libstdc++
stl_deque.h
Go to the documentation of this file.
1 // Deque implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2013 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation. Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose. It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation. Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose. It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_deque.h
52  * This is an internal header file, included by other library headers.
53  * Do not attempt to use it directly. @headername{deque}
54  */
55 
56 #ifndef _STL_DEQUE_H
57 #define _STL_DEQUE_H 1
58 
59 #include <bits/concept_check.h>
62 #if __cplusplus >= 201103L
63 #include <initializer_list>
64 #endif
65 
66 namespace std _GLIBCXX_VISIBILITY(default)
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69 
70  /**
71  * @brief This function controls the size of memory nodes.
72  * @param __size The size of an element.
73  * @return The number (not byte size) of elements per node.
74  *
75  * This function started off as a compiler kludge from SGI, but
76  * seems to be a useful wrapper around a repeated constant
77  * expression. The @b 512 is tunable (and no other code needs to
78  * change), but no investigation has been done since inheriting the
79  * SGI code. Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
80  * you are doing, however: changing it breaks the binary
81  * compatibility!!
82  */
83 
84 #ifndef _GLIBCXX_DEQUE_BUF_SIZE
85 #define _GLIBCXX_DEQUE_BUF_SIZE 512
86 #endif
87 
88  inline size_t
89  __deque_buf_size(size_t __size)
90  { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
91  ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
92 
93 
94  /**
95  * @brief A deque::iterator.
96  *
97  * Quite a bit of intelligence here. Much of the functionality of
98  * deque is actually passed off to this class. A deque holds two
99  * of these internally, marking its valid range. Access to
100  * elements is done as offsets of either of those two, relying on
101  * operator overloading in this class.
102  *
103  * All the functions are op overloads except for _M_set_node.
104  */
105  template<typename _Tp, typename _Ref, typename _Ptr>
107  {
110 
111  static size_t _S_buffer_size()
112  { return __deque_buf_size(sizeof(_Tp)); }
113 
115  typedef _Tp value_type;
116  typedef _Ptr pointer;
117  typedef _Ref reference;
118  typedef size_t size_type;
119  typedef ptrdiff_t difference_type;
120  typedef _Tp** _Map_pointer;
121  typedef _Deque_iterator _Self;
122 
123  _Tp* _M_cur;
124  _Tp* _M_first;
125  _Tp* _M_last;
126  _Map_pointer _M_node;
127 
128  _Deque_iterator(_Tp* __x, _Map_pointer __y)
129  : _M_cur(__x), _M_first(*__y),
130  _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
131 
133  : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
134 
135  _Deque_iterator(const iterator& __x)
136  : _M_cur(__x._M_cur), _M_first(__x._M_first),
137  _M_last(__x._M_last), _M_node(__x._M_node) { }
138 
139  reference
140  operator*() const
141  { return *_M_cur; }
142 
143  pointer
144  operator->() const
145  { return _M_cur; }
146 
147  _Self&
148  operator++()
149  {
150  ++_M_cur;
151  if (_M_cur == _M_last)
152  {
153  _M_set_node(_M_node + 1);
154  _M_cur = _M_first;
155  }
156  return *this;
157  }
158 
159  _Self
160  operator++(int)
161  {
162  _Self __tmp = *this;
163  ++*this;
164  return __tmp;
165  }
166 
167  _Self&
168  operator--()
169  {
170  if (_M_cur == _M_first)
171  {
172  _M_set_node(_M_node - 1);
173  _M_cur = _M_last;
174  }
175  --_M_cur;
176  return *this;
177  }
178 
179  _Self
180  operator--(int)
181  {
182  _Self __tmp = *this;
183  --*this;
184  return __tmp;
185  }
186 
187  _Self&
188  operator+=(difference_type __n)
189  {
190  const difference_type __offset = __n + (_M_cur - _M_first);
191  if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
192  _M_cur += __n;
193  else
194  {
195  const difference_type __node_offset =
196  __offset > 0 ? __offset / difference_type(_S_buffer_size())
197  : -difference_type((-__offset - 1)
198  / _S_buffer_size()) - 1;
199  _M_set_node(_M_node + __node_offset);
200  _M_cur = _M_first + (__offset - __node_offset
201  * difference_type(_S_buffer_size()));
202  }
203  return *this;
204  }
205 
206  _Self
207  operator+(difference_type __n) const
208  {
209  _Self __tmp = *this;
210  return __tmp += __n;
211  }
212 
213  _Self&
214  operator-=(difference_type __n)
215  { return *this += -__n; }
216 
217  _Self
218  operator-(difference_type __n) const
219  {
220  _Self __tmp = *this;
221  return __tmp -= __n;
222  }
223 
224  reference
225  operator[](difference_type __n) const
226  { return *(*this + __n); }
227 
228  /**
229  * Prepares to traverse new_node. Sets everything except
230  * _M_cur, which should therefore be set by the caller
231  * immediately afterwards, based on _M_first and _M_last.
232  */
233  void
234  _M_set_node(_Map_pointer __new_node)
235  {
236  _M_node = __new_node;
237  _M_first = *__new_node;
238  _M_last = _M_first + difference_type(_S_buffer_size());
239  }
240  };
241 
242  // Note: we also provide overloads whose operands are of the same type in
243  // order to avoid ambiguous overload resolution when std::rel_ops operators
244  // are in scope (for additional details, see libstdc++/3628)
245  template<typename _Tp, typename _Ref, typename _Ptr>
246  inline bool
247  operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
248  const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
249  { return __x._M_cur == __y._M_cur; }
250 
251  template<typename _Tp, typename _RefL, typename _PtrL,
252  typename _RefR, typename _PtrR>
253  inline bool
254  operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
255  const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
256  { return __x._M_cur == __y._M_cur; }
257 
258  template<typename _Tp, typename _Ref, typename _Ptr>
259  inline bool
260  operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
261  const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
262  { return !(__x == __y); }
263 
264  template<typename _Tp, typename _RefL, typename _PtrL,
265  typename _RefR, typename _PtrR>
266  inline bool
267  operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
268  const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
269  { return !(__x == __y); }
270 
271  template<typename _Tp, typename _Ref, typename _Ptr>
272  inline bool
273  operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
274  const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
275  { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
276  : (__x._M_node < __y._M_node); }
277 
278  template<typename _Tp, typename _RefL, typename _PtrL,
279  typename _RefR, typename _PtrR>
280  inline bool
281  operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
282  const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
283  { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
284  : (__x._M_node < __y._M_node); }
285 
286  template<typename _Tp, typename _Ref, typename _Ptr>
287  inline bool
288  operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
289  const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
290  { return __y < __x; }
291 
292  template<typename _Tp, typename _RefL, typename _PtrL,
293  typename _RefR, typename _PtrR>
294  inline bool
295  operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
296  const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
297  { return __y < __x; }
298 
299  template<typename _Tp, typename _Ref, typename _Ptr>
300  inline bool
301  operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
302  const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
303  { return !(__y < __x); }
304 
305  template<typename _Tp, typename _RefL, typename _PtrL,
306  typename _RefR, typename _PtrR>
307  inline bool
308  operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
309  const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
310  { return !(__y < __x); }
311 
312  template<typename _Tp, typename _Ref, typename _Ptr>
313  inline bool
314  operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
315  const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
316  { return !(__x < __y); }
317 
318  template<typename _Tp, typename _RefL, typename _PtrL,
319  typename _RefR, typename _PtrR>
320  inline bool
321  operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
322  const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
323  { return !(__x < __y); }
324 
325  // _GLIBCXX_RESOLVE_LIB_DEFECTS
326  // According to the resolution of DR179 not only the various comparison
327  // operators but also operator- must accept mixed iterator/const_iterator
328  // parameters.
329  template<typename _Tp, typename _Ref, typename _Ptr>
330  inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
331  operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
332  const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
333  {
334  return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
335  (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
336  * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
337  + (__y._M_last - __y._M_cur);
338  }
339 
340  template<typename _Tp, typename _RefL, typename _PtrL,
341  typename _RefR, typename _PtrR>
342  inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
343  operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
344  const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
345  {
346  return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
347  (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
348  * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
349  + (__y._M_last - __y._M_cur);
350  }
351 
352  template<typename _Tp, typename _Ref, typename _Ptr>
353  inline _Deque_iterator<_Tp, _Ref, _Ptr>
354  operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
355  { return __x + __n; }
356 
357  template<typename _Tp>
358  void
359  fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
360  const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
361 
362  template<typename _Tp>
363  _Deque_iterator<_Tp, _Tp&, _Tp*>
364  copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
365  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
366  _Deque_iterator<_Tp, _Tp&, _Tp*>);
367 
368  template<typename _Tp>
369  inline _Deque_iterator<_Tp, _Tp&, _Tp*>
370  copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
371  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
372  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
373  { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
374  _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
375  __result); }
376 
377  template<typename _Tp>
378  _Deque_iterator<_Tp, _Tp&, _Tp*>
379  copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
380  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
381  _Deque_iterator<_Tp, _Tp&, _Tp*>);
382 
383  template<typename _Tp>
384  inline _Deque_iterator<_Tp, _Tp&, _Tp*>
385  copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
386  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
387  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
388  { return std::copy_backward(_Deque_iterator<_Tp,
389  const _Tp&, const _Tp*>(__first),
390  _Deque_iterator<_Tp,
391  const _Tp&, const _Tp*>(__last),
392  __result); }
393 
394 #if __cplusplus >= 201103L
395  template<typename _Tp>
396  _Deque_iterator<_Tp, _Tp&, _Tp*>
397  move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
398  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
399  _Deque_iterator<_Tp, _Tp&, _Tp*>);
400 
401  template<typename _Tp>
402  inline _Deque_iterator<_Tp, _Tp&, _Tp*>
403  move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
404  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
405  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
406  { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
407  _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
408  __result); }
409 
410  template<typename _Tp>
411  _Deque_iterator<_Tp, _Tp&, _Tp*>
412  move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
413  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
414  _Deque_iterator<_Tp, _Tp&, _Tp*>);
415 
416  template<typename _Tp>
417  inline _Deque_iterator<_Tp, _Tp&, _Tp*>
418  move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
419  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
420  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
421  { return std::move_backward(_Deque_iterator<_Tp,
422  const _Tp&, const _Tp*>(__first),
423  _Deque_iterator<_Tp,
424  const _Tp&, const _Tp*>(__last),
425  __result); }
426 #endif
427 
428  /**
429  * Deque base class. This class provides the unified face for %deque's
430  * allocation. This class's constructor and destructor allocate and
431  * deallocate (but do not initialize) storage. This makes %exception
432  * safety easier.
433  *
434  * Nothing in this class ever constructs or destroys an actual Tp element.
435  * (Deque handles that itself.) Only/All memory management is performed
436  * here.
437  */
438  template<typename _Tp, typename _Alloc>
440  {
441  public:
442  typedef _Alloc allocator_type;
443 
444  allocator_type
445  get_allocator() const _GLIBCXX_NOEXCEPT
446  { return allocator_type(_M_get_Tp_allocator()); }
447 
450 
451  _Deque_base()
452  : _M_impl()
453  { _M_initialize_map(0); }
454 
455  _Deque_base(size_t __num_elements)
456  : _M_impl()
457  { _M_initialize_map(__num_elements); }
458 
459  _Deque_base(const allocator_type& __a, size_t __num_elements)
460  : _M_impl(__a)
461  { _M_initialize_map(__num_elements); }
462 
463  _Deque_base(const allocator_type& __a)
464  : _M_impl(__a)
465  { }
466 
467 #if __cplusplus >= 201103L
468  _Deque_base(_Deque_base&& __x)
469  : _M_impl(std::move(__x._M_get_Tp_allocator()))
470  {
472  if (__x._M_impl._M_map)
473  {
474  std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
475  std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
476  std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
477  std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
478  }
479  }
480 #endif
481 
482  ~_Deque_base();
483 
484  protected:
485  //This struct encapsulates the implementation of the std::deque
486  //standard container and at the same time makes use of the EBO
487  //for empty allocators.
488  typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
489 
490  typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
491 
492  struct _Deque_impl
493  : public _Tp_alloc_type
494  {
495  _Tp** _M_map;
496  size_t _M_map_size;
497  iterator _M_start;
498  iterator _M_finish;
499 
500  _Deque_impl()
501  : _Tp_alloc_type(), _M_map(0), _M_map_size(0),
502  _M_start(), _M_finish()
503  { }
504 
505  _Deque_impl(const _Tp_alloc_type& __a)
506  : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
507  _M_start(), _M_finish()
508  { }
509 
510 #if __cplusplus >= 201103L
511  _Deque_impl(_Tp_alloc_type&& __a)
512  : _Tp_alloc_type(std::move(__a)), _M_map(0), _M_map_size(0),
513  _M_start(), _M_finish()
514  { }
515 #endif
516  };
517 
518  _Tp_alloc_type&
519  _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
520  { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
521 
522  const _Tp_alloc_type&
523  _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
524  { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
525 
526  _Map_alloc_type
527  _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
528  { return _Map_alloc_type(_M_get_Tp_allocator()); }
529 
530  _Tp*
531  _M_allocate_node()
532  {
533  return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
534  }
535 
536  void
537  _M_deallocate_node(_Tp* __p)
538  {
539  _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
540  }
541 
542  _Tp**
543  _M_allocate_map(size_t __n)
544  { return _M_get_map_allocator().allocate(__n); }
545 
546  void
547  _M_deallocate_map(_Tp** __p, size_t __n)
548  { _M_get_map_allocator().deallocate(__p, __n); }
549 
550  protected:
551  void _M_initialize_map(size_t);
552  void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
553  void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
554  enum { _S_initial_map_size = 8 };
555 
556  _Deque_impl _M_impl;
557  };
558 
559  template<typename _Tp, typename _Alloc>
562  {
563  if (this->_M_impl._M_map)
564  {
565  _M_destroy_nodes(this->_M_impl._M_start._M_node,
566  this->_M_impl._M_finish._M_node + 1);
567  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
568  }
569  }
570 
571  /**
572  * @brief Layout storage.
573  * @param __num_elements The count of T's for which to allocate space
574  * at first.
575  * @return Nothing.
576  *
577  * The initial underlying memory layout is a bit complicated...
578  */
579  template<typename _Tp, typename _Alloc>
580  void
582  _M_initialize_map(size_t __num_elements)
583  {
584  const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
585  + 1);
586 
587  this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
588  size_t(__num_nodes + 2));
589  this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
590 
591  // For "small" maps (needing less than _M_map_size nodes), allocation
592  // starts in the middle elements and grows outwards. So nstart may be
593  // the beginning of _M_map, but for small maps it may be as far in as
594  // _M_map+3.
595 
596  _Tp** __nstart = (this->_M_impl._M_map
597  + (this->_M_impl._M_map_size - __num_nodes) / 2);
598  _Tp** __nfinish = __nstart + __num_nodes;
599 
600  __try
601  { _M_create_nodes(__nstart, __nfinish); }
602  __catch(...)
603  {
604  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
605  this->_M_impl._M_map = 0;
606  this->_M_impl._M_map_size = 0;
607  __throw_exception_again;
608  }
609 
610  this->_M_impl._M_start._M_set_node(__nstart);
611  this->_M_impl._M_finish._M_set_node(__nfinish - 1);
612  this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
613  this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
614  + __num_elements
615  % __deque_buf_size(sizeof(_Tp)));
616  }
617 
618  template<typename _Tp, typename _Alloc>
619  void
621  _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
622  {
623  _Tp** __cur;
624  __try
625  {
626  for (__cur = __nstart; __cur < __nfinish; ++__cur)
627  *__cur = this->_M_allocate_node();
628  }
629  __catch(...)
630  {
631  _M_destroy_nodes(__nstart, __cur);
632  __throw_exception_again;
633  }
634  }
635 
636  template<typename _Tp, typename _Alloc>
637  void
638  _Deque_base<_Tp, _Alloc>::
639  _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
640  {
641  for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
642  _M_deallocate_node(*__n);
643  }
644 
645  /**
646  * @brief A standard container using fixed-size memory allocation and
647  * constant-time manipulation of elements at either end.
648  *
649  * @ingroup sequences
650  *
651  * @tparam _Tp Type of element.
652  * @tparam _Alloc Allocator type, defaults to allocator<_Tp>.
653  *
654  * Meets the requirements of a <a href="tables.html#65">container</a>, a
655  * <a href="tables.html#66">reversible container</a>, and a
656  * <a href="tables.html#67">sequence</a>, including the
657  * <a href="tables.html#68">optional sequence requirements</a>.
658  *
659  * In previous HP/SGI versions of deque, there was an extra template
660  * parameter so users could control the node size. This extension turned
661  * out to violate the C++ standard (it can be detected using template
662  * template parameters), and it was removed.
663  *
664  * Here's how a deque<Tp> manages memory. Each deque has 4 members:
665  *
666  * - Tp** _M_map
667  * - size_t _M_map_size
668  * - iterator _M_start, _M_finish
669  *
670  * map_size is at least 8. %map is an array of map_size
671  * pointers-to-@a nodes. (The name %map has nothing to do with the
672  * std::map class, and @b nodes should not be confused with
673  * std::list's usage of @a node.)
674  *
675  * A @a node has no specific type name as such, but it is referred
676  * to as @a node in this file. It is a simple array-of-Tp. If Tp
677  * is very large, there will be one Tp element per node (i.e., an
678  * @a array of one). For non-huge Tp's, node size is inversely
679  * related to Tp size: the larger the Tp, the fewer Tp's will fit
680  * in a node. The goal here is to keep the total size of a node
681  * relatively small and constant over different Tp's, to improve
682  * allocator efficiency.
683  *
684  * Not every pointer in the %map array will point to a node. If
685  * the initial number of elements in the deque is small, the
686  * /middle/ %map pointers will be valid, and the ones at the edges
687  * will be unused. This same situation will arise as the %map
688  * grows: available %map pointers, if any, will be on the ends. As
689  * new nodes are created, only a subset of the %map's pointers need
690  * to be copied @a outward.
691  *
692  * Class invariants:
693  * - For any nonsingular iterator i:
694  * - i.node points to a member of the %map array. (Yes, you read that
695  * correctly: i.node does not actually point to a node.) The member of
696  * the %map array is what actually points to the node.
697  * - i.first == *(i.node) (This points to the node (first Tp element).)
698  * - i.last == i.first + node_size
699  * - i.cur is a pointer in the range [i.first, i.last). NOTE:
700  * the implication of this is that i.cur is always a dereferenceable
701  * pointer, even if i is a past-the-end iterator.
702  * - Start and Finish are always nonsingular iterators. NOTE: this
703  * means that an empty deque must have one node, a deque with <N
704  * elements (where N is the node buffer size) must have one node, a
705  * deque with N through (2N-1) elements must have two nodes, etc.
706  * - For every node other than start.node and finish.node, every
707  * element in the node is an initialized object. If start.node ==
708  * finish.node, then [start.cur, finish.cur) are initialized
709  * objects, and the elements outside that range are uninitialized
710  * storage. Otherwise, [start.cur, start.last) and [finish.first,
711  * finish.cur) are initialized objects, and [start.first, start.cur)
712  * and [finish.cur, finish.last) are uninitialized storage.
713  * - [%map, %map + map_size) is a valid, non-empty range.
714  * - [start.node, finish.node] is a valid range contained within
715  * [%map, %map + map_size).
716  * - A pointer in the range [%map, %map + map_size) points to an allocated
717  * node if and only if the pointer is in the range
718  * [start.node, finish.node].
719  *
720  * Here's the magic: nothing in deque is @b aware of the discontiguous
721  * storage!
722  *
723  * The memory setup and layout occurs in the parent, _Base, and the iterator
724  * class is entirely responsible for @a leaping from one node to the next.
725  * All the implementation routines for deque itself work only through the
726  * start and finish iterators. This keeps the routines simple and sane,
727  * and we can use other standard algorithms as well.
728  */
729  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
730  class deque : protected _Deque_base<_Tp, _Alloc>
731  {
732  // concept requirements
733  typedef typename _Alloc::value_type _Alloc_value_type;
734  __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
735  __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
736 
738  typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
739 
740  public:
741  typedef _Tp value_type;
742  typedef typename _Tp_alloc_type::pointer pointer;
743  typedef typename _Tp_alloc_type::const_pointer const_pointer;
744  typedef typename _Tp_alloc_type::reference reference;
745  typedef typename _Tp_alloc_type::const_reference const_reference;
746  typedef typename _Base::iterator iterator;
747  typedef typename _Base::const_iterator const_iterator;
750  typedef size_t size_type;
751  typedef ptrdiff_t difference_type;
752  typedef _Alloc allocator_type;
753 
754  protected:
755  typedef pointer* _Map_pointer;
756 
757  static size_t _S_buffer_size()
758  { return __deque_buf_size(sizeof(_Tp)); }
759 
760  // Functions controlling memory layout, and nothing else.
762  using _Base::_M_create_nodes;
763  using _Base::_M_destroy_nodes;
764  using _Base::_M_allocate_node;
765  using _Base::_M_deallocate_node;
766  using _Base::_M_allocate_map;
767  using _Base::_M_deallocate_map;
768  using _Base::_M_get_Tp_allocator;
769 
770  /**
771  * A total of four data members accumulated down the hierarchy.
772  * May be accessed via _M_impl.*
773  */
774  using _Base::_M_impl;
775 
776  public:
777  // [23.2.1.1] construct/copy/destroy
778  // (assign() and get_allocator() are also listed in this section)
779  /**
780  * @brief Default constructor creates no elements.
781  */
783  : _Base() { }
784 
785  /**
786  * @brief Creates a %deque with no elements.
787  * @param __a An allocator object.
788  */
789  explicit
790  deque(const allocator_type& __a)
791  : _Base(__a, 0) { }
792 
793 #if __cplusplus >= 201103L
794  /**
795  * @brief Creates a %deque with default constructed elements.
796  * @param __n The number of elements to initially create.
797  *
798  * This constructor fills the %deque with @a n default
799  * constructed elements.
800  */
801  explicit
802  deque(size_type __n)
803  : _Base(__n)
804  { _M_default_initialize(); }
805 
806  /**
807  * @brief Creates a %deque with copies of an exemplar element.
808  * @param __n The number of elements to initially create.
809  * @param __value An element to copy.
810  * @param __a An allocator.
811  *
812  * This constructor fills the %deque with @a __n copies of @a __value.
813  */
814  deque(size_type __n, const value_type& __value,
815  const allocator_type& __a = allocator_type())
816  : _Base(__a, __n)
817  { _M_fill_initialize(__value); }
818 #else
819  /**
820  * @brief Creates a %deque with copies of an exemplar element.
821  * @param __n The number of elements to initially create.
822  * @param __value An element to copy.
823  * @param __a An allocator.
824  *
825  * This constructor fills the %deque with @a __n copies of @a __value.
826  */
827  explicit
828  deque(size_type __n, const value_type& __value = value_type(),
829  const allocator_type& __a = allocator_type())
830  : _Base(__a, __n)
831  { _M_fill_initialize(__value); }
832 #endif
833 
834  /**
835  * @brief %Deque copy constructor.
836  * @param __x A %deque of identical element and allocator types.
837  *
838  * The newly-created %deque uses a copy of the allocation object used
839  * by @a __x.
840  */
841  deque(const deque& __x)
842  : _Base(__x._M_get_Tp_allocator(), __x.size())
843  { std::__uninitialized_copy_a(__x.begin(), __x.end(),
844  this->_M_impl._M_start,
845  _M_get_Tp_allocator()); }
846 
847 #if __cplusplus >= 201103L
848  /**
849  * @brief %Deque move constructor.
850  * @param __x A %deque of identical element and allocator types.
851  *
852  * The newly-created %deque contains the exact contents of @a __x.
853  * The contents of @a __x are a valid, but unspecified %deque.
854  */
855  deque(deque&& __x)
856  : _Base(std::move(__x)) { }
857 
858  /**
859  * @brief Builds a %deque from an initializer list.
860  * @param __l An initializer_list.
861  * @param __a An allocator object.
862  *
863  * Create a %deque consisting of copies of the elements in the
864  * initializer_list @a __l.
865  *
866  * This will call the element type's copy constructor N times
867  * (where N is __l.size()) and do no memory reallocation.
868  */
869  deque(initializer_list<value_type> __l,
870  const allocator_type& __a = allocator_type())
871  : _Base(__a)
872  {
873  _M_range_initialize(__l.begin(), __l.end(),
875  }
876 #endif
877 
878  /**
879  * @brief Builds a %deque from a range.
880  * @param __first An input iterator.
881  * @param __last An input iterator.
882  * @param __a An allocator object.
883  *
884  * Create a %deque consisting of copies of the elements from [__first,
885  * __last).
886  *
887  * If the iterators are forward, bidirectional, or random-access, then
888  * this will call the elements' copy constructor N times (where N is
889  * distance(__first,__last)) and do no memory reallocation. But if only
890  * input iterators are used, then this will do at most 2N calls to the
891  * copy constructor, and logN memory reallocations.
892  */
893 #if __cplusplus >= 201103L
894  template<typename _InputIterator,
895  typename = std::_RequireInputIter<_InputIterator>>
896  deque(_InputIterator __first, _InputIterator __last,
897  const allocator_type& __a = allocator_type())
898  : _Base(__a)
899  { _M_initialize_dispatch(__first, __last, __false_type()); }
900 #else
901  template<typename _InputIterator>
902  deque(_InputIterator __first, _InputIterator __last,
903  const allocator_type& __a = allocator_type())
904  : _Base(__a)
905  {
906  // Check whether it's an integral type. If so, it's not an iterator.
907  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
908  _M_initialize_dispatch(__first, __last, _Integral());
909  }
910 #endif
911 
912  /**
913  * The dtor only erases the elements, and note that if the elements
914  * themselves are pointers, the pointed-to memory is not touched in any
915  * way. Managing the pointer is the user's responsibility.
916  */
917  ~deque() _GLIBCXX_NOEXCEPT
918  { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
919 
920  /**
921  * @brief %Deque assignment operator.
922  * @param __x A %deque of identical element and allocator types.
923  *
924  * All the elements of @a x are copied, but unlike the copy constructor,
925  * the allocator object is not copied.
926  */
927  deque&
928  operator=(const deque& __x);
929 
930 #if __cplusplus >= 201103L
931  /**
932  * @brief %Deque move assignment operator.
933  * @param __x A %deque of identical element and allocator types.
934  *
935  * The contents of @a __x are moved into this deque (without copying).
936  * @a __x is a valid, but unspecified %deque.
937  */
938  deque&
940  {
941  // NB: DR 1204.
942  // NB: DR 675.
943  this->clear();
944  this->swap(__x);
945  return *this;
946  }
947 
948  /**
949  * @brief Assigns an initializer list to a %deque.
950  * @param __l An initializer_list.
951  *
952  * This function fills a %deque with copies of the elements in the
953  * initializer_list @a __l.
954  *
955  * Note that the assignment completely changes the %deque and that the
956  * resulting %deque's size is the same as the number of elements
957  * assigned. Old data may be lost.
958  */
959  deque&
960  operator=(initializer_list<value_type> __l)
961  {
962  this->assign(__l.begin(), __l.end());
963  return *this;
964  }
965 #endif
966 
967  /**
968  * @brief Assigns a given value to a %deque.
969  * @param __n Number of elements to be assigned.
970  * @param __val Value to be assigned.
971  *
972  * This function fills a %deque with @a n copies of the given
973  * value. Note that the assignment completely changes the
974  * %deque and that the resulting %deque's size is the same as
975  * the number of elements assigned. Old data may be lost.
976  */
977  void
978  assign(size_type __n, const value_type& __val)
979  { _M_fill_assign(__n, __val); }
980 
981  /**
982  * @brief Assigns a range to a %deque.
983  * @param __first An input iterator.
984  * @param __last An input iterator.
985  *
986  * This function fills a %deque with copies of the elements in the
987  * range [__first,__last).
988  *
989  * Note that the assignment completely changes the %deque and that the
990  * resulting %deque's size is the same as the number of elements
991  * assigned. Old data may be lost.
992  */
993 #if __cplusplus >= 201103L
994  template<typename _InputIterator,
995  typename = std::_RequireInputIter<_InputIterator>>
996  void
997  assign(_InputIterator __first, _InputIterator __last)
998  { _M_assign_dispatch(__first, __last, __false_type()); }
999 #else
1000  template<typename _InputIterator>
1001  void
1002  assign(_InputIterator __first, _InputIterator __last)
1003  {
1004  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1005  _M_assign_dispatch(__first, __last, _Integral());
1006  }
1007 #endif
1008 
1009 #if __cplusplus >= 201103L
1010  /**
1011  * @brief Assigns an initializer list to a %deque.
1012  * @param __l An initializer_list.
1013  *
1014  * This function fills a %deque with copies of the elements in the
1015  * initializer_list @a __l.
1016  *
1017  * Note that the assignment completely changes the %deque and that the
1018  * resulting %deque's size is the same as the number of elements
1019  * assigned. Old data may be lost.
1020  */
1021  void
1022  assign(initializer_list<value_type> __l)
1023  { this->assign(__l.begin(), __l.end()); }
1024 #endif
1025 
1026  /// Get a copy of the memory allocation object.
1027  allocator_type
1028  get_allocator() const _GLIBCXX_NOEXCEPT
1029  { return _Base::get_allocator(); }
1030 
1031  // iterators
1032  /**
1033  * Returns a read/write iterator that points to the first element in the
1034  * %deque. Iteration is done in ordinary element order.
1035  */
1036  iterator
1037  begin() _GLIBCXX_NOEXCEPT
1038  { return this->_M_impl._M_start; }
1039 
1040  /**
1041  * Returns a read-only (constant) iterator that points to the first
1042  * element in the %deque. Iteration is done in ordinary element order.
1043  */
1044  const_iterator
1045  begin() const _GLIBCXX_NOEXCEPT
1046  { return this->_M_impl._M_start; }
1047 
1048  /**
1049  * Returns a read/write iterator that points one past the last
1050  * element in the %deque. Iteration is done in ordinary
1051  * element order.
1052  */
1053  iterator
1054  end() _GLIBCXX_NOEXCEPT
1055  { return this->_M_impl._M_finish; }
1056 
1057  /**
1058  * Returns a read-only (constant) iterator that points one past
1059  * the last element in the %deque. Iteration is done in
1060  * ordinary element order.
1061  */
1062  const_iterator
1063  end() const _GLIBCXX_NOEXCEPT
1064  { return this->_M_impl._M_finish; }
1065 
1066  /**
1067  * Returns a read/write reverse iterator that points to the
1068  * last element in the %deque. Iteration is done in reverse
1069  * element order.
1070  */
1071  reverse_iterator
1072  rbegin() _GLIBCXX_NOEXCEPT
1073  { return reverse_iterator(this->_M_impl._M_finish); }
1074 
1075  /**
1076  * Returns a read-only (constant) reverse iterator that points
1077  * to the last element in the %deque. Iteration is done in
1078  * reverse element order.
1079  */
1080  const_reverse_iterator
1081  rbegin() const _GLIBCXX_NOEXCEPT
1082  { return const_reverse_iterator(this->_M_impl._M_finish); }
1083 
1084  /**
1085  * Returns a read/write reverse iterator that points to one
1086  * before the first element in the %deque. Iteration is done
1087  * in reverse element order.
1088  */
1089  reverse_iterator
1090  rend() _GLIBCXX_NOEXCEPT
1091  { return reverse_iterator(this->_M_impl._M_start); }
1092 
1093  /**
1094  * Returns a read-only (constant) reverse iterator that points
1095  * to one before the first element in the %deque. Iteration is
1096  * done in reverse element order.
1097  */
1098  const_reverse_iterator
1099  rend() const _GLIBCXX_NOEXCEPT
1100  { return const_reverse_iterator(this->_M_impl._M_start); }
1101 
1102 #if __cplusplus >= 201103L
1103  /**
1104  * Returns a read-only (constant) iterator that points to the first
1105  * element in the %deque. Iteration is done in ordinary element order.
1106  */
1107  const_iterator
1108  cbegin() const noexcept
1109  { return this->_M_impl._M_start; }
1110 
1111  /**
1112  * Returns a read-only (constant) iterator that points one past
1113  * the last element in the %deque. Iteration is done in
1114  * ordinary element order.
1115  */
1116  const_iterator
1117  cend() const noexcept
1118  { return this->_M_impl._M_finish; }
1119 
1120  /**
1121  * Returns a read-only (constant) reverse iterator that points
1122  * to the last element in the %deque. Iteration is done in
1123  * reverse element order.
1124  */
1125  const_reverse_iterator
1126  crbegin() const noexcept
1127  { return const_reverse_iterator(this->_M_impl._M_finish); }
1128 
1129  /**
1130  * Returns a read-only (constant) reverse iterator that points
1131  * to one before the first element in the %deque. Iteration is
1132  * done in reverse element order.
1133  */
1134  const_reverse_iterator
1135  crend() const noexcept
1136  { return const_reverse_iterator(this->_M_impl._M_start); }
1137 #endif
1138 
1139  // [23.2.1.2] capacity
1140  /** Returns the number of elements in the %deque. */
1141  size_type
1142  size() const _GLIBCXX_NOEXCEPT
1143  { return this->_M_impl._M_finish - this->_M_impl._M_start; }
1144 
1145  /** Returns the size() of the largest possible %deque. */
1146  size_type
1147  max_size() const _GLIBCXX_NOEXCEPT
1148  { return _M_get_Tp_allocator().max_size(); }
1149 
1150 #if __cplusplus >= 201103L
1151  /**
1152  * @brief Resizes the %deque to the specified number of elements.
1153  * @param __new_size Number of elements the %deque should contain.
1154  *
1155  * This function will %resize the %deque to the specified
1156  * number of elements. If the number is smaller than the
1157  * %deque's current size the %deque is truncated, otherwise
1158  * default constructed elements are appended.
1159  */
1160  void
1161  resize(size_type __new_size)
1162  {
1163  const size_type __len = size();
1164  if (__new_size > __len)
1165  _M_default_append(__new_size - __len);
1166  else if (__new_size < __len)
1167  _M_erase_at_end(this->_M_impl._M_start
1168  + difference_type(__new_size));
1169  }
1170 
1171  /**
1172  * @brief Resizes the %deque to the specified number of elements.
1173  * @param __new_size Number of elements the %deque should contain.
1174  * @param __x Data with which new elements should be populated.
1175  *
1176  * This function will %resize the %deque to the specified
1177  * number of elements. If the number is smaller than the
1178  * %deque's current size the %deque is truncated, otherwise the
1179  * %deque is extended and new elements are populated with given
1180  * data.
1181  */
1182  void
1183  resize(size_type __new_size, const value_type& __x)
1184  {
1185  const size_type __len = size();
1186  if (__new_size > __len)
1187  insert(this->_M_impl._M_finish, __new_size - __len, __x);
1188  else if (__new_size < __len)
1189  _M_erase_at_end(this->_M_impl._M_start
1190  + difference_type(__new_size));
1191  }
1192 #else
1193  /**
1194  * @brief Resizes the %deque to the specified number of elements.
1195  * @param __new_size Number of elements the %deque should contain.
1196  * @param __x Data with which new elements should be populated.
1197  *
1198  * This function will %resize the %deque to the specified
1199  * number of elements. If the number is smaller than the
1200  * %deque's current size the %deque is truncated, otherwise the
1201  * %deque is extended and new elements are populated with given
1202  * data.
1203  */
1204  void
1205  resize(size_type __new_size, value_type __x = value_type())
1206  {
1207  const size_type __len = size();
1208  if (__new_size > __len)
1209  insert(this->_M_impl._M_finish, __new_size - __len, __x);
1210  else if (__new_size < __len)
1211  _M_erase_at_end(this->_M_impl._M_start
1212  + difference_type(__new_size));
1213  }
1214 #endif
1215 
1216 #if __cplusplus >= 201103L
1217  /** A non-binding request to reduce memory use. */
1218  void
1220  { _M_shrink_to_fit(); }
1221 #endif
1222 
1223  /**
1224  * Returns true if the %deque is empty. (Thus begin() would
1225  * equal end().)
1226  */
1227  bool
1228  empty() const _GLIBCXX_NOEXCEPT
1229  { return this->_M_impl._M_finish == this->_M_impl._M_start; }
1230 
1231  // element access
1232  /**
1233  * @brief Subscript access to the data contained in the %deque.
1234  * @param __n The index of the element for which data should be
1235  * accessed.
1236  * @return Read/write reference to data.
1237  *
1238  * This operator allows for easy, array-style, data access.
1239  * Note that data access with this operator is unchecked and
1240  * out_of_range lookups are not defined. (For checked lookups
1241  * see at().)
1242  */
1243  reference
1244  operator[](size_type __n)
1245  { return this->_M_impl._M_start[difference_type(__n)]; }
1246 
1247  /**
1248  * @brief Subscript access to the data contained in the %deque.
1249  * @param __n The index of the element for which data should be
1250  * accessed.
1251  * @return Read-only (constant) reference to data.
1252  *
1253  * This operator allows for easy, array-style, data access.
1254  * Note that data access with this operator is unchecked and
1255  * out_of_range lookups are not defined. (For checked lookups
1256  * see at().)
1257  */
1258  const_reference
1259  operator[](size_type __n) const
1260  { return this->_M_impl._M_start[difference_type(__n)]; }
1261 
1262  protected:
1263  /// Safety check used only from at().
1264  void
1265  _M_range_check(size_type __n) const
1266  {
1267  if (__n >= this->size())
1268  __throw_out_of_range(__N("deque::_M_range_check"));
1269  }
1270 
1271  public:
1272  /**
1273  * @brief Provides access to the data contained in the %deque.
1274  * @param __n The index of the element for which data should be
1275  * accessed.
1276  * @return Read/write reference to data.
1277  * @throw std::out_of_range If @a __n is an invalid index.
1278  *
1279  * This function provides for safer data access. The parameter
1280  * is first checked that it is in the range of the deque. The
1281  * function throws out_of_range if the check fails.
1282  */
1283  reference
1284  at(size_type __n)
1285  {
1286  _M_range_check(__n);
1287  return (*this)[__n];
1288  }
1289 
1290  /**
1291  * @brief Provides access to the data contained in the %deque.
1292  * @param __n The index of the element for which data should be
1293  * accessed.
1294  * @return Read-only (constant) reference to data.
1295  * @throw std::out_of_range If @a __n is an invalid index.
1296  *
1297  * This function provides for safer data access. The parameter is first
1298  * checked that it is in the range of the deque. The function throws
1299  * out_of_range if the check fails.
1300  */
1301  const_reference
1302  at(size_type __n) const
1303  {
1304  _M_range_check(__n);
1305  return (*this)[__n];
1306  }
1307 
1308  /**
1309  * Returns a read/write reference to the data at the first
1310  * element of the %deque.
1311  */
1312  reference
1314  { return *begin(); }
1315 
1316  /**
1317  * Returns a read-only (constant) reference to the data at the first
1318  * element of the %deque.
1319  */
1320  const_reference
1321  front() const
1322  { return *begin(); }
1323 
1324  /**
1325  * Returns a read/write reference to the data at the last element of the
1326  * %deque.
1327  */
1328  reference
1330  {
1331  iterator __tmp = end();
1332  --__tmp;
1333  return *__tmp;
1334  }
1335 
1336  /**
1337  * Returns a read-only (constant) reference to the data at the last
1338  * element of the %deque.
1339  */
1340  const_reference
1341  back() const
1342  {
1343  const_iterator __tmp = end();
1344  --__tmp;
1345  return *__tmp;
1346  }
1347 
1348  // [23.2.1.2] modifiers
1349  /**
1350  * @brief Add data to the front of the %deque.
1351  * @param __x Data to be added.
1352  *
1353  * This is a typical stack operation. The function creates an
1354  * element at the front of the %deque and assigns the given
1355  * data to it. Due to the nature of a %deque this operation
1356  * can be done in constant time.
1357  */
1358  void
1359  push_front(const value_type& __x)
1360  {
1361  if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1362  {
1363  this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1364  --this->_M_impl._M_start._M_cur;
1365  }
1366  else
1367  _M_push_front_aux(__x);
1368  }
1369 
1370 #if __cplusplus >= 201103L
1371  void
1372  push_front(value_type&& __x)
1373  { emplace_front(std::move(__x)); }
1374 
1375  template<typename... _Args>
1376  void
1377  emplace_front(_Args&&... __args);
1378 #endif
1379 
1380  /**
1381  * @brief Add data to the end of the %deque.
1382  * @param __x Data to be added.
1383  *
1384  * This is a typical stack operation. The function creates an
1385  * element at the end of the %deque and assigns the given data
1386  * to it. Due to the nature of a %deque this operation can be
1387  * done in constant time.
1388  */
1389  void
1390  push_back(const value_type& __x)
1391  {
1392  if (this->_M_impl._M_finish._M_cur
1393  != this->_M_impl._M_finish._M_last - 1)
1394  {
1395  this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1396  ++this->_M_impl._M_finish._M_cur;
1397  }
1398  else
1399  _M_push_back_aux(__x);
1400  }
1401 
1402 #if __cplusplus >= 201103L
1403  void
1404  push_back(value_type&& __x)
1405  { emplace_back(std::move(__x)); }
1406 
1407  template<typename... _Args>
1408  void
1409  emplace_back(_Args&&... __args);
1410 #endif
1411 
1412  /**
1413  * @brief Removes first element.
1414  *
1415  * This is a typical stack operation. It shrinks the %deque by one.
1416  *
1417  * Note that no data is returned, and if the first element's data is
1418  * needed, it should be retrieved before pop_front() is called.
1419  */
1420  void
1422  {
1423  if (this->_M_impl._M_start._M_cur
1424  != this->_M_impl._M_start._M_last - 1)
1425  {
1426  this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1427  ++this->_M_impl._M_start._M_cur;
1428  }
1429  else
1430  _M_pop_front_aux();
1431  }
1432 
1433  /**
1434  * @brief Removes last element.
1435  *
1436  * This is a typical stack operation. It shrinks the %deque by one.
1437  *
1438  * Note that no data is returned, and if the last element's data is
1439  * needed, it should be retrieved before pop_back() is called.
1440  */
1441  void
1443  {
1444  if (this->_M_impl._M_finish._M_cur
1445  != this->_M_impl._M_finish._M_first)
1446  {
1447  --this->_M_impl._M_finish._M_cur;
1448  this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1449  }
1450  else
1451  _M_pop_back_aux();
1452  }
1453 
1454 #if __cplusplus >= 201103L
1455  /**
1456  * @brief Inserts an object in %deque before specified iterator.
1457  * @param __position An iterator into the %deque.
1458  * @param __args Arguments.
1459  * @return An iterator that points to the inserted data.
1460  *
1461  * This function will insert an object of type T constructed
1462  * with T(std::forward<Args>(args)...) before the specified location.
1463  */
1464  template<typename... _Args>
1465  iterator
1466  emplace(iterator __position, _Args&&... __args);
1467 #endif
1468 
1469  /**
1470  * @brief Inserts given value into %deque before specified iterator.
1471  * @param __position An iterator into the %deque.
1472  * @param __x Data to be inserted.
1473  * @return An iterator that points to the inserted data.
1474  *
1475  * This function will insert a copy of the given value before the
1476  * specified location.
1477  */
1478  iterator
1479  insert(iterator __position, const value_type& __x);
1480 
1481 #if __cplusplus >= 201103L
1482  /**
1483  * @brief Inserts given rvalue into %deque before specified iterator.
1484  * @param __position An iterator into the %deque.
1485  * @param __x Data to be inserted.
1486  * @return An iterator that points to the inserted data.
1487  *
1488  * This function will insert a copy of the given rvalue before the
1489  * specified location.
1490  */
1491  iterator
1492  insert(iterator __position, value_type&& __x)
1493  { return emplace(__position, std::move(__x)); }
1494 
1495  /**
1496  * @brief Inserts an initializer list into the %deque.
1497  * @param __p An iterator into the %deque.
1498  * @param __l An initializer_list.
1499  *
1500  * This function will insert copies of the data in the
1501  * initializer_list @a __l into the %deque before the location
1502  * specified by @a __p. This is known as <em>list insert</em>.
1503  */
1504  void
1505  insert(iterator __p, initializer_list<value_type> __l)
1506  { this->insert(__p, __l.begin(), __l.end()); }
1507 #endif
1508 
1509  /**
1510  * @brief Inserts a number of copies of given data into the %deque.
1511  * @param __position An iterator into the %deque.
1512  * @param __n Number of elements to be inserted.
1513  * @param __x Data to be inserted.
1514  *
1515  * This function will insert a specified number of copies of the given
1516  * data before the location specified by @a __position.
1517  */
1518  void
1519  insert(iterator __position, size_type __n, const value_type& __x)
1520  { _M_fill_insert(__position, __n, __x); }
1521 
1522  /**
1523  * @brief Inserts a range into the %deque.
1524  * @param __position An iterator into the %deque.
1525  * @param __first An input iterator.
1526  * @param __last An input iterator.
1527  *
1528  * This function will insert copies of the data in the range
1529  * [__first,__last) into the %deque before the location specified
1530  * by @a __position. This is known as <em>range insert</em>.
1531  */
1532 #if __cplusplus >= 201103L
1533  template<typename _InputIterator,
1534  typename = std::_RequireInputIter<_InputIterator>>
1535  void
1536  insert(iterator __position, _InputIterator __first,
1537  _InputIterator __last)
1538  { _M_insert_dispatch(__position, __first, __last, __false_type()); }
1539 #else
1540  template<typename _InputIterator>
1541  void
1542  insert(iterator __position, _InputIterator __first,
1543  _InputIterator __last)
1544  {
1545  // Check whether it's an integral type. If so, it's not an iterator.
1546  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1547  _M_insert_dispatch(__position, __first, __last, _Integral());
1548  }
1549 #endif
1550 
1551  /**
1552  * @brief Remove element at given position.
1553  * @param __position Iterator pointing to element to be erased.
1554  * @return An iterator pointing to the next element (or end()).
1555  *
1556  * This function will erase the element at the given position and thus
1557  * shorten the %deque by one.
1558  *
1559  * The user is cautioned that
1560  * this function only erases the element, and that if the element is
1561  * itself a pointer, the pointed-to memory is not touched in any way.
1562  * Managing the pointer is the user's responsibility.
1563  */
1564  iterator
1565  erase(iterator __position);
1566 
1567  /**
1568  * @brief Remove a range of elements.
1569  * @param __first Iterator pointing to the first element to be erased.
1570  * @param __last Iterator pointing to one past the last element to be
1571  * erased.
1572  * @return An iterator pointing to the element pointed to by @a last
1573  * prior to erasing (or end()).
1574  *
1575  * This function will erase the elements in the range
1576  * [__first,__last) and shorten the %deque accordingly.
1577  *
1578  * The user is cautioned that
1579  * this function only erases the elements, and that if the elements
1580  * themselves are pointers, the pointed-to memory is not touched in any
1581  * way. Managing the pointer is the user's responsibility.
1582  */
1583  iterator
1584  erase(iterator __first, iterator __last);
1585 
1586  /**
1587  * @brief Swaps data with another %deque.
1588  * @param __x A %deque of the same element and allocator types.
1589  *
1590  * This exchanges the elements between two deques in constant time.
1591  * (Four pointers, so it should be quite fast.)
1592  * Note that the global std::swap() function is specialized such that
1593  * std::swap(d1,d2) will feed to this function.
1594  */
1595  void
1596  swap(deque& __x)
1597  {
1598  std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1599  std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1600  std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1601  std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1602 
1603  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1604  // 431. Swapping containers with unequal allocators.
1605  std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1606  __x._M_get_Tp_allocator());
1607  }
1608 
1609  /**
1610  * Erases all the elements. Note that this function only erases the
1611  * elements, and that if the elements themselves are pointers, the
1612  * pointed-to memory is not touched in any way. Managing the pointer is
1613  * the user's responsibility.
1614  */
1615  void
1616  clear() _GLIBCXX_NOEXCEPT
1617  { _M_erase_at_end(begin()); }
1618 
1619  protected:
1620  // Internal constructor functions follow.
1621 
1622  // called by the range constructor to implement [23.1.1]/9
1623 
1624  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1625  // 438. Ambiguity in the "do the right thing" clause
1626  template<typename _Integer>
1627  void
1628  _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1629  {
1630  _M_initialize_map(static_cast<size_type>(__n));
1631  _M_fill_initialize(__x);
1632  }
1633 
1634  // called by the range constructor to implement [23.1.1]/9
1635  template<typename _InputIterator>
1636  void
1637  _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1638  __false_type)
1639  {
1640  typedef typename std::iterator_traits<_InputIterator>::
1641  iterator_category _IterCategory;
1642  _M_range_initialize(__first, __last, _IterCategory());
1643  }
1644 
1645  // called by the second initialize_dispatch above
1646  //@{
1647  /**
1648  * @brief Fills the deque with whatever is in [first,last).
1649  * @param __first An input iterator.
1650  * @param __last An input iterator.
1651  * @return Nothing.
1652  *
1653  * If the iterators are actually forward iterators (or better), then the
1654  * memory layout can be done all at once. Else we move forward using
1655  * push_back on each value from the iterator.
1656  */
1657  template<typename _InputIterator>
1658  void
1659  _M_range_initialize(_InputIterator __first, _InputIterator __last,
1661 
1662  // called by the second initialize_dispatch above
1663  template<typename _ForwardIterator>
1664  void
1665  _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1667  //@}
1668 
1669  /**
1670  * @brief Fills the %deque with copies of value.
1671  * @param __value Initial value.
1672  * @return Nothing.
1673  * @pre _M_start and _M_finish have already been initialized,
1674  * but none of the %deque's elements have yet been constructed.
1675  *
1676  * This function is called only when the user provides an explicit size
1677  * (with or without an explicit exemplar value).
1678  */
1679  void
1680  _M_fill_initialize(const value_type& __value);
1681 
1682 #if __cplusplus >= 201103L
1683  // called by deque(n).
1684  void
1685  _M_default_initialize();
1686 #endif
1687 
1688  // Internal assign functions follow. The *_aux functions do the actual
1689  // assignment work for the range versions.
1690 
1691  // called by the range assign to implement [23.1.1]/9
1692 
1693  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1694  // 438. Ambiguity in the "do the right thing" clause
1695  template<typename _Integer>
1696  void
1697  _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1698  { _M_fill_assign(__n, __val); }
1699 
1700  // called by the range assign to implement [23.1.1]/9
1701  template<typename _InputIterator>
1702  void
1703  _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1704  __false_type)
1705  {
1706  typedef typename std::iterator_traits<_InputIterator>::
1707  iterator_category _IterCategory;
1708  _M_assign_aux(__first, __last, _IterCategory());
1709  }
1710 
1711  // called by the second assign_dispatch above
1712  template<typename _InputIterator>
1713  void
1714  _M_assign_aux(_InputIterator __first, _InputIterator __last,
1716 
1717  // called by the second assign_dispatch above
1718  template<typename _ForwardIterator>
1719  void
1720  _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1722  {
1723  const size_type __len = std::distance(__first, __last);
1724  if (__len > size())
1725  {
1726  _ForwardIterator __mid = __first;
1727  std::advance(__mid, size());
1728  std::copy(__first, __mid, begin());
1729  insert(end(), __mid, __last);
1730  }
1731  else
1732  _M_erase_at_end(std::copy(__first, __last, begin()));
1733  }
1734 
1735  // Called by assign(n,t), and the range assign when it turns out
1736  // to be the same thing.
1737  void
1738  _M_fill_assign(size_type __n, const value_type& __val)
1739  {
1740  if (__n > size())
1741  {
1742  std::fill(begin(), end(), __val);
1743  insert(end(), __n - size(), __val);
1744  }
1745  else
1746  {
1747  _M_erase_at_end(begin() + difference_type(__n));
1748  std::fill(begin(), end(), __val);
1749  }
1750  }
1751 
1752  //@{
1753  /// Helper functions for push_* and pop_*.
1754 #if __cplusplus < 201103L
1755  void _M_push_back_aux(const value_type&);
1756 
1757  void _M_push_front_aux(const value_type&);
1758 #else
1759  template<typename... _Args>
1760  void _M_push_back_aux(_Args&&... __args);
1761 
1762  template<typename... _Args>
1763  void _M_push_front_aux(_Args&&... __args);
1764 #endif
1765 
1766  void _M_pop_back_aux();
1767 
1768  void _M_pop_front_aux();
1769  //@}
1770 
1771  // Internal insert functions follow. The *_aux functions do the actual
1772  // insertion work when all shortcuts fail.
1773 
1774  // called by the range insert to implement [23.1.1]/9
1775 
1776  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1777  // 438. Ambiguity in the "do the right thing" clause
1778  template<typename _Integer>
1779  void
1780  _M_insert_dispatch(iterator __pos,
1781  _Integer __n, _Integer __x, __true_type)
1782  { _M_fill_insert(__pos, __n, __x); }
1783 
1784  // called by the range insert to implement [23.1.1]/9
1785  template<typename _InputIterator>
1786  void
1787  _M_insert_dispatch(iterator __pos,
1788  _InputIterator __first, _InputIterator __last,
1789  __false_type)
1790  {
1791  typedef typename std::iterator_traits<_InputIterator>::
1792  iterator_category _IterCategory;
1793  _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1794  }
1795 
1796  // called by the second insert_dispatch above
1797  template<typename _InputIterator>
1798  void
1799  _M_range_insert_aux(iterator __pos, _InputIterator __first,
1800  _InputIterator __last, std::input_iterator_tag);
1801 
1802  // called by the second insert_dispatch above
1803  template<typename _ForwardIterator>
1804  void
1805  _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1806  _ForwardIterator __last, std::forward_iterator_tag);
1807 
1808  // Called by insert(p,n,x), and the range insert when it turns out to be
1809  // the same thing. Can use fill functions in optimal situations,
1810  // otherwise passes off to insert_aux(p,n,x).
1811  void
1812  _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1813 
1814  // called by insert(p,x)
1815 #if __cplusplus < 201103L
1816  iterator
1817  _M_insert_aux(iterator __pos, const value_type& __x);
1818 #else
1819  template<typename... _Args>
1820  iterator
1821  _M_insert_aux(iterator __pos, _Args&&... __args);
1822 #endif
1823 
1824  // called by insert(p,n,x) via fill_insert
1825  void
1826  _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1827 
1828  // called by range_insert_aux for forward iterators
1829  template<typename _ForwardIterator>
1830  void
1831  _M_insert_aux(iterator __pos,
1832  _ForwardIterator __first, _ForwardIterator __last,
1833  size_type __n);
1834 
1835 
1836  // Internal erase functions follow.
1837 
1838  void
1839  _M_destroy_data_aux(iterator __first, iterator __last);
1840 
1841  // Called by ~deque().
1842  // NB: Doesn't deallocate the nodes.
1843  template<typename _Alloc1>
1844  void
1845  _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1846  { _M_destroy_data_aux(__first, __last); }
1847 
1848  void
1849  _M_destroy_data(iterator __first, iterator __last,
1850  const std::allocator<_Tp>&)
1851  {
1852  if (!__has_trivial_destructor(value_type))
1853  _M_destroy_data_aux(__first, __last);
1854  }
1855 
1856  // Called by erase(q1, q2).
1857  void
1858  _M_erase_at_begin(iterator __pos)
1859  {
1860  _M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1861  _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1862  this->_M_impl._M_start = __pos;
1863  }
1864 
1865  // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1866  // _M_fill_assign, operator=.
1867  void
1868  _M_erase_at_end(iterator __pos)
1869  {
1870  _M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1871  _M_destroy_nodes(__pos._M_node + 1,
1872  this->_M_impl._M_finish._M_node + 1);
1873  this->_M_impl._M_finish = __pos;
1874  }
1875 
1876 #if __cplusplus >= 201103L
1877  // Called by resize(sz).
1878  void
1879  _M_default_append(size_type __n);
1880 
1881  bool
1882  _M_shrink_to_fit();
1883 #endif
1884 
1885  //@{
1886  /// Memory-handling helpers for the previous internal insert functions.
1887  iterator
1889  {
1890  const size_type __vacancies = this->_M_impl._M_start._M_cur
1891  - this->_M_impl._M_start._M_first;
1892  if (__n > __vacancies)
1893  _M_new_elements_at_front(__n - __vacancies);
1894  return this->_M_impl._M_start - difference_type(__n);
1895  }
1896 
1897  iterator
1899  {
1900  const size_type __vacancies = (this->_M_impl._M_finish._M_last
1901  - this->_M_impl._M_finish._M_cur) - 1;
1902  if (__n > __vacancies)
1903  _M_new_elements_at_back(__n - __vacancies);
1904  return this->_M_impl._M_finish + difference_type(__n);
1905  }
1906 
1907  void
1908  _M_new_elements_at_front(size_type __new_elements);
1909 
1910  void
1911  _M_new_elements_at_back(size_type __new_elements);
1912  //@}
1913 
1914 
1915  //@{
1916  /**
1917  * @brief Memory-handling helpers for the major %map.
1918  *
1919  * Makes sure the _M_map has space for new nodes. Does not
1920  * actually add the nodes. Can invalidate _M_map pointers.
1921  * (And consequently, %deque iterators.)
1922  */
1923  void
1924  _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1925  {
1926  if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1927  - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1928  _M_reallocate_map(__nodes_to_add, false);
1929  }
1930 
1931  void
1932  _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1933  {
1934  if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1935  - this->_M_impl._M_map))
1936  _M_reallocate_map(__nodes_to_add, true);
1937  }
1938 
1939  void
1940  _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1941  //@}
1942  };
1943 
1944 
1945  /**
1946  * @brief Deque equality comparison.
1947  * @param __x A %deque.
1948  * @param __y A %deque of the same type as @a __x.
1949  * @return True iff the size and elements of the deques are equal.
1950  *
1951  * This is an equivalence relation. It is linear in the size of the
1952  * deques. Deques are considered equivalent if their sizes are equal,
1953  * and if corresponding elements compare equal.
1954  */
1955  template<typename _Tp, typename _Alloc>
1956  inline bool
1957  operator==(const deque<_Tp, _Alloc>& __x,
1958  const deque<_Tp, _Alloc>& __y)
1959  { return __x.size() == __y.size()
1960  && std::equal(__x.begin(), __x.end(), __y.begin()); }
1961 
1962  /**
1963  * @brief Deque ordering relation.
1964  * @param __x A %deque.
1965  * @param __y A %deque of the same type as @a __x.
1966  * @return True iff @a x is lexicographically less than @a __y.
1967  *
1968  * This is a total ordering relation. It is linear in the size of the
1969  * deques. The elements must be comparable with @c <.
1970  *
1971  * See std::lexicographical_compare() for how the determination is made.
1972  */
1973  template<typename _Tp, typename _Alloc>
1974  inline bool
1975  operator<(const deque<_Tp, _Alloc>& __x,
1976  const deque<_Tp, _Alloc>& __y)
1977  { return std::lexicographical_compare(__x.begin(), __x.end(),
1978  __y.begin(), __y.end()); }
1979 
1980  /// Based on operator==
1981  template<typename _Tp, typename _Alloc>
1982  inline bool
1983  operator!=(const deque<_Tp, _Alloc>& __x,
1984  const deque<_Tp, _Alloc>& __y)
1985  { return !(__x == __y); }
1986 
1987  /// Based on operator<
1988  template<typename _Tp, typename _Alloc>
1989  inline bool
1991  const deque<_Tp, _Alloc>& __y)
1992  { return __y < __x; }
1993 
1994  /// Based on operator<
1995  template<typename _Tp, typename _Alloc>
1996  inline bool
1997  operator<=(const deque<_Tp, _Alloc>& __x,
1998  const deque<_Tp, _Alloc>& __y)
1999  { return !(__y < __x); }
2000 
2001  /// Based on operator<
2002  template<typename _Tp, typename _Alloc>
2003  inline bool
2005  const deque<_Tp, _Alloc>& __y)
2006  { return !(__x < __y); }
2007 
2008  /// See std::deque::swap().
2009  template<typename _Tp, typename _Alloc>
2010  inline void
2012  { __x.swap(__y); }
2013 
2014 #undef _GLIBCXX_DEQUE_BUF_SIZE
2015 
2016 _GLIBCXX_END_NAMESPACE_CONTAINER
2017 } // namespace std
2018 
2019 #endif /* _STL_DEQUE_H */
void assign(size_type __n, const value_type &__val)
Assigns a given value to a deque.
Definition: stl_deque.h:978
void _M_range_initialize(_InputIterator __first, _InputIterator __last, std::input_iterator_tag)
Fills the deque with whatever is in [first,last).
iterator insert(iterator __position, value_type &&__x)
Inserts given rvalue into deque before specified iterator.
Definition: stl_deque.h:1492
const_iterator end() const noexcept
Definition: stl_deque.h:1063
iterator _M_reserve_elements_at_back(size_type __n)
Memory-handling helpers for the previous internal insert functions.
Definition: stl_deque.h:1898
reference operator[](size_type __n)
Subscript access to the data contained in the deque.
Definition: stl_deque.h:1244
deque(initializer_list< value_type > __l, const allocator_type &__a=allocator_type())
Builds a deque from an initializer list.
Definition: stl_deque.h:869
bool equal(_II1 __first1, _II1 __last1, _II2 __first2)
Tests a range for element-wise equality.
size_type max_size() const noexcept
Definition: stl_deque.h:1147
const_reverse_iterator rbegin() const noexcept
Definition: stl_deque.h:1081
void pop_front()
Removes first element.
Definition: stl_deque.h:1421
const_reverse_iterator crbegin() const noexcept
Definition: stl_deque.h:1126
const_iterator cend() const noexcept
Definition: stl_deque.h:1117
const_reference operator[](size_type __n) const
Subscript access to the data contained in the deque.
Definition: stl_deque.h:1259
const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:216
iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
void _M_new_elements_at_back(size_type __new_elements)
Memory-handling helpers for the previous internal insert functions.
iterator insert(iterator __position, const value_type &__x)
Inserts given value into deque before specified iterator.
void _M_push_front_aux(_Args &&...__args)
Helper functions for push_* and pop_*.
void _M_reserve_map_at_back(size_type __nodes_to_add=1)
Memory-handling helpers for the major map.
Definition: stl_deque.h:1924
#define _GLIBCXX_DEQUE_BUF_SIZE
This function controls the size of memory nodes.
Definition: stl_deque.h:85
deque(const deque &__x)
Deque copy constructor.
Definition: stl_deque.h:841
void _M_reserve_map_at_front(size_type __nodes_to_add=1)
Memory-handling helpers for the major map.
Definition: stl_deque.h:1932
const_iterator cbegin() const noexcept
Definition: stl_deque.h:1108
void push_back(const value_type &__x)
Add data to the end of the deque.
Definition: stl_deque.h:1390
size_type size() const noexcept
Definition: stl_deque.h:1142
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:101
Random-access iterators support a superset of bidirectional iterator operations.
deque(deque &&__x)
Deque move constructor.
Definition: stl_deque.h:855
deque & operator=(initializer_list< value_type > __l)
Assigns an initializer list to a deque.
Definition: stl_deque.h:960
void shrink_to_fit()
Definition: stl_deque.h:1219
bool operator>=(const basic_string< _CharT, _Traits, _Alloc > &__lhs, const basic_string< _CharT, _Traits, _Alloc > &__rhs)
Test if string doesn't precede string.
iterator _M_reserve_elements_at_front(size_type __n)
Memory-handling helpers for the previous internal insert functions.
Definition: stl_deque.h:1888
void insert(iterator __position, size_type __n, const value_type &__x)
Inserts a number of copies of given data into the deque.
Definition: stl_deque.h:1519
const_reference front() const
Definition: stl_deque.h:1321
reference back()
Definition: stl_deque.h:1329
iterator end() noexcept
Definition: stl_deque.h:1054
void advance(_InputIterator &__i, _Distance __n)
A generalization of pointer arithmetic.
ISO C++ entities toplevel namespace is std.
const_reverse_iterator crend() const noexcept
Definition: stl_deque.h:1135
void _M_pop_back_aux()
Helper functions for push_* and pop_*.
void _M_new_elements_at_front(size_type __new_elements)
Memory-handling helpers for the previous internal insert functions.
void _M_push_back_aux(_Args &&...__args)
Helper functions for push_* and pop_*.
bool lexicographical_compare(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2, _Compare __comp)
Performs dictionary comparison on ranges.
deque(const allocator_type &__a)
Creates a deque with no elements.
Definition: stl_deque.h:790
const_reference at(size_type __n) const
Provides access to the data contained in the deque.
Definition: stl_deque.h:1302
void pop_back()
Removes last element.
Definition: stl_deque.h:1442
void resize(size_type __new_size)
Resizes the deque to the specified number of elements.
Definition: stl_deque.h:1161
deque(size_type __n)
Creates a deque with default constructed elements.
Definition: stl_deque.h:802
void push_front(const value_type &__x)
Add data to the front of the deque.
Definition: stl_deque.h:1359
void _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front)
Memory-handling helpers for the major map.
iterator erase(iterator __position)
Remove element at given position.
Forward iterators support a superset of input iterator operations.
_BI2 move_backward(_BI1 __first, _BI1 __last, _BI2 __result)
Moves the range [first,last) into result.
Definition: stl_algobase.h:655
void resize(size_type __new_size, const value_type &__x)
Resizes the deque to the specified number of elements.
Definition: stl_deque.h:1183
deque()
Default constructor creates no elements.
Definition: stl_deque.h:782
void assign(initializer_list< value_type > __l)
Assigns an initializer list to a deque.
Definition: stl_deque.h:1022
Marking input iterators.
reverse_iterator rbegin() noexcept
Definition: stl_deque.h:1072
basic_string< _CharT, _Traits, _Alloc > operator+(const basic_string< _CharT, _Traits, _Alloc > &__lhs, const basic_string< _CharT, _Traits, _Alloc > &__rhs)
Concatenate two strings.
void _M_initialize_map(size_t)
Layout storage.
Definition: stl_deque.h:582
reference front()
Definition: stl_deque.h:1313
void swap(_Tp &, _Tp &) noexcept(__and_< is_nothrow_move_constructible< _Tp >, is_nothrow_move_assignable< _Tp >>::value)
Swaps two values.
Definition: move.h:166
const_reference back() const
Definition: stl_deque.h:1341
void _M_pop_front_aux()
Helper functions for push_* and pop_*.
void _M_range_check(size_type __n) const
Safety check used only from at().
Definition: stl_deque.h:1265
void _M_set_node(_Map_pointer __new_node)
Definition: stl_deque.h:234
reference at(size_type __n)
Provides access to the data contained in the deque.
Definition: stl_deque.h:1284
void insert(iterator __p, initializer_list< value_type > __l)
Inserts an initializer list into the deque.
Definition: stl_deque.h:1505
deque(size_type __n, const value_type &__value, const allocator_type &__a=allocator_type())
Creates a deque with copies of an exemplar element.
Definition: stl_deque.h:814
void swap(deque &__x)
Swaps data with another deque.
Definition: stl_deque.h:1596
reverse_iterator rend() noexcept
Definition: stl_deque.h:1090
void assign(_InputIterator __first, _InputIterator __last)
Assigns a range to a deque.
Definition: stl_deque.h:997
void insert(iterator __position, _InputIterator __first, _InputIterator __last)
Inserts a range into the deque.
Definition: stl_deque.h:1536
A standard container using fixed-size memory allocation and constant-time manipulation of elements at...
Definition: stl_deque.h:730
The standard allocator, as per [20.4].
Definition: allocator.h:92
const_reverse_iterator rend() const noexcept
Definition: stl_deque.h:1099
bool empty() const noexcept
Definition: stl_deque.h:1228
~deque() noexcept
Definition: stl_deque.h:917
iterator emplace(iterator __position, _Args &&...__args)
Inserts an object in deque before specified iterator.
A deque::iterator.
Definition: stl_deque.h:106
void _M_fill_initialize(const value_type &__value)
Fills the deque with copies of value.
void clear() noexcept
Definition: stl_deque.h:1616
deque(_InputIterator __first, _InputIterator __last, const allocator_type &__a=allocator_type())
Builds a deque from a range.
Definition: stl_deque.h:896
iterator begin() noexcept
Definition: stl_deque.h:1037
const_iterator begin() const noexcept
Definition: stl_deque.h:1045
bool operator>(const basic_string< _CharT, _Traits, _Alloc > &__lhs, const basic_string< _CharT, _Traits, _Alloc > &__rhs)
Test if string follows string.
allocator_type get_allocator() const noexcept
Get a copy of the memory allocation object.
Definition: stl_deque.h:1028
deque & operator=(const deque &__x)
Deque assignment operator.
deque & operator=(deque &&__x)
Deque move assignment operator.
Definition: stl_deque.h:939