _M_emplace(std::true_type, _Args&&... __args);
638 
639  template<typename... _Args>
640  iterator
641  _M_emplace(std::false_type, _Args&&... __args);
642 
643  template<typename _Arg>
645  _M_insert(_Arg&&, std::true_type);
646 
647  template<typename _Arg>
648  iterator
649  _M_insert(_Arg&&, std::false_type);
650 
651  size_type
652  _M_erase(std::true_type, const key_type&);
653 
654  size_type
655  _M_erase(std::false_type, const key_type&);
656 
657  iterator
658  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
659 
660  public:
661  // Emplace
662  template<typename... _Args>
663  __ireturn_type
664  emplace(_Args&&... __args)
665  { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
666 
667  template<typename... _Args>
668  iterator
669  emplace_hint(const_iterator, _Args&&... __args)
670  { return __iconv_type()(emplace(std::forward<_Args>(__args)...)); }
671 
672  // Insert member functions via inheritance.
673 
674  // Erase
675  iterator
676  erase(const_iterator);
677 
678  // LWG 2059.
679  iterator
680  erase(iterator __it)
681  { return erase(const_iterator(__it)); }
682 
683  size_type
684  erase(const key_type& __k)
685  { return _M_erase(__unique_keys(), __k); }
686 
687  iterator
688  erase(const_iterator, const_iterator);
689 
690  void
691  clear() noexcept;
692 
693  // Set number of buckets to be appropriate for container of n element.
694  void rehash(size_type __n);
695 
696  // DR 1189.
697  // reserve, if present, comes from _Rehash_base.
698 
699  private:
700  // Helper rehash method used when keys are unique.
701  void _M_rehash_aux(size_type __n, std::true_type);
702 
703  // Helper rehash method used when keys can be non-unique.
704  void _M_rehash_aux(size_type __n, std::false_type);
705 
706  // Unconditionally change size of bucket array to n, restore
707  // hash policy state to __state on exception.
708  void _M_rehash(size_type __n, const __rehash_state& __state);
709  };
710 
711 
712  // Definitions of class template _Hashtable's out-of-line member functions.
713  template<typename _Key, typename _Value,
714  typename _Alloc, typename _ExtractKey, typename _Equal,
715  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
716  typename _Traits>
717  template<typename... _Args>
718  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
719  _H1, _H2, _Hash, _RehashPolicy, _Traits>::__node_type*
720  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
721  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
722  _M_allocate_node(_Args&&... __args)
723  {
724  __node_type* __n = _M_node_allocator().allocate(1);
725  __try
726  {
727  _M_node_allocator().construct(__n, std::forward<_Args>(__args)...);
728  return __n;
729  }
730  __catch(...)
731  {
732  _M_node_allocator().deallocate(__n, 1);
733  __throw_exception_again;
734  }
735  }
736 
737  template<typename _Key, typename _Value,
738  typename _Alloc, typename _ExtractKey, typename _Equal,
739  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
740  typename _Traits>
741  void
742  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
743  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
744  _M_deallocate_node(__node_type* __n)
745  {
746  _M_node_allocator().destroy(__n);
747  _M_node_allocator().deallocate(__n, 1);
748  }
749 
750  template<typename _Key, typename _Value,
751  typename _Alloc, typename _ExtractKey, typename _Equal,
752  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
753  typename _Traits>
754  void
755  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
756  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
757  _M_deallocate_nodes(__node_type* __n)
758  {
759  while (__n)
760  {
761  __node_type* __tmp = __n;
762  __n = __n->_M_next();
763  _M_deallocate_node(__tmp);
764  }
765  }
766 
767  template<typename _Key, typename _Value,
768  typename _Alloc, typename _ExtractKey, typename _Equal,
769  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
770  typename _Traits>
771  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
772  _H1, _H2, _Hash, _RehashPolicy, _Traits>::__bucket_type*
773  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
774  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
775  _M_allocate_buckets(size_type __n)
776  {
777  _Bucket_allocator_type __alloc(_M_node_allocator());
778 
779  __bucket_type* __p = __alloc.allocate(__n);
780  __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
781  return __p;
782  }
783 
784  template<typename _Key, typename _Value,
785  typename _Alloc, typename _ExtractKey, typename _Equal,
786  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
787  typename _Traits>
788  void
789  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
790  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
791  _M_deallocate_buckets(__bucket_type* __p, size_type __n)
792  {
793  _Bucket_allocator_type __alloc(_M_node_allocator());
794  __alloc.deallocate(__p, __n);
795  }
796 
797  template<typename _Key, typename _Value,
798  typename _Alloc, typename _ExtractKey, typename _Equal,
799  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
800  typename _Traits>
801  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
802  _Equal, _H1, _H2, _Hash, _RehashPolicy,
803  _Traits>::__node_type*
804  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
805  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
806  _M_bucket_begin(size_type __bkt) const
807  {
808  __node_base* __n = _M_buckets[__bkt];
809  return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
810  }
811 
812  template<typename _Key, typename _Value,
813  typename _Alloc, typename _ExtractKey, typename _Equal,
814  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
815  typename _Traits>
816  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
817  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
818  _Hashtable(size_type __bucket_hint,
819  const _H1& __h1, const _H2& __h2, const _Hash& __h,
820  const _Equal& __eq, const _ExtractKey& __exk,
821  const allocator_type& __a)
822  : __hashtable_base(__exk, __h1, __h2, __h, __eq),
823  __map_base(),
824  __rehash_base(),
825  _M_bucket_count(0),
826  _M_bbegin(__a),
827  _M_element_count(0),
828  _M_rehash_policy()
829  {
830  _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
831  _M_buckets = _M_allocate_buckets(_M_bucket_count);
832  }
833 
834  template<typename _Key, typename _Value,
835  typename _Alloc, typename _ExtractKey, typename _Equal,
836  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
837  typename _Traits>
838  template<typename _InputIterator>
839  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
840  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
841  _Hashtable(_InputIterator __f, _InputIterator __l,
842  size_type __bucket_hint,
843  const _H1& __h1, const _H2& __h2, const _Hash& __h,
844  const _Equal& __eq, const _ExtractKey& __exk,
845  const allocator_type& __a)
846  : __hashtable_base(__exk, __h1, __h2, __h, __eq),
847  __map_base(),
848  __rehash_base(),
849  _M_bucket_count(0),
850  _M_bbegin(__a),
851  _M_element_count(0),
852  _M_rehash_policy()
853  {
854  auto __nb_elems = __detail::__distance_fw(__f, __l);
855  _M_bucket_count =
856  _M_rehash_policy._M_next_bkt(
857  std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
858  __bucket_hint));
859 
860  _M_buckets = _M_allocate_buckets(_M_bucket_count);
861  __try
862  {
863  for (; __f != __l; ++__f)
864  this->insert(*__f);
865  }
866  __catch(...)
867  {
868  clear();
869  _M_deallocate_buckets(_M_buckets, _M_bucket_count);
870  __throw_exception_again;
871  }
872  }
873 
874  template<typename _Key, typename _Value,
875  typename _Alloc, typename _ExtractKey, typename _Equal,
876  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
877  typename _Traits>
878  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
879  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
880  _Hashtable(const _Hashtable& __ht)
881  : __hashtable_base(__ht),
882  __map_base(__ht),
883  __rehash_base(__ht),
884  _M_bucket_count(__ht._M_bucket_count),
885  _M_bbegin(__ht._M_bbegin),
886  _M_element_count(__ht._M_element_count),
887  _M_rehash_policy(__ht._M_rehash_policy)
888  {
889  _M_buckets = _M_allocate_buckets(_M_bucket_count);
890  __try
891  {
892  if (!__ht._M_before_begin()._M_nxt)
893  return;
894 
895  // First deal with the special first node pointed to by
896  // _M_before_begin.
897  const __node_type* __ht_n = __ht._M_begin();
898  __node_type* __this_n = _M_allocate_node(__ht_n->_M_v);
899  this->_M_copy_code(__this_n, __ht_n);
900  _M_before_begin()._M_nxt = __this_n;
901  _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin();
902 
903  // Then deal with other nodes.
904  __node_base* __prev_n = __this_n;
905  for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
906  {
907  __this_n = _M_allocate_node(__ht_n->_M_v);
908  __prev_n->_M_nxt = __this_n;
909  this->_M_copy_code(__this_n, __ht_n);
910  size_type __bkt = _M_bucket_index(__this_n);
911  if (!_M_buckets[__bkt])
912  _M_buckets[__bkt] = __prev_n;
913  __prev_n = __this_n;
914  }
915  }
916  __catch(...)
917  {
918  clear();
919  _M_deallocate_buckets(_M_buckets, _M_bucket_count);
920  __throw_exception_again;
921  }
922  }
923 
924  template<typename _Key, typename _Value,
925  typename _Alloc, typename _ExtractKey, typename _Equal,
926  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
927  typename _Traits>
928  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
929  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
930  _Hashtable(_Hashtable&& __ht)
931  : __hashtable_base(__ht),
932  __map_base(__ht),
933  __rehash_base(__ht),
934  _M_buckets(__ht._M_buckets),
935  _M_bucket_count(__ht._M_bucket_count),
936  _M_bbegin(std::move(__ht._M_bbegin)),
937  _M_element_count(__ht._M_element_count),
938  _M_rehash_policy(__ht._M_rehash_policy)
939  {
940  // Update, if necessary, bucket pointing to before begin that hasn't moved.
941  if (_M_begin())
942  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin();
943  __ht._M_rehash_policy = _RehashPolicy();
944  __ht._M_bucket_count = __ht._M_rehash_policy._M_next_bkt(0);
945  __ht._M_buckets = __ht._M_allocate_buckets(__ht._M_bucket_count);
946  __ht._M_before_begin()._M_nxt = nullptr;
947  __ht._M_element_count = 0;
948  }
949 
950  template<typename _Key, typename _Value,
951  typename _Alloc, typename _ExtractKey, typename _Equal,
952  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
953  typename _Traits>
954  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
955  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
956  ~_Hashtable() noexcept
957  {
958  clear();
959  _M_deallocate_buckets(_M_buckets, _M_bucket_count);
960  }
961 
962  template<typename _Key, typename _Value,
963  typename _Alloc, typename _ExtractKey, typename _Equal,
964  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
965  typename _Traits>
966  void
967  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
968  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
969  swap(_Hashtable& __x)
970  {
971  // The only base class with member variables is hash_code_base.
972  // We define _Hash_code_base::_M_swap because different
973  // specializations have different members.
974  this->_M_swap(__x);
975 
976  // _GLIBCXX_RESOLVE_LIB_DEFECTS
977  // 431. Swapping containers with unequal allocators.
978  std::__alloc_swap<_Node_allocator_type>::_S_do_it(_M_node_allocator(),
979  __x._M_node_allocator());
980 
981  std::swap(_M_rehash_policy, __x._M_rehash_policy);
982  std::swap(_M_buckets, __x._M_buckets);
983  std::swap(_M_bucket_count, __x._M_bucket_count);
984  std::swap(_M_before_begin()._M_nxt, __x._M_before_begin()._M_nxt);
985  std::swap(_M_element_count, __x._M_element_count);
986 
987  // Fix buckets containing the _M_before_begin pointers that
988  // can't be swapped.
989  if (_M_begin())
990  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin();
991  if (__x._M_begin())
992  __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
993  = &(__x._M_before_begin());
994  }
995 
996  template<typename _Key, typename _Value,
997  typename _Alloc, typename _ExtractKey, typename _Equal,
998  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
999  typename _Traits>
1000  void
1001  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1002  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1003  __rehash_policy(const _RehashPolicy& __pol)
1004  {
1005  size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count);
1006  __n_bkt = __pol._M_next_bkt(__n_bkt);
1007  if (__n_bkt != _M_bucket_count)
1008  _M_rehash(__n_bkt, _M_rehash_policy._M_state());
1009  _M_rehash_policy = __pol;
1010  }
1011 
1012  template<typename _Key, typename _Value,
1013  typename _Alloc, typename _ExtractKey, typename _Equal,
1014  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1015  typename _Traits>
1016  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1017  _H1, _H2, _Hash, _RehashPolicy,
1018  _Traits>::iterator
1019  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1020  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1021  find(const key_type& __k)
1022  {
1023  __hash_code __code = this->_M_hash_code(__k);
1024  std::size_t __n = _M_bucket_index(__k, __code);
1025  __node_type* __p = _M_find_node(__n, __k, __code);
1026  return __p ? iterator(__p) : this->end();
1027  }
1028 
1029  template<typename _Key, typename _Value,
1030  typename _Alloc, typename _ExtractKey, typename _Equal,
1031  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1032  typename _Traits>
1033  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1034  _H1, _H2, _Hash, _RehashPolicy,
1035  _Traits>::const_iterator
1036  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1037  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1038  find(const key_type& __k) const
1039  {
1040  __hash_code __code = this->_M_hash_code(__k);
1041  std::size_t __n = _M_bucket_index(__k, __code);
1042  __node_type* __p = _M_find_node(__n, __k, __code);
1043  return __p ? const_iterator(__p) : this->end();
1044  }
1045 
1046  template<typename _Key, typename _Value,
1047  typename _Alloc, typename _ExtractKey, typename _Equal,
1048  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1049  typename _Traits>
1050  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1051  _H1, _H2, _Hash, _RehashPolicy,
1052  _Traits>::size_type
1053  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1054  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1055  count(const key_type& __k) const
1056  {
1057  __hash_code __code = this->_M_hash_code(__k);
1058  std::size_t __n = _M_bucket_index(__k, __code);
1059  __node_type* __p = _M_bucket_begin(__n);
1060  if (!__p)
1061  return 0;
1062 
1063  std::size_t __result = 0;
1064  for (;; __p = __p->_M_next())
1065  {
1066  if (this->_M_equals(__k, __code, __p))
1067  ++__result;
1068  else if (__result)
1069  // All equivalent values are next to each other, if we
1070  // found a non-equivalent value after an equivalent one it
1071  // means that we won't find any more equivalent values.
1072  break;
1073  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1074  break;
1075  }
1076  return __result;
1077  }
1078 
1079  template<typename _Key, typename _Value,
1080  typename _Alloc, typename _ExtractKey, typename _Equal,
1081  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1082  typename _Traits>
1083  std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1084  _ExtractKey, _Equal, _H1,
1085  _H2, _Hash, _RehashPolicy,
1086  _Traits>::iterator,
1087  typename _Hashtable<_Key, _Value, _Alloc,
1088  _ExtractKey, _Equal, _H1,
1089  _H2, _Hash, _RehashPolicy,
1090  _Traits>::iterator>
1091  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1092  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1093  equal_range(const key_type& __k)
1094  {
1095  __hash_code __code = this->_M_hash_code(__k);
1096  std::size_t __n = _M_bucket_index(__k, __code);
1097  __node_type* __p = _M_find_node(__n, __k, __code);
1098 
1099  if (__p)
1100  {
1101  __node_type* __p1 = __p->_M_next();
1102  while (__p1 && _M_bucket_index(__p1) == __n
1103  && this->_M_equals(__k, __code, __p1))
1104  __p1 = __p1->_M_next();
1105 
1106  return std::make_pair(iterator(__p), iterator(__p1));
1107  }
1108  else
1109  return std::make_pair(this->end(), this->end());
1110  }
1111 
1112  template<typename _Key, typename _Value,
1113  typename _Alloc, typename _ExtractKey, typename _Equal,
1114  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1115  typename _Traits>
1116  std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1117  _ExtractKey, _Equal, _H1,
1118  _H2, _Hash, _RehashPolicy,
1119  _Traits>::const_iterator,
1120  typename _Hashtable<_Key, _Value, _Alloc,
1121  _ExtractKey, _Equal, _H1,
1122  _H2, _Hash, _RehashPolicy,
1123  _Traits>::const_iterator>
1124  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1125  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1126  equal_range(const key_type& __k) const
1127  {
1128  __hash_code __code = this->_M_hash_code(__k);
1129  std::size_t __n = _M_bucket_index(__k, __code);
1130  __node_type* __p = _M_find_node(__n, __k, __code);
1131 
1132  if (__p)
1133  {
1134  __node_type* __p1 = __p->_M_next();
1135  while (__p1 && _M_bucket_index(__p1) == __n
1136  && this->_M_equals(__k, __code, __p1))
1137  __p1 = __p1->_M_next();
1138 
1139  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1140  }
1141  else
1142  return std::make_pair(this->end(), this->end());
1143  }
1144 
1145  // Find the node whose key compares equal to k in the bucket n.
1146  // Return nullptr if no node is found.
1147  template<typename _Key, typename _Value,
1148  typename _Alloc, typename _ExtractKey, typename _Equal,
1149  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1150  typename _Traits>
1151  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1152  _Equal, _H1, _H2, _Hash, _RehashPolicy,
1153  _Traits>::__node_base*
1154  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1155  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1156  _M_find_before_node(size_type __n, const key_type& __k,
1157  __hash_code __code) const
1158  {
1159  __node_base* __prev_p = _M_buckets[__n];
1160  if (!__prev_p)
1161  return nullptr;
1162  __node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);
1163  for (;; __p = __p->_M_next())
1164  {
1165  if (this->_M_equals(__k, __code, __p))
1166  return __prev_p;
1167  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1168  break;
1169  __prev_p = __p;
1170  }
1171  return nullptr;
1172  }
1173 
1174  template<typename _Key, typename _Value,
1175  typename _Alloc, typename _ExtractKey, typename _Equal,
1176  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1177  typename _Traits>
1178  void
1179  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1180  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1181  _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1182  {
1183  if (_M_buckets[__bkt])
1184  {
1185  // Bucket is not empty, we just need to insert the new node
1186  // after the bucket before begin.
1187  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1188  _M_buckets[__bkt]->_M_nxt = __node;
1189  }
1190  else
1191  {
1192  // The bucket is empty, the new node is inserted at the
1193  // beginning of the singly-linked list and the bucket will
1194  // contain _M_before_begin pointer.
1195  __node->_M_nxt = _M_before_begin()._M_nxt;
1196  _M_before_begin()._M_nxt = __node;
1197  if (__node->_M_nxt)
1198  // We must update former begin bucket that is pointing to
1199  // _M_before_begin.
1200  _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1201  _M_buckets[__bkt] = &_M_before_begin();
1202  }
1203  }
1204 
1205  template<typename _Key, typename _Value,
1206  typename _Alloc, typename _ExtractKey, typename _Equal,
1207  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1208  typename _Traits>
1209  void
1210  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1211  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1212  _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1213  size_type __next_bkt)
1214  {
1215  if (!__next || __next_bkt != __bkt)
1216  {
1217  // Bucket is now empty
1218  // First update next bucket if any
1219  if (__next)
1220  _M_buckets[__next_bkt] = _M_buckets[__bkt];
1221 
1222  // Second update before begin node if necessary
1223  if (&_M_before_begin() == _M_buckets[__bkt])
1224  _M_before_begin()._M_nxt = __next;
1225  _M_buckets[__bkt] = nullptr;
1226  }
1227  }
1228 
1229  template<typename _Key, typename _Value,
1230  typename _Alloc, typename _ExtractKey, typename _Equal,
1231  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1232  typename _Traits>
1233  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1234  _Equal, _H1, _H2, _Hash, _RehashPolicy,
1235  _Traits>::__node_base*
1236  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1237  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1238  _M_get_previous_node(size_type __bkt, __node_base* __n)
1239  {
1240  __node_base* __prev_n = _M_buckets[__bkt];
1241  while (__prev_n->_M_nxt != __n)
1242  __prev_n = __prev_n->_M_nxt;
1243  return __prev_n;
1244  }
1245 
1246  template<typename _Key, typename _Value,
1247  typename _Alloc, typename _ExtractKey, typename _Equal,
1248  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1249  typename _Traits>
1250  template<typename... _Args>
1251  std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1252  _ExtractKey, _Equal, _H1,
1253  _H2, _Hash, _RehashPolicy,
1254  _Traits>::iterator, bool>
1255  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1256  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1257  _M_emplace(std::true_type, _Args&&... __args)
1258  {
1259  // First build the node to get access to the hash code
1260  __node_type* __node = _M_allocate_node(std::forward<_Args>(__args)...);
1261  const key_type& __k = this->_M_extract()(__node->_M_v);
1262  __hash_code __code;
1263  __try
1264  {
1265  __code = this->_M_hash_code(__k);
1266  }
1267  __catch(...)
1268  {
1269  _M_deallocate_node(__node);
1270  __throw_exception_again;
1271  }
1272 
1273  size_type __bkt = _M_bucket_index(__k, __code);
1274  if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1275  {
1276  // There is already an equivalent node, no insertion
1277  _M_deallocate_node(__node);
1278  return std::make_pair(iterator(__p), false);
1279  }
1280 
1281  // Insert the node
1282  return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1283  true);
1284  }
1285 
1286  template<typename _Key, typename _Value,
1287  typename _Alloc, typename _ExtractKey, typename _Equal,
1288  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1289  typename _Traits>
1290  template<typename... _Args>
1291  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1292  _H1, _H2, _Hash, _RehashPolicy,
1293  _Traits>::iterator
1294  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1295  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1296  _M_emplace(std::false_type, _Args&&... __args)
1297  {
1298  // First build the node to get its hash code.
1299  __node_type* __node = _M_allocate_node(std::forward<_Args>(__args)...);
1300 
1301  __hash_code __code;
1302  __try
1303  {
1304  __code = this->_M_hash_code(this->_M_extract()(__node->_M_v));
1305  }
1306  __catch(...)
1307  {
1308  _M_deallocate_node(__node);
1309  __throw_exception_again;
1310  }
1311 
1312  return _M_insert_multi_node(__code, __node);
1313  }
1314 
1315  template<typename _Key, typename _Value,
1316  typename _Alloc, typename _ExtractKey, typename _Equal,
1317  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1318  typename _Traits>
1319  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1320  _H1, _H2, _Hash, _RehashPolicy,
1321  _Traits>::iterator
1322  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1323  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1324  _M_insert_unique_node(size_type __bkt, __hash_code __code,
1325  __node_type* __node)
1326  {
1327  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1328  std::pair<bool, std::size_t> __do_rehash
1329  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1330 
1331  __try
1332  {
1333  if (__do_rehash.first)
1334  {
1335  _M_rehash(__do_rehash.second, __saved_state);
1336  __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v), __code);
1337  }
1338 
1339  this->_M_store_code(__node, __code);
1340 
1341  // Always insert at the begining of the bucket.
1342  _M_insert_bucket_begin(__bkt, __node);
1343  ++_M_element_count;
1344  return iterator(__node);
1345  }
1346  __catch(...)
1347  {
1348  _M_deallocate_node(__node);
1349  __throw_exception_again;
1350  }
1351  }
1352 
1353  // Insert node, in bucket bkt if no rehash (assumes no element with its key
1354  // already present). Take ownership of the node, deallocate it on exception.
1355  template<typename _Key, typename _Value,
1356  typename _Alloc, typename _ExtractKey, typename _Equal,
1357  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1358  typename _Traits>
1359  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1360  _H1, _H2, _Hash, _RehashPolicy,
1361  _Traits>::iterator
1362  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1363  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1364  _M_insert_multi_node(__hash_code __code, __node_type* __node)
1365  {
1366  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1367  std::pair<bool, std::size_t> __do_rehash
1368  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1369 
1370  __try
1371  {
1372  if (__do_rehash.first)
1373  _M_rehash(__do_rehash.second, __saved_state);
1374 
1375  this->_M_store_code(__node, __code);
1376  const key_type& __k = this->_M_extract()(__node->_M_v);
1377  size_type __bkt = _M_bucket_index(__k, __code);
1378 
1379  // Find the node before an equivalent one.
1380  __node_base* __prev = _M_find_before_node(__bkt, __k, __code);
1381  if (__prev)
1382  {
1383  // Insert after the node before the equivalent one.
1384  __node->_M_nxt = __prev->_M_nxt;
1385  __prev->_M_nxt = __node;
1386  }
1387  else
1388  // The inserted node has no equivalent in the
1389  // hashtable. We must insert the new node at the
1390  // beginning of the bucket to preserve equivalent
1391  // elements' relative positions.
1392  _M_insert_bucket_begin(__bkt, __node);
1393  ++_M_element_count;
1394  return iterator(__node);
1395  }
1396  __catch(...)
1397  {
1398  _M_deallocate_node(__node);
1399  __throw_exception_again;
1400  }
1401  }
1402 
1403  // Insert v if no element with its key is already present.
1404  template<typename _Key, typename _Value,
1405  typename _Alloc, typename _ExtractKey, typename _Equal,
1406  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1407  typename _Traits>
1408  template<typename _Arg>
1409  std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1410  _ExtractKey, _Equal, _H1,
1411  _H2, _Hash, _RehashPolicy,
1412  _Traits>::iterator, bool>
1413  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1414  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1415  _M_insert(_Arg&& __v, std::true_type)
1416  {
1417  const key_type& __k = this->_M_extract()(__v);
1418  __hash_code __code = this->_M_hash_code(__k);
1419  size_type __bkt = _M_bucket_index(__k, __code);
1420 
1421  __node_type* __n = _M_find_node(__bkt, __k, __code);
1422  if (__n)
1423  return std::make_pair(iterator(__n), false);
1424 
1425  __n = _M_allocate_node(std::forward<_Arg>(__v));
1426  return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1427  }
1428 
1429  // Insert v unconditionally.
1430  template<typename _Key, typename _Value,
1431  typename _Alloc, typename _ExtractKey, typename _Equal,
1432  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1433  typename _Traits>
1434  template<typename _Arg>
1435  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1436  _H1, _H2, _Hash, _RehashPolicy,
1437  _Traits>::iterator
1438  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1439  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1440  _M_insert(_Arg&& __v, std::false_type)
1441  {
1442  // First compute the hash code so that we don't do anything if it
1443  // throws.
1444  __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1445 
1446  // Second allocate new node so that we don't rehash if it throws.
1447  __node_type* __node = _M_allocate_node(std::forward<_Arg>(__v));
1448 
1449  return _M_insert_multi_node(__code, __node);
1450  }
1451 
1452  template<typename _Key, typename _Value,
1453  typename _Alloc, typename _ExtractKey, typename _Equal,
1454  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1455  typename _Traits>
1456  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1457  _H1, _H2, _Hash, _RehashPolicy,
1458  _Traits>::iterator
1459  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1460  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1461  erase(const_iterator __it)
1462  {
1463  __node_type* __n = __it._M_cur;
1464  std::size_t __bkt = _M_bucket_index(__n);
1465 
1466  // Look for previous node to unlink it from the erased one, this
1467  // is why we need buckets to contain the before begin to make
1468  // this search fast.
1469  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1470  return _M_erase(__bkt, __prev_n, __n);
1471  }
1472 
1473  template<typename _Key, typename _Value,
1474  typename _Alloc, typename _ExtractKey, typename _Equal,
1475  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1476  typename _Traits>
1477  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1478  _H1, _H2, _Hash, _RehashPolicy,
1479  _Traits>::iterator
1480  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1481  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1482  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1483  {
1484  if (__prev_n == _M_buckets[__bkt])
1485  _M_remove_bucket_begin(__bkt, __n->_M_next(),
1486  __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1487  else if (__n->_M_nxt)
1488  {
1489  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1490  if (__next_bkt != __bkt)
1491  _M_buckets[__next_bkt] = __prev_n;
1492  }
1493 
1494  __prev_n->_M_nxt = __n->_M_nxt;
1495  iterator __result(__n->_M_next());
1496  _M_deallocate_node(__n);
1497  --_M_element_count;
1498 
1499  return __result;
1500  }
1501 
1502  template<typename _Key, typename _Value,
1503  typename _Alloc, typename _ExtractKey, typename _Equal,
1504  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1505  typename _Traits>
1506  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1507  _H1, _H2, _Hash, _RehashPolicy,
1508  _Traits>::size_type
1509  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1510  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1511  _M_erase(std::true_type, const key_type& __k)
1512  {
1513  __hash_code __code = this->_M_hash_code(__k);
1514  std::size_t __bkt = _M_bucket_index(__k, __code);
1515 
1516  // Look for the node before the first matching node.
1517  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1518  if (!__prev_n)
1519  return 0;
1520 
1521  // We found a matching node, erase it.
1522  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1523  _M_erase(__bkt, __prev_n, __n);
1524  return 1;
1525  }
1526 
1527  template<typename _Key, typename _Value,
1528  typename _Alloc, typename _ExtractKey, typename _Equal,
1529  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1530  typename _Traits>
1531  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1532  _H1, _H2, _Hash, _RehashPolicy,
1533  _Traits>::size_type
1534  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1535  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1536  _M_erase(std::false_type, const key_type& __k)
1537  {
1538  __hash_code __code = this->_M_hash_code(__k);
1539  std::size_t __bkt = _M_bucket_index(__k, __code);
1540 
1541  // Look for the node before the first matching node.
1542  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1543  if (!__prev_n)
1544  return 0;
1545 
1546  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1547  // 526. Is it undefined if a function in the standard changes
1548  // in parameters?
1549  // We use one loop to find all matching nodes and another to deallocate
1550  // them so that the key stays valid during the first loop. It might be
1551  // invalidated indirectly when destroying nodes.
1552  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1553  __node_type* __n_last = __n;
1554  std::size_t __n_last_bkt = __bkt;
1555  do
1556  {
1557  __n_last = __n_last->_M_next();
1558  if (!__n_last)
1559  break;
1560  __n_last_bkt = _M_bucket_index(__n_last);
1561  }
1562  while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1563 
1564  // Deallocate nodes.
1565  size_type __result = 0;
1566  do
1567  {
1568  __node_type* __p = __n->_M_next();
1569  _M_deallocate_node(__n);
1570  __n = __p;
1571  ++__result;
1572  --_M_element_count;
1573  }
1574  while (__n != __n_last);
1575 
1576  if (__prev_n == _M_buckets[__bkt])
1577  _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1578  else if (__n_last && __n_last_bkt != __bkt)
1579  _M_buckets[__n_last_bkt] = __prev_n;
1580  __prev_n->_M_nxt = __n_last;
1581  return __result;
1582  }
1583 
1584  template<typename _Key, typename _Value,
1585  typename _Alloc, typename _ExtractKey, typename _Equal,
1586  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1587  typename _Traits>
1588  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1589  _H1, _H2, _Hash, _RehashPolicy,
1590  _Traits>::iterator
1591  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1592  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1593  erase(const_iterator __first, const_iterator __last)
1594  {
1595  __node_type* __n = __first._M_cur;
1596  __node_type* __last_n = __last._M_cur;
1597  if (__n == __last_n)
1598  return iterator(__n);
1599 
1600  std::size_t __bkt = _M_bucket_index(__n);
1601 
1602  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1603  bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1604  std::size_t __n_bkt = __bkt;
1605  for (;;)
1606  {
1607  do
1608  {
1609  __node_type* __tmp = __n;
1610  __n = __n->_M_next();
1611  _M_deallocate_node(__tmp);
1612  --_M_element_count;
1613  if (!__n)
1614  break;
1615  __n_bkt = _M_bucket_index(__n);
1616  }
1617  while (__n != __last_n && __n_bkt == __bkt);
1618  if (__is_bucket_begin)
1619  _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1620  if (__n == __last_n)
1621  break;
1622  __is_bucket_begin = true;
1623  __bkt = __n_bkt;
1624  }
1625 
1626  if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1627  _M_buckets[__n_bkt] = __prev_n;
1628  __prev_n->_M_nxt = __n;
1629  return iterator(__n);
1630  }
1631 
1632  template<typename _Key, typename _Value,
1633  typename _Alloc, typename _ExtractKey, typename _Equal,
1634  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1635  typename _Traits>
1636  void
1637  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1638  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1639  clear() noexcept
1640  {
1641  _M_deallocate_nodes(_M_begin());
1642  __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1643  _M_element_count = 0;
1644  _M_before_begin()._M_nxt = nullptr;
1645  }
1646 
1647  template<typename _Key, typename _Value,
1648  typename _Alloc, typename _ExtractKey, typename _Equal,
1649  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1650  typename _Traits>
1651  void
1652  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1653  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1654  rehash(size_type __n)
1655  {
1656  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1657  std::size_t __buckets
1658  = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1659  __n);
1660  __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1661 
1662  if (__buckets != _M_bucket_count)
1663  _M_rehash(__buckets, __saved_state);
1664  else
1665  // No rehash, restore previous state to keep a consistent state.
1666  _M_rehash_policy._M_reset(__saved_state);
1667  }
1668 
1669  template<typename _Key, typename _Value,
1670  typename _Alloc, typename _ExtractKey, typename _Equal,
1671  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1672  typename _Traits>
1673  void
1674  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1675  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1676  _M_rehash(size_type __n, const __rehash_state& __state)
1677  {
1678  __try
1679  {
1680  _M_rehash_aux(__n, __unique_keys());
1681  }
1682  __catch(...)
1683  {
1684  // A failure here means that buckets allocation failed. We only
1685  // have to restore hash policy previous state.
1686  _M_rehash_policy._M_reset(__state);
1687  __throw_exception_again;
1688  }
1689  }
1690 
1691  // Rehash when there is no equivalent elements.
1692  template<typename _Key, typename _Value,
1693  typename _Alloc, typename _ExtractKey, typename _Equal,
1694  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1695  typename _Traits>
1696  void
1697  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1698  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1699  _M_rehash_aux(size_type __n, std::true_type)
1700  {
1701  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1702  __node_type* __p = _M_begin();
1703  _M_before_begin()._M_nxt = nullptr;
1704  std::size_t __bbegin_bkt = 0;
1705  while (__p)
1706  {
1707  __node_type* __next = __p->_M_next();
1708  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1709  if (!__new_buckets[__bkt])
1710  {
1711  __p->_M_nxt = _M_before_begin()._M_nxt;
1712  _M_before_begin()._M_nxt = __p;
1713  __new_buckets[__bkt] = &_M_before_begin();
1714  if (__p->_M_nxt)
1715  __new_buckets[__bbegin_bkt] = __p;
1716  __bbegin_bkt = __bkt;
1717  }
1718  else
1719  {
1720  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1721  __new_buckets[__bkt]->_M_nxt = __p;
1722  }
1723  __p = __next;
1724  }
1725  _M_deallocate_buckets(_M_buckets, _M_bucket_count);
1726  _M_bucket_count = __n;
1727  _M_buckets = __new_buckets;
1728  }
1729 
1730  // Rehash when there can be equivalent elements, preserve their relative
1731  // order.
1732  template<typename _Key, typename _Value,
1733  typename _Alloc, typename _ExtractKey, typename _Equal,
1734  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1735  typename _Traits>
1736  void
1737  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1738  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1739  _M_rehash_aux(size_type __n, std::false_type)
1740  {
1741  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1742 
1743  __node_type* __p = _M_begin();
1744  _M_before_begin()._M_nxt = nullptr;
1745  std::size_t __bbegin_bkt = 0;
1746  std::size_t __prev_bkt = 0;
1747  __node_type* __prev_p = nullptr;
1748  bool __check_bucket = false;
1749 
1750  while (__p)
1751  {
1752  __node_type* __next = __p->_M_next();
1753  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1754 
1755  if (__prev_p && __prev_bkt == __bkt)
1756  {
1757  // Previous insert was already in this bucket, we insert after
1758  // the previously inserted one to preserve equivalent elements
1759  // relative order.
1760  __p->_M_nxt = __prev_p->_M_nxt;
1761  __prev_p->_M_nxt = __p;
1762 
1763  // Inserting after a node in a bucket require to check that we
1764  // haven't change the bucket last node, in this case next
1765  // bucket containing its before begin node must be updated. We
1766  // schedule a check as soon as we move out of the sequence of
1767  // equivalent nodes to limit the number of checks.
1768  __check_bucket = true;
1769  }
1770  else
1771  {
1772  if (__check_bucket)
1773  {
1774  // Check if we shall update the next bucket because of
1775  // insertions into __prev_bkt bucket.
1776  if (__prev_p->_M_nxt)
1777  {
1778  std::size_t __next_bkt
1779  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
1780  __n);
1781  if (__next_bkt != __prev_bkt)
1782  __new_buckets[__next_bkt] = __prev_p;
1783  }
1784  __check_bucket = false;
1785  }
1786 
1787  if (!__new_buckets[__bkt])
1788  {
1789  __p->_M_nxt = _M_before_begin()._M_nxt;
1790  _M_before_begin()._M_nxt = __p;
1791  __new_buckets[__bkt] = &_M_before_begin();
1792  if (__p->_M_nxt)
1793  __new_buckets[__bbegin_bkt] = __p;
1794  __bbegin_bkt = __bkt;
1795  }
1796  else
1797  {
1798  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1799  __new_buckets[__bkt]->_M_nxt = __p;
1800  }
1801  }
1802  __prev_p = __p;
1803  __prev_bkt = __bkt;
1804  __p = __next;
1805  }
1806 
1807  if (__check_bucket && __prev_p->_M_nxt)
1808  {
1809  std::size_t __next_bkt
1810  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
1811  if (__next_bkt != __prev_bkt)
1812  __new_buckets[__next_bkt] = __prev_p;
1813  }
1814 
1815  _M_deallocate_buckets(_M_buckets, _M_bucket_count);
1816  _M_bucket_count = __n;
1817  _M_buckets = __new_buckets;
1818  }
1819 
1820 _GLIBCXX_END_NAMESPACE_VERSION
1821 } // namespace std
1822 
1823 #endif // _HASHTABLE_H
Default ranged hash function H. In principle it should be a function object composed from objects of ...
const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:216
auto end(_Container &__cont) -> decltype(__cont.end())
Return an iterator pointing to one past the last element of the container.
Definition: range_access.h:68
iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:101
constexpr pair< typename __decay_and_strip< _T1 >::__type, typename __decay_and_strip< _T2 >::__type > make_pair(_T1 &&__x, _T2 &&__y)
A convenience wrapper for creating a pair from two objects.
Definition: stl_pair.h:276
Default range hashing function: use division to fold a large number into the range [0...
ISO C++ entities toplevel namespace is std.
_T1 first
second_type is the second bound type
Definition: stl_pair.h:101
Node iterators, used to iterate through all the hashtable.
auto begin(_Container &__cont) -> decltype(__cont.begin())
Return an iterator pointing to the first element of the container.
Definition: range_access.h:48
void swap(_Tp &, _Tp &) noexcept(__and_< is_nothrow_move_constructible< _Tp >, is_nothrow_move_assignable< _Tp >>::value)
Swaps two values.
Definition: move.h:166
Node const_iterators, used to iterate through all the hashtable.
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:96
_T2 second
first is a copy of the first object
Definition: stl_pair.h:102