libstdc++
bits/hashtable.h
Go to the documentation of this file.
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 
37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 
41  template<typename _Tp, typename _Hash>
42  using __cache_default
43  = __not_<__and_<// Do not cache for fast hasher.
44  __is_fast_hash<_Hash>,
45  // Mandatory to have erase not throwing.
46  __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47 
48  /**
49  * Primary class template _Hashtable.
50  *
51  * @ingroup hashtable-detail
52  *
53  * @tparam _Value CopyConstructible type.
54  *
55  * @tparam _Key CopyConstructible type.
56  *
57  * @tparam _Alloc An allocator type
58  * ([lib.allocator.requirements]) whose _Alloc::value_type is
59  * _Value. As a conforming extension, we allow for
60  * _Alloc::value_type != _Value.
61  *
62  * @tparam _ExtractKey Function object that takes an object of type
63  * _Value and returns a value of type _Key.
64  *
65  * @tparam _Equal Function object that takes two objects of type k
66  * and returns a bool-like value that is true if the two objects
67  * are considered equal.
68  *
69  * @tparam _H1 The hash function. A unary function object with
70  * argument type _Key and result type size_t. Return values should
71  * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72  *
73  * @tparam _H2 The range-hashing function (in the terminology of
74  * Tavori and Dreizin). A binary function object whose argument
75  * types and result type are all size_t. Given arguments r and N,
76  * the return value is in the range [0, N).
77  *
78  * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
79  * binary function whose argument types are _Key and size_t and
80  * whose result type is size_t. Given arguments k and N, the
81  * return value is in the range [0, N). Default: hash(k, N) =
82  * h2(h1(k), N). If _Hash is anything other than the default, _H1
83  * and _H2 are ignored.
84  *
85  * @tparam _RehashPolicy Policy class with three members, all of
86  * which govern the bucket count. _M_next_bkt(n) returns a bucket
87  * count no smaller than n. _M_bkt_for_elements(n) returns a
88  * bucket count appropriate for an element count of n.
89  * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90  * current bucket count is n_bkt and the current element count is
91  * n_elt, we need to increase the bucket count. If so, returns
92  * make_pair(true, n), where n is the new bucket count. If not,
93  * returns make_pair(false, <anything>)
94  *
95  * @tparam _Traits Compile-time class with three boolean
96  * std::integral_constant members: __cache_hash_code, __constant_iterators,
97  * __unique_keys.
98  *
99  * Each _Hashtable data structure has:
100  *
101  * - _Bucket[] _M_buckets
102  * - _Hash_node_base _M_before_begin
103  * - size_type _M_bucket_count
104  * - size_type _M_element_count
105  *
106  * with _Bucket being _Hash_node* and _Hash_node containing:
107  *
108  * - _Hash_node* _M_next
109  * - Tp _M_value
110  * - size_t _M_hash_code if cache_hash_code is true
111  *
112  * In terms of Standard containers the hashtable is like the aggregation of:
113  *
114  * - std::forward_list<_Node> containing the elements
115  * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116  *
117  * The non-empty buckets contain the node before the first node in the
118  * bucket. This design makes it possible to implement something like a
119  * std::forward_list::insert_after on container insertion and
120  * std::forward_list::erase_after on container erase
121  * calls. _M_before_begin is equivalent to
122  * std::forward_list::before_begin. Empty buckets contain
123  * nullptr. Note that one of the non-empty buckets contains
124  * &_M_before_begin which is not a dereferenceable node so the
125  * node pointer in a bucket shall never be dereferenced, only its
126  * next node can be.
127  *
128  * Walking through a bucket's nodes requires a check on the hash code to
129  * see if each node is still in the bucket. Such a design assumes a
130  * quite efficient hash functor and is one of the reasons it is
131  * highly advisable to set __cache_hash_code to true.
132  *
133  * The container iterators are simply built from nodes. This way
134  * incrementing the iterator is perfectly efficient independent of
135  * how many empty buckets there are in the container.
136  *
137  * On insert we compute the element's hash code and use it to find the
138  * bucket index. If the element must be inserted in an empty bucket
139  * we add it at the beginning of the singly linked list and make the
140  * bucket point to _M_before_begin. The bucket that used to point to
141  * _M_before_begin, if any, is updated to point to its new before
142  * begin node.
143  *
144  * On erase, the simple iterator design requires using the hash
145  * functor to get the index of the bucket to update. For this
146  * reason, when __cache_hash_code is set to false the hash functor must
147  * not throw and this is enforced by a static assertion.
148  *
149  * Functionality is implemented by decomposition into base classes,
150  * where the derived _Hashtable class is used in _Map_base,
151  * _Insert, _Rehash_base, and _Equality base classes to access the
152  * "this" pointer. _Hashtable_base is used in the base classes as a
153  * non-recursive, fully-completed-type so that detailed nested type
154  * information, such as iterator type and node type, can be
155  * used. This is similar to the "Curiously Recurring Template
156  * Pattern" (CRTP) technique, but uses a reconstructed, not
157  * explicitly passed, template pattern.
158  *
159  * Base class templates are:
160  * - __detail::_Hashtable_base
161  * - __detail::_Map_base
162  * - __detail::_Insert
163  * - __detail::_Rehash_base
164  * - __detail::_Equality
165  */
166  template<typename _Key, typename _Value, typename _Alloc,
167  typename _ExtractKey, typename _Equal,
168  typename _H1, typename _H2, typename _Hash,
169  typename _RehashPolicy, typename _Traits>
171  : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172  _H1, _H2, _Hash, _Traits>,
173  public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175  public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177  public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179  public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182  typename __alloctr_rebind<_Alloc,
183  __detail::_Hash_node<_Value,
184  _Traits::__hash_cached::value> >::__type>
185  {
186  using __traits_type = _Traits;
187  using __hash_cached = typename __traits_type::__hash_cached;
189  using __node_alloc_type =
190  typename __alloctr_rebind<_Alloc, __node_type>::__type;
191 
193 
194  using __value_alloc_traits =
196  using __node_alloc_traits =
198  using __node_base = typename __hashtable_alloc::__node_base;
199  using __bucket_type = typename __hashtable_alloc::__bucket_type;
200 
201  public:
202  typedef _Key key_type;
203  typedef _Value value_type;
204  typedef _Alloc allocator_type;
205  typedef _Equal key_equal;
206 
207  // mapped_type, if present, comes from _Map_base.
208  // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
209  typedef typename __value_alloc_traits::pointer pointer;
210  typedef typename __value_alloc_traits::const_pointer const_pointer;
211  typedef value_type& reference;
212  typedef const value_type& const_reference;
213 
214  private:
215  using __rehash_type = _RehashPolicy;
216  using __rehash_state = typename __rehash_type::_State;
217 
218  using __constant_iterators = typename __traits_type::__constant_iterators;
219  using __unique_keys = typename __traits_type::__unique_keys;
220 
221  using __key_extract = typename std::conditional<
222  __constant_iterators::value,
223  __detail::_Identity,
224  __detail::_Select1st>::type;
225 
226  using __hashtable_base = __detail::
227  _Hashtable_base<_Key, _Value, _ExtractKey,
228  _Equal, _H1, _H2, _Hash, _Traits>;
229 
230  using __hash_code_base = typename __hashtable_base::__hash_code_base;
231  using __hash_code = typename __hashtable_base::__hash_code;
232  using __ireturn_type = typename __hashtable_base::__ireturn_type;
233 
234  using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
235  _Equal, _H1, _H2, _Hash,
236  _RehashPolicy, _Traits>;
237 
238  using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
239  _ExtractKey, _Equal,
240  _H1, _H2, _Hash,
241  _RehashPolicy, _Traits>;
242 
243  using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
244  _Equal, _H1, _H2, _Hash,
245  _RehashPolicy, _Traits>;
246 
247  using __reuse_or_alloc_node_type =
248  __detail::_ReuseOrAllocNode<__node_alloc_type>;
249 
250  // Metaprogramming for picking apart hash caching.
251  template<typename _Cond>
252  using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
253 
254  template<typename _Cond>
255  using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
256 
257  // Compile-time diagnostics.
258 
259  // _Hash_code_base has everything protected, so use this derived type to
260  // access it.
261  struct __hash_code_base_access : __hash_code_base
262  { using __hash_code_base::_M_bucket_index; };
263 
264  // Getting a bucket index from a node shall not throw because it is used
265  // in methods (erase, swap...) that shall not throw.
266  static_assert(noexcept(declval<const __hash_code_base_access&>()
267  ._M_bucket_index((const __node_type*)nullptr,
268  (std::size_t)0)),
269  "Cache the hash code or qualify your functors involved"
270  " in hash code and bucket index computation with noexcept");
271 
272  // Following two static assertions are necessary to guarantee
273  // that local_iterator will be default constructible.
274 
275  // When hash codes are cached local iterator inherits from H2 functor
276  // which must then be default constructible.
277  static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
278  "Functor used to map hash code to bucket index"
279  " must be default constructible");
280 
281  template<typename _Keya, typename _Valuea, typename _Alloca,
282  typename _ExtractKeya, typename _Equala,
283  typename _H1a, typename _H2a, typename _Hasha,
284  typename _RehashPolicya, typename _Traitsa,
285  bool _Unique_keysa>
286  friend struct __detail::_Map_base;
287 
288  template<typename _Keya, typename _Valuea, typename _Alloca,
289  typename _ExtractKeya, typename _Equala,
290  typename _H1a, typename _H2a, typename _Hasha,
291  typename _RehashPolicya, typename _Traitsa>
292  friend struct __detail::_Insert_base;
293 
294  template<typename _Keya, typename _Valuea, typename _Alloca,
295  typename _ExtractKeya, typename _Equala,
296  typename _H1a, typename _H2a, typename _Hasha,
297  typename _RehashPolicya, typename _Traitsa,
298  bool _Constant_iteratorsa, bool _Unique_keysa>
299  friend struct __detail::_Insert;
300 
301  public:
302  using size_type = typename __hashtable_base::size_type;
303  using difference_type = typename __hashtable_base::difference_type;
304 
305  using iterator = typename __hashtable_base::iterator;
306  using const_iterator = typename __hashtable_base::const_iterator;
307 
308  using local_iterator = typename __hashtable_base::local_iterator;
309  using const_local_iterator = typename __hashtable_base::
310  const_local_iterator;
311 
312  private:
313  __bucket_type* _M_buckets = &_M_single_bucket;
314  size_type _M_bucket_count = 1;
315  __node_base _M_before_begin;
316  size_type _M_element_count = 0;
317  _RehashPolicy _M_rehash_policy;
318 
319  // A single bucket used when only need for 1 bucket. Especially
320  // interesting in move semantic to leave hashtable with only 1 buckets
321  // which is not allocated so that we can have those operations noexcept
322  // qualified.
323  // Note that we can't leave hashtable with 0 bucket without adding
324  // numerous checks in the code to avoid 0 modulus.
325  __bucket_type _M_single_bucket = nullptr;
326 
327  bool
328  _M_uses_single_bucket(__bucket_type* __bkts) const
329  { return __builtin_expect(__bkts == &_M_single_bucket, false); }
330 
331  bool
332  _M_uses_single_bucket() const
333  { return _M_uses_single_bucket(_M_buckets); }
334 
336  _M_base_alloc() { return *this; }
337 
338  __bucket_type*
339  _M_allocate_buckets(size_type __n)
340  {
341  if (__builtin_expect(__n == 1, false))
342  {
343  _M_single_bucket = nullptr;
344  return &_M_single_bucket;
345  }
346 
347  return __hashtable_alloc::_M_allocate_buckets(__n);
348  }
349 
350  void
351  _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
352  {
353  if (_M_uses_single_bucket(__bkts))
354  return;
355 
356  __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
357  }
358 
359  void
360  _M_deallocate_buckets()
361  { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
362 
363  // Gets bucket begin, deals with the fact that non-empty buckets contain
364  // their before begin node.
365  __node_type*
366  _M_bucket_begin(size_type __bkt) const;
367 
368  __node_type*
369  _M_begin() const
370  { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
371 
372  template<typename _NodeGenerator>
373  void
374  _M_assign(const _Hashtable&, const _NodeGenerator&);
375 
376  void
377  _M_move_assign(_Hashtable&&, std::true_type);
378 
379  void
380  _M_move_assign(_Hashtable&&, std::false_type);
381 
382  void
383  _M_reset() noexcept;
384 
385  _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
386  const _Equal& __eq, const _ExtractKey& __exk,
387  const allocator_type& __a)
388  : __hashtable_base(__exk, __h1, __h2, __h, __eq),
389  __hashtable_alloc(__node_alloc_type(__a))
390  { }
391 
392  public:
393  // Constructor, destructor, assignment, swap
394  _Hashtable() = default;
395  _Hashtable(size_type __bucket_hint,
396  const _H1&, const _H2&, const _Hash&,
397  const _Equal&, const _ExtractKey&,
398  const allocator_type&);
399 
400  template<typename _InputIterator>
401  _Hashtable(_InputIterator __first, _InputIterator __last,
402  size_type __bucket_hint,
403  const _H1&, const _H2&, const _Hash&,
404  const _Equal&, const _ExtractKey&,
405  const allocator_type&);
406 
407  _Hashtable(const _Hashtable&);
408 
409  _Hashtable(_Hashtable&&) noexcept;
410 
411  _Hashtable(const _Hashtable&, const allocator_type&);
412 
413  _Hashtable(_Hashtable&&, const allocator_type&);
414 
415  // Use delegating constructors.
416  explicit
417  _Hashtable(const allocator_type& __a)
418  : __hashtable_alloc(__node_alloc_type(__a))
419  { }
420 
421  explicit
422  _Hashtable(size_type __n,
423  const _H1& __hf = _H1(),
424  const key_equal& __eql = key_equal(),
425  const allocator_type& __a = allocator_type())
426  : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
427  __key_extract(), __a)
428  { }
429 
430  template<typename _InputIterator>
431  _Hashtable(_InputIterator __f, _InputIterator __l,
432  size_type __n = 0,
433  const _H1& __hf = _H1(),
434  const key_equal& __eql = key_equal(),
435  const allocator_type& __a = allocator_type())
436  : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
437  __key_extract(), __a)
438  { }
439 
441  size_type __n = 0,
442  const _H1& __hf = _H1(),
443  const key_equal& __eql = key_equal(),
444  const allocator_type& __a = allocator_type())
445  : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
446  __key_extract(), __a)
447  { }
448 
449  _Hashtable&
450  operator=(const _Hashtable& __ht);
451 
452  _Hashtable&
453  operator=(_Hashtable&& __ht)
454  noexcept(__node_alloc_traits::_S_nothrow_move())
455  {
456  constexpr bool __move_storage =
457  __node_alloc_traits::_S_propagate_on_move_assign()
458  || __node_alloc_traits::_S_always_equal();
459  _M_move_assign(std::move(__ht),
461  return *this;
462  }
463 
464  _Hashtable&
465  operator=(initializer_list<value_type> __l)
466  {
467  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
468  _M_before_begin._M_nxt = nullptr;
469  clear();
470  this->_M_insert_range(__l.begin(), __l.end(), __roan);
471  return *this;
472  }
473 
474  ~_Hashtable() noexcept;
475 
476  void
477  swap(_Hashtable&)
478  noexcept(__node_alloc_traits::_S_nothrow_swap());
479 
480  // Basic container operations
481  iterator
482  begin() noexcept
483  { return iterator(_M_begin()); }
484 
485  const_iterator
486  begin() const noexcept
487  { return const_iterator(_M_begin()); }
488 
489  iterator
490  end() noexcept
491  { return iterator(nullptr); }
492 
493  const_iterator
494  end() const noexcept
495  { return const_iterator(nullptr); }
496 
497  const_iterator
498  cbegin() const noexcept
499  { return const_iterator(_M_begin()); }
500 
501  const_iterator
502  cend() const noexcept
503  { return const_iterator(nullptr); }
504 
505  size_type
506  size() const noexcept
507  { return _M_element_count; }
508 
509  bool
510  empty() const noexcept
511  { return size() == 0; }
512 
513  allocator_type
514  get_allocator() const noexcept
515  { return allocator_type(this->_M_node_allocator()); }
516 
517  size_type
518  max_size() const noexcept
519  { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
520 
521  // Observers
522  key_equal
523  key_eq() const
524  { return this->_M_eq(); }
525 
526  // hash_function, if present, comes from _Hash_code_base.
527 
528  // Bucket operations
529  size_type
530  bucket_count() const noexcept
531  { return _M_bucket_count; }
532 
533  size_type
534  max_bucket_count() const noexcept
535  { return max_size(); }
536 
537  size_type
538  bucket_size(size_type __n) const
539  { return std::distance(begin(__n), end(__n)); }
540 
541  size_type
542  bucket(const key_type& __k) const
543  { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
544 
545  local_iterator
546  begin(size_type __n)
547  {
548  return local_iterator(*this, _M_bucket_begin(__n),
549  __n, _M_bucket_count);
550  }
551 
552  local_iterator
553  end(size_type __n)
554  { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
555 
556  const_local_iterator
557  begin(size_type __n) const
558  {
559  return const_local_iterator(*this, _M_bucket_begin(__n),
560  __n, _M_bucket_count);
561  }
562 
563  const_local_iterator
564  end(size_type __n) const
565  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
566 
567  // DR 691.
568  const_local_iterator
569  cbegin(size_type __n) const
570  {
571  return const_local_iterator(*this, _M_bucket_begin(__n),
572  __n, _M_bucket_count);
573  }
574 
575  const_local_iterator
576  cend(size_type __n) const
577  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
578 
579  float
580  load_factor() const noexcept
581  {
582  return static_cast<float>(size()) / static_cast<float>(bucket_count());
583  }
584 
585  // max_load_factor, if present, comes from _Rehash_base.
586 
587  // Generalization of max_load_factor. Extension, not found in
588  // TR1. Only useful if _RehashPolicy is something other than
589  // the default.
590  const _RehashPolicy&
591  __rehash_policy() const
592  { return _M_rehash_policy; }
593 
594  void
595  __rehash_policy(const _RehashPolicy&);
596 
597  // Lookup.
598  iterator
599  find(const key_type& __k);
600 
601  const_iterator
602  find(const key_type& __k) const;
603 
604  size_type
605  count(const key_type& __k) const;
606 
608  equal_range(const key_type& __k);
609 
611  equal_range(const key_type& __k) const;
612 
613  protected:
614  // Bucket index computation helpers.
615  size_type
616  _M_bucket_index(__node_type* __n) const noexcept
617  { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
618 
619  size_type
620  _M_bucket_index(const key_type& __k, __hash_code __c) const
621  { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
622 
623  // Find and insert helper functions and types
624  // Find the node before the one matching the criteria.
625  __node_base*
626  _M_find_before_node(size_type, const key_type&, __hash_code) const;
627 
628  __node_type*
629  _M_find_node(size_type __bkt, const key_type& __key,
630  __hash_code __c) const
631  {
632  __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
633  if (__before_n)
634  return static_cast<__node_type*>(__before_n->_M_nxt);
635  return nullptr;
636  }
637 
638  // Insert a node at the beginning of a bucket.
639  void
640  _M_insert_bucket_begin(size_type, __node_type*);
641 
642  // Remove the bucket first node
643  void
644  _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
645  size_type __next_bkt);
646 
647  // Get the node before __n in the bucket __bkt
648  __node_base*
649  _M_get_previous_node(size_type __bkt, __node_base* __n);
650 
651  // Insert node with hash code __code, in bucket bkt if no rehash (assumes
652  // no element with its key already present). Take ownership of the node,
653  // deallocate it on exception.
654  iterator
655  _M_insert_unique_node(size_type __bkt, __hash_code __code,
656  __node_type* __n);
657 
658  // Insert node with hash code __code. Take ownership of the node,
659  // deallocate it on exception.
660  iterator
661  _M_insert_multi_node(__node_type* __hint,
662  __hash_code __code, __node_type* __n);
663 
664  template<typename... _Args>
666  _M_emplace(std::true_type, _Args&&... __args);
667 
668  template<typename... _Args>
669  iterator
670  _M_emplace(std::false_type __uk, _Args&&... __args)
671  { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
672 
673  // Emplace with hint, useless when keys are unique.
674  template<typename... _Args>
675  iterator
676  _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
677  { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
678 
679  template<typename... _Args>
680  iterator
681  _M_emplace(const_iterator, std::false_type, _Args&&... __args);
682 
683  template<typename _Arg, typename _NodeGenerator>
685  _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
686 
687  template<typename _Arg, typename _NodeGenerator>
688  iterator
689  _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
690  std::false_type __uk)
691  {
692  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
693  __uk);
694  }
695 
696  // Insert with hint, not used when keys are unique.
697  template<typename _Arg, typename _NodeGenerator>
698  iterator
699  _M_insert(const_iterator, _Arg&& __arg,
700  const _NodeGenerator& __node_gen, std::true_type __uk)
701  {
702  return
703  _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
704  }
705 
706  // Insert with hint when keys are not unique.
707  template<typename _Arg, typename _NodeGenerator>
708  iterator
709  _M_insert(const_iterator, _Arg&&,
710  const _NodeGenerator&, std::false_type);
711 
712  size_type
713  _M_erase(std::true_type, const key_type&);
714 
715  size_type
716  _M_erase(std::false_type, const key_type&);
717 
718  iterator
719  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
720 
721  public:
722  // Emplace
723  template<typename... _Args>
724  __ireturn_type
725  emplace(_Args&&... __args)
726  { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
727 
728  template<typename... _Args>
729  iterator
730  emplace_hint(const_iterator __hint, _Args&&... __args)
731  {
732  return _M_emplace(__hint, __unique_keys(),
733  std::forward<_Args>(__args)...);
734  }
735 
736  // Insert member functions via inheritance.
737 
738  // Erase
739  iterator
740  erase(const_iterator);
741 
742  // LWG 2059.
743  iterator
744  erase(iterator __it)
745  { return erase(const_iterator(__it)); }
746 
747  size_type
748  erase(const key_type& __k)
749  { return _M_erase(__unique_keys(), __k); }
750 
751  iterator
752  erase(const_iterator, const_iterator);
753 
754  void
755  clear() noexcept;
756 
757  // Set number of buckets to be appropriate for container of n element.
758  void rehash(size_type __n);
759 
760  // DR 1189.
761  // reserve, if present, comes from _Rehash_base.
762 
763  private:
764  // Helper rehash method used when keys are unique.
765  void _M_rehash_aux(size_type __n, std::true_type);
766 
767  // Helper rehash method used when keys can be non-unique.
768  void _M_rehash_aux(size_type __n, std::false_type);
769 
770  // Unconditionally change size of bucket array to n, restore
771  // hash policy state to __state on exception.
772  void _M_rehash(size_type __n, const __rehash_state& __state);
773  };
774 
775 
776  // Definitions of class template _Hashtable's out-of-line member functions.
777  template<typename _Key, typename _Value,
778  typename _Alloc, typename _ExtractKey, typename _Equal,
779  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
780  typename _Traits>
781  auto
782  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
783  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
784  _M_bucket_begin(size_type __bkt) const
785  -> __node_type*
786  {
787  __node_base* __n = _M_buckets[__bkt];
788  return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
789  }
790 
791  template<typename _Key, typename _Value,
792  typename _Alloc, typename _ExtractKey, typename _Equal,
793  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
794  typename _Traits>
795  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
796  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
797  _Hashtable(size_type __bucket_hint,
798  const _H1& __h1, const _H2& __h2, const _Hash& __h,
799  const _Equal& __eq, const _ExtractKey& __exk,
800  const allocator_type& __a)
801  : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
802  {
803  auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
804  if (__bkt > _M_bucket_count)
805  {
806  _M_buckets = _M_allocate_buckets(__bkt);
807  _M_bucket_count = __bkt;
808  }
809  }
810 
811  template<typename _Key, typename _Value,
812  typename _Alloc, typename _ExtractKey, typename _Equal,
813  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
814  typename _Traits>
815  template<typename _InputIterator>
816  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
817  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
818  _Hashtable(_InputIterator __f, _InputIterator __l,
819  size_type __bucket_hint,
820  const _H1& __h1, const _H2& __h2, const _Hash& __h,
821  const _Equal& __eq, const _ExtractKey& __exk,
822  const allocator_type& __a)
823  : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
824  {
825  auto __nb_elems = __detail::__distance_fw(__f, __l);
826  auto __bkt_count =
827  _M_rehash_policy._M_next_bkt(
828  std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
829  __bucket_hint));
830 
831  if (__bkt_count > _M_bucket_count)
832  {
833  _M_buckets = _M_allocate_buckets(__bkt_count);
834  _M_bucket_count = __bkt_count;
835  }
836 
837  __try
838  {
839  for (; __f != __l; ++__f)
840  this->insert(*__f);
841  }
842  __catch(...)
843  {
844  clear();
845  _M_deallocate_buckets();
846  __throw_exception_again;
847  }
848  }
849 
850  template<typename _Key, typename _Value,
851  typename _Alloc, typename _ExtractKey, typename _Equal,
852  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
853  typename _Traits>
854  auto
855  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
856  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
857  operator=(const _Hashtable& __ht)
858  -> _Hashtable&
859  {
860  if (&__ht == this)
861  return *this;
862 
863  if (__node_alloc_traits::_S_propagate_on_copy_assign())
864  {
865  auto& __this_alloc = this->_M_node_allocator();
866  auto& __that_alloc = __ht._M_node_allocator();
867  if (!__node_alloc_traits::_S_always_equal()
868  && __this_alloc != __that_alloc)
869  {
870  // Replacement allocator cannot free existing storage.
871  this->_M_deallocate_nodes(_M_begin());
872  _M_before_begin._M_nxt = nullptr;
873  _M_deallocate_buckets();
874  _M_buckets = nullptr;
875  std::__alloc_on_copy(__this_alloc, __that_alloc);
876  __hashtable_base::operator=(__ht);
877  _M_bucket_count = __ht._M_bucket_count;
878  _M_element_count = __ht._M_element_count;
879  _M_rehash_policy = __ht._M_rehash_policy;
880  __try
881  {
882  _M_assign(__ht,
883  [this](const __node_type* __n)
884  { return this->_M_allocate_node(__n->_M_v()); });
885  }
886  __catch(...)
887  {
888  // _M_assign took care of deallocating all memory. Now we
889  // must make sure this instance remains in a usable state.
890  _M_reset();
891  __throw_exception_again;
892  }
893  return *this;
894  }
895  std::__alloc_on_copy(__this_alloc, __that_alloc);
896  }
897 
898  // Reuse allocated buckets and nodes.
899  __bucket_type* __former_buckets = nullptr;
900  std::size_t __former_bucket_count = _M_bucket_count;
901  const __rehash_state& __former_state = _M_rehash_policy._M_state();
902 
903  if (_M_bucket_count != __ht._M_bucket_count)
904  {
905  __former_buckets = _M_buckets;
906  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
907  _M_bucket_count = __ht._M_bucket_count;
908  }
909  else
910  __builtin_memset(_M_buckets, 0,
911  _M_bucket_count * sizeof(__bucket_type));
912 
913  __try
914  {
915  __hashtable_base::operator=(__ht);
916  _M_element_count = __ht._M_element_count;
917  _M_rehash_policy = __ht._M_rehash_policy;
918  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
919  _M_before_begin._M_nxt = nullptr;
920  _M_assign(__ht,
921  [&__roan](const __node_type* __n)
922  { return __roan(__n->_M_v()); });
923  if (__former_buckets)
924  _M_deallocate_buckets(__former_buckets, __former_bucket_count);
925  }
926  __catch(...)
927  {
928  if (__former_buckets)
929  {
930  // Restore previous buckets.
931  _M_deallocate_buckets();
932  _M_rehash_policy._M_reset(__former_state);
933  _M_buckets = __former_buckets;
934  _M_bucket_count = __former_bucket_count;
935  }
936  __builtin_memset(_M_buckets, 0,
937  _M_bucket_count * sizeof(__bucket_type));
938  __throw_exception_again;
939  }
940  return *this;
941  }
942 
943  template<typename _Key, typename _Value,
944  typename _Alloc, typename _ExtractKey, typename _Equal,
945  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
946  typename _Traits>
947  template<typename _NodeGenerator>
948  void
949  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
950  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
951  _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
952  {
953  __bucket_type* __buckets = nullptr;
954  if (!_M_buckets)
955  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
956 
957  __try
958  {
959  if (!__ht._M_before_begin._M_nxt)
960  return;
961 
962  // First deal with the special first node pointed to by
963  // _M_before_begin.
964  __node_type* __ht_n = __ht._M_begin();
965  __node_type* __this_n = __node_gen(__ht_n);
966  this->_M_copy_code(__this_n, __ht_n);
967  _M_before_begin._M_nxt = __this_n;
968  _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
969 
970  // Then deal with other nodes.
971  __node_base* __prev_n = __this_n;
972  for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
973  {
974  __this_n = __node_gen(__ht_n);
975  __prev_n->_M_nxt = __this_n;
976  this->_M_copy_code(__this_n, __ht_n);
977  size_type __bkt = _M_bucket_index(__this_n);
978  if (!_M_buckets[__bkt])
979  _M_buckets[__bkt] = __prev_n;
980  __prev_n = __this_n;
981  }
982  }
983  __catch(...)
984  {
985  clear();
986  if (__buckets)
987  _M_deallocate_buckets();
988  __throw_exception_again;
989  }
990  }
991 
992  template<typename _Key, typename _Value,
993  typename _Alloc, typename _ExtractKey, typename _Equal,
994  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
995  typename _Traits>
996  void
997  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
998  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
999  _M_reset() noexcept
1000  {
1001  _M_rehash_policy._M_reset();
1002  _M_bucket_count = 1;
1003  _M_single_bucket = nullptr;
1004  _M_buckets = &_M_single_bucket;
1005  _M_before_begin._M_nxt = nullptr;
1006  _M_element_count = 0;
1007  }
1008 
1009  template<typename _Key, typename _Value,
1010  typename _Alloc, typename _ExtractKey, typename _Equal,
1011  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1012  typename _Traits>
1013  void
1014  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1015  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1016  _M_move_assign(_Hashtable&& __ht, std::true_type)
1017  {
1018  this->_M_deallocate_nodes(_M_begin());
1019  _M_deallocate_buckets();
1020  __hashtable_base::operator=(std::move(__ht));
1021  _M_rehash_policy = __ht._M_rehash_policy;
1022  if (!__ht._M_uses_single_bucket())
1023  _M_buckets = __ht._M_buckets;
1024  else
1025  {
1026  _M_buckets = &_M_single_bucket;
1027  _M_single_bucket = __ht._M_single_bucket;
1028  }
1029  _M_bucket_count = __ht._M_bucket_count;
1030  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1031  _M_element_count = __ht._M_element_count;
1032  std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1033 
1034  // Fix buckets containing the _M_before_begin pointers that can't be
1035  // moved.
1036  if (_M_begin())
1037  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1038  __ht._M_reset();
1039  }
1040 
1041  template<typename _Key, typename _Value,
1042  typename _Alloc, typename _ExtractKey, typename _Equal,
1043  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1044  typename _Traits>
1045  void
1046  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1047  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1048  _M_move_assign(_Hashtable&& __ht, std::false_type)
1049  {
1050  if (__ht._M_node_allocator() == this->_M_node_allocator())
1051  _M_move_assign(std::move(__ht), std::true_type());
1052  else
1053  {
1054  // Can't move memory, move elements then.
1055  __bucket_type* __former_buckets = nullptr;
1056  size_type __former_bucket_count = _M_bucket_count;
1057  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1058 
1059  if (_M_bucket_count != __ht._M_bucket_count)
1060  {
1061  __former_buckets = _M_buckets;
1062  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1063  _M_bucket_count = __ht._M_bucket_count;
1064  }
1065  else
1066  __builtin_memset(_M_buckets, 0,
1067  _M_bucket_count * sizeof(__bucket_type));
1068 
1069  __try
1070  {
1071  __hashtable_base::operator=(std::move(__ht));
1072  _M_element_count = __ht._M_element_count;
1073  _M_rehash_policy = __ht._M_rehash_policy;
1074  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1075  _M_before_begin._M_nxt = nullptr;
1076  _M_assign(__ht,
1077  [&__roan](__node_type* __n)
1078  { return __roan(std::move_if_noexcept(__n->_M_v())); });
1079  __ht.clear();
1080  }
1081  __catch(...)
1082  {
1083  if (__former_buckets)
1084  {
1085  _M_deallocate_buckets();
1086  _M_rehash_policy._M_reset(__former_state);
1087  _M_buckets = __former_buckets;
1088  _M_bucket_count = __former_bucket_count;
1089  }
1090  __builtin_memset(_M_buckets, 0,
1091  _M_bucket_count * sizeof(__bucket_type));
1092  __throw_exception_again;
1093  }
1094  }
1095  }
1096 
1097  template<typename _Key, typename _Value,
1098  typename _Alloc, typename _ExtractKey, typename _Equal,
1099  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1100  typename _Traits>
1101  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1102  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1103  _Hashtable(const _Hashtable& __ht)
1104  : __hashtable_base(__ht),
1105  __map_base(__ht),
1106  __rehash_base(__ht),
1108  __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1109  _M_buckets(nullptr),
1110  _M_bucket_count(__ht._M_bucket_count),
1111  _M_element_count(__ht._M_element_count),
1112  _M_rehash_policy(__ht._M_rehash_policy)
1113  {
1114  _M_assign(__ht,
1115  [this](const __node_type* __n)
1116  { return this->_M_allocate_node(__n->_M_v()); });
1117  }
1118 
1119  template<typename _Key, typename _Value,
1120  typename _Alloc, typename _ExtractKey, typename _Equal,
1121  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1122  typename _Traits>
1123  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1124  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1125  _Hashtable(_Hashtable&& __ht) noexcept
1126  : __hashtable_base(__ht),
1127  __map_base(__ht),
1128  __rehash_base(__ht),
1129  __hashtable_alloc(std::move(__ht._M_base_alloc())),
1130  _M_buckets(__ht._M_buckets),
1131  _M_bucket_count(__ht._M_bucket_count),
1132  _M_before_begin(__ht._M_before_begin._M_nxt),
1133  _M_element_count(__ht._M_element_count),
1134  _M_rehash_policy(__ht._M_rehash_policy)
1135  {
1136  // Update, if necessary, buckets if __ht is using its single bucket.
1137  if (__ht._M_uses_single_bucket())
1138  {
1139  _M_buckets = &_M_single_bucket;
1140  _M_single_bucket = __ht._M_single_bucket;
1141  }
1142 
1143  // Update, if necessary, bucket pointing to before begin that hasn't
1144  // moved.
1145  if (_M_begin())
1146  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1147 
1148  __ht._M_reset();
1149  }
1150 
1151  template<typename _Key, typename _Value,
1152  typename _Alloc, typename _ExtractKey, typename _Equal,
1153  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1154  typename _Traits>
1155  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1156  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1157  _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1158  : __hashtable_base(__ht),
1159  __map_base(__ht),
1160  __rehash_base(__ht),
1161  __hashtable_alloc(__node_alloc_type(__a)),
1162  _M_buckets(),
1163  _M_bucket_count(__ht._M_bucket_count),
1164  _M_element_count(__ht._M_element_count),
1165  _M_rehash_policy(__ht._M_rehash_policy)
1166  {
1167  _M_assign(__ht,
1168  [this](const __node_type* __n)
1169  { return this->_M_allocate_node(__n->_M_v()); });
1170  }
1171 
1172  template<typename _Key, typename _Value,
1173  typename _Alloc, typename _ExtractKey, typename _Equal,
1174  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1175  typename _Traits>
1176  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1177  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1178  _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1179  : __hashtable_base(__ht),
1180  __map_base(__ht),
1181  __rehash_base(__ht),
1182  __hashtable_alloc(__node_alloc_type(__a)),
1183  _M_buckets(nullptr),
1184  _M_bucket_count(__ht._M_bucket_count),
1185  _M_element_count(__ht._M_element_count),
1186  _M_rehash_policy(__ht._M_rehash_policy)
1187  {
1188  if (__ht._M_node_allocator() == this->_M_node_allocator())
1189  {
1190  if (__ht._M_uses_single_bucket())
1191  {
1192  _M_buckets = &_M_single_bucket;
1193  _M_single_bucket = __ht._M_single_bucket;
1194  }
1195  else
1196  _M_buckets = __ht._M_buckets;
1197 
1198  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1199  // Update, if necessary, bucket pointing to before begin that hasn't
1200  // moved.
1201  if (_M_begin())
1202  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1203  __ht._M_reset();
1204  }
1205  else
1206  {
1207  _M_assign(__ht,
1208  [this](__node_type* __n)
1209  {
1210  return this->_M_allocate_node(
1211  std::move_if_noexcept(__n->_M_v()));
1212  });
1213  __ht.clear();
1214  }
1215  }
1216 
1217  template<typename _Key, typename _Value,
1218  typename _Alloc, typename _ExtractKey, typename _Equal,
1219  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1220  typename _Traits>
1221  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1222  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1223  ~_Hashtable() noexcept
1224  {
1225  clear();
1226  _M_deallocate_buckets();
1227  }
1228 
1229  template<typename _Key, typename _Value,
1230  typename _Alloc, typename _ExtractKey, typename _Equal,
1231  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1232  typename _Traits>
1233  void
1234  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1235  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1236  swap(_Hashtable& __x)
1237  noexcept(__node_alloc_traits::_S_nothrow_swap())
1238  {
1239  // The only base class with member variables is hash_code_base.
1240  // We define _Hash_code_base::_M_swap because different
1241  // specializations have different members.
1242  this->_M_swap(__x);
1243 
1244  std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1245  std::swap(_M_rehash_policy, __x._M_rehash_policy);
1246 
1247  // Deal properly with potentially moved instances.
1248  if (this->_M_uses_single_bucket())
1249  {
1250  if (!__x._M_uses_single_bucket())
1251  {
1252  _M_buckets = __x._M_buckets;
1253  __x._M_buckets = &__x._M_single_bucket;
1254  }
1255  }
1256  else if (__x._M_uses_single_bucket())
1257  {
1258  __x._M_buckets = _M_buckets;
1259  _M_buckets = &_M_single_bucket;
1260  }
1261  else
1262  std::swap(_M_buckets, __x._M_buckets);
1263 
1264  std::swap(_M_bucket_count, __x._M_bucket_count);
1265  std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1266  std::swap(_M_element_count, __x._M_element_count);
1267  std::swap(_M_single_bucket, __x._M_single_bucket);
1268 
1269  // Fix buckets containing the _M_before_begin pointers that can't be
1270  // swapped.
1271  if (_M_begin())
1272  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1273 
1274  if (__x._M_begin())
1275  __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1276  = &__x._M_before_begin;
1277  }
1278 
1279  template<typename _Key, typename _Value,
1280  typename _Alloc, typename _ExtractKey, typename _Equal,
1281  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1282  typename _Traits>
1283  void
1284  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1285  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1286  __rehash_policy(const _RehashPolicy& __pol)
1287  {
1288  auto __do_rehash =
1289  __pol._M_need_rehash(_M_bucket_count, _M_element_count, 0);
1290  if (__do_rehash.first)
1291  _M_rehash(__do_rehash.second, _M_rehash_policy._M_state());
1292  _M_rehash_policy = __pol;
1293  }
1294 
1295  template<typename _Key, typename _Value,
1296  typename _Alloc, typename _ExtractKey, typename _Equal,
1297  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1298  typename _Traits>
1299  auto
1300  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1301  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1302  find(const key_type& __k)
1303  -> iterator
1304  {
1305  __hash_code __code = this->_M_hash_code(__k);
1306  std::size_t __n = _M_bucket_index(__k, __code);
1307  __node_type* __p = _M_find_node(__n, __k, __code);
1308  return __p ? iterator(__p) : end();
1309  }
1310 
1311  template<typename _Key, typename _Value,
1312  typename _Alloc, typename _ExtractKey, typename _Equal,
1313  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1314  typename _Traits>
1315  auto
1316  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1317  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1318  find(const key_type& __k) const
1319  -> const_iterator
1320  {
1321  __hash_code __code = this->_M_hash_code(__k);
1322  std::size_t __n = _M_bucket_index(__k, __code);
1323  __node_type* __p = _M_find_node(__n, __k, __code);
1324  return __p ? const_iterator(__p) : end();
1325  }
1326 
1327  template<typename _Key, typename _Value,
1328  typename _Alloc, typename _ExtractKey, typename _Equal,
1329  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1330  typename _Traits>
1331  auto
1332  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1333  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1334  count(const key_type& __k) const
1335  -> size_type
1336  {
1337  __hash_code __code = this->_M_hash_code(__k);
1338  std::size_t __n = _M_bucket_index(__k, __code);
1339  __node_type* __p = _M_bucket_begin(__n);
1340  if (!__p)
1341  return 0;
1342 
1343  std::size_t __result = 0;
1344  for (;; __p = __p->_M_next())
1345  {
1346  if (this->_M_equals(__k, __code, __p))
1347  ++__result;
1348  else if (__result)
1349  // All equivalent values are next to each other, if we
1350  // found a non-equivalent value after an equivalent one it
1351  // means that we won't find any new equivalent value.
1352  break;
1353  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1354  break;
1355  }
1356  return __result;
1357  }
1358 
1359  template<typename _Key, typename _Value,
1360  typename _Alloc, typename _ExtractKey, typename _Equal,
1361  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1362  typename _Traits>
1363  auto
1364  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1365  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1366  equal_range(const key_type& __k)
1368  {
1369  __hash_code __code = this->_M_hash_code(__k);
1370  std::size_t __n = _M_bucket_index(__k, __code);
1371  __node_type* __p = _M_find_node(__n, __k, __code);
1372 
1373  if (__p)
1374  {
1375  __node_type* __p1 = __p->_M_next();
1376  while (__p1 && _M_bucket_index(__p1) == __n
1377  && this->_M_equals(__k, __code, __p1))
1378  __p1 = __p1->_M_next();
1379 
1380  return std::make_pair(iterator(__p), iterator(__p1));
1381  }
1382  else
1383  return std::make_pair(end(), end());
1384  }
1385 
1386  template<typename _Key, typename _Value,
1387  typename _Alloc, typename _ExtractKey, typename _Equal,
1388  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1389  typename _Traits>
1390  auto
1391  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1392  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1393  equal_range(const key_type& __k) const
1395  {
1396  __hash_code __code = this->_M_hash_code(__k);
1397  std::size_t __n = _M_bucket_index(__k, __code);
1398  __node_type* __p = _M_find_node(__n, __k, __code);
1399 
1400  if (__p)
1401  {
1402  __node_type* __p1 = __p->_M_next();
1403  while (__p1 && _M_bucket_index(__p1) == __n
1404  && this->_M_equals(__k, __code, __p1))
1405  __p1 = __p1->_M_next();
1406 
1407  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1408  }
1409  else
1410  return std::make_pair(end(), end());
1411  }
1412 
1413  // Find the node whose key compares equal to k in the bucket n.
1414  // Return nullptr if no node is found.
1415  template<typename _Key, typename _Value,
1416  typename _Alloc, typename _ExtractKey, typename _Equal,
1417  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1418  typename _Traits>
1419  auto
1420  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1421  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1422  _M_find_before_node(size_type __n, const key_type& __k,
1423  __hash_code __code) const
1424  -> __node_base*
1425  {
1426  __node_base* __prev_p = _M_buckets[__n];
1427  if (!__prev_p)
1428  return nullptr;
1429 
1430  for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1431  __p = __p->_M_next())
1432  {
1433  if (this->_M_equals(__k, __code, __p))
1434  return __prev_p;
1435 
1436  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1437  break;
1438  __prev_p = __p;
1439  }
1440  return nullptr;
1441  }
1442 
1443  template<typename _Key, typename _Value,
1444  typename _Alloc, typename _ExtractKey, typename _Equal,
1445  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1446  typename _Traits>
1447  void
1448  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1449  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1450  _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1451  {
1452  if (_M_buckets[__bkt])
1453  {
1454  // Bucket is not empty, we just need to insert the new node
1455  // after the bucket before begin.
1456  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1457  _M_buckets[__bkt]->_M_nxt = __node;
1458  }
1459  else
1460  {
1461  // The bucket is empty, the new node is inserted at the
1462  // beginning of the singly-linked list and the bucket will
1463  // contain _M_before_begin pointer.
1464  __node->_M_nxt = _M_before_begin._M_nxt;
1465  _M_before_begin._M_nxt = __node;
1466  if (__node->_M_nxt)
1467  // We must update former begin bucket that is pointing to
1468  // _M_before_begin.
1469  _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1470  _M_buckets[__bkt] = &_M_before_begin;
1471  }
1472  }
1473 
1474  template<typename _Key, typename _Value,
1475  typename _Alloc, typename _ExtractKey, typename _Equal,
1476  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1477  typename _Traits>
1478  void
1479  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1480  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1481  _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1482  size_type __next_bkt)
1483  {
1484  if (!__next || __next_bkt != __bkt)
1485  {
1486  // Bucket is now empty
1487  // First update next bucket if any
1488  if (__next)
1489  _M_buckets[__next_bkt] = _M_buckets[__bkt];
1490 
1491  // Second update before begin node if necessary
1492  if (&_M_before_begin == _M_buckets[__bkt])
1493  _M_before_begin._M_nxt = __next;
1494  _M_buckets[__bkt] = nullptr;
1495  }
1496  }
1497 
1498  template<typename _Key, typename _Value,
1499  typename _Alloc, typename _ExtractKey, typename _Equal,
1500  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1501  typename _Traits>
1502  auto
1503  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1504  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1505  _M_get_previous_node(size_type __bkt, __node_base* __n)
1506  -> __node_base*
1507  {
1508  __node_base* __prev_n = _M_buckets[__bkt];
1509  while (__prev_n->_M_nxt != __n)
1510  __prev_n = __prev_n->_M_nxt;
1511  return __prev_n;
1512  }
1513 
1514  template<typename _Key, typename _Value,
1515  typename _Alloc, typename _ExtractKey, typename _Equal,
1516  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1517  typename _Traits>
1518  template<typename... _Args>
1519  auto
1520  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1521  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1522  _M_emplace(std::true_type, _Args&&... __args)
1524  {
1525  // First build the node to get access to the hash code
1526  __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1527  const key_type& __k = this->_M_extract()(__node->_M_v());
1528  __hash_code __code;
1529  __try
1530  {
1531  __code = this->_M_hash_code(__k);
1532  }
1533  __catch(...)
1534  {
1535  this->_M_deallocate_node(__node);
1536  __throw_exception_again;
1537  }
1538 
1539  size_type __bkt = _M_bucket_index(__k, __code);
1540  if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1541  {
1542  // There is already an equivalent node, no insertion
1543  this->_M_deallocate_node(__node);
1544  return std::make_pair(iterator(__p), false);
1545  }
1546 
1547  // Insert the node
1548  return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1549  true);
1550  }
1551 
1552  template<typename _Key, typename _Value,
1553  typename _Alloc, typename _ExtractKey, typename _Equal,
1554  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1555  typename _Traits>
1556  template<typename... _Args>
1557  auto
1558  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1559  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1560  _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1561  -> iterator
1562  {
1563  // First build the node to get its hash code.
1564  __node_type* __node =
1565  this->_M_allocate_node(std::forward<_Args>(__args)...);
1566 
1567  __hash_code __code;
1568  __try
1569  {
1570  __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1571  }
1572  __catch(...)
1573  {
1574  this->_M_deallocate_node(__node);
1575  __throw_exception_again;
1576  }
1577 
1578  return _M_insert_multi_node(__hint._M_cur, __code, __node);
1579  }
1580 
1581  template<typename _Key, typename _Value,
1582  typename _Alloc, typename _ExtractKey, typename _Equal,
1583  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1584  typename _Traits>
1585  auto
1586  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1587  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1588  _M_insert_unique_node(size_type __bkt, __hash_code __code,
1589  __node_type* __node)
1590  -> iterator
1591  {
1592  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1593  std::pair<bool, std::size_t> __do_rehash
1594  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1595 
1596  __try
1597  {
1598  if (__do_rehash.first)
1599  {
1600  _M_rehash(__do_rehash.second, __saved_state);
1601  __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1602  }
1603 
1604  this->_M_store_code(__node, __code);
1605 
1606  // Always insert at the beginning of the bucket.
1607  _M_insert_bucket_begin(__bkt, __node);
1608  ++_M_element_count;
1609  return iterator(__node);
1610  }
1611  __catch(...)
1612  {
1613  this->_M_deallocate_node(__node);
1614  __throw_exception_again;
1615  }
1616  }
1617 
1618  // Insert node, in bucket bkt if no rehash (assumes no element with its key
1619  // already present). Take ownership of the node, deallocate it on exception.
1620  template<typename _Key, typename _Value,
1621  typename _Alloc, typename _ExtractKey, typename _Equal,
1622  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1623  typename _Traits>
1624  auto
1625  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1626  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1627  _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1628  __node_type* __node)
1629  -> iterator
1630  {
1631  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1632  std::pair<bool, std::size_t> __do_rehash
1633  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1634 
1635  __try
1636  {
1637  if (__do_rehash.first)
1638  _M_rehash(__do_rehash.second, __saved_state);
1639 
1640  this->_M_store_code(__node, __code);
1641  const key_type& __k = this->_M_extract()(__node->_M_v());
1642  size_type __bkt = _M_bucket_index(__k, __code);
1643 
1644  // Find the node before an equivalent one or use hint if it exists and
1645  // if it is equivalent.
1646  __node_base* __prev
1647  = __builtin_expect(__hint != nullptr, false)
1648  && this->_M_equals(__k, __code, __hint)
1649  ? __hint
1650  : _M_find_before_node(__bkt, __k, __code);
1651  if (__prev)
1652  {
1653  // Insert after the node before the equivalent one.
1654  __node->_M_nxt = __prev->_M_nxt;
1655  __prev->_M_nxt = __node;
1656  if (__builtin_expect(__prev == __hint, false))
1657  // hint might be the last bucket node, in this case we need to
1658  // update next bucket.
1659  if (__node->_M_nxt
1660  && !this->_M_equals(__k, __code, __node->_M_next()))
1661  {
1662  size_type __next_bkt = _M_bucket_index(__node->_M_next());
1663  if (__next_bkt != __bkt)
1664  _M_buckets[__next_bkt] = __node;
1665  }
1666  }
1667  else
1668  // The inserted node has no equivalent in the
1669  // hashtable. We must insert the new node at the
1670  // beginning of the bucket to preserve equivalent
1671  // elements' relative positions.
1672  _M_insert_bucket_begin(__bkt, __node);
1673  ++_M_element_count;
1674  return iterator(__node);
1675  }
1676  __catch(...)
1677  {
1678  this->_M_deallocate_node(__node);
1679  __throw_exception_again;
1680  }
1681  }
1682 
1683  // Insert v if no element with its key is already present.
1684  template<typename _Key, typename _Value,
1685  typename _Alloc, typename _ExtractKey, typename _Equal,
1686  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1687  typename _Traits>
1688  template<typename _Arg, typename _NodeGenerator>
1689  auto
1690  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1691  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1692  _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1694  {
1695  const key_type& __k = this->_M_extract()(__v);
1696  __hash_code __code = this->_M_hash_code(__k);
1697  size_type __bkt = _M_bucket_index(__k, __code);
1698 
1699  __node_type* __n = _M_find_node(__bkt, __k, __code);
1700  if (__n)
1701  return std::make_pair(iterator(__n), false);
1702 
1703  __n = __node_gen(std::forward<_Arg>(__v));
1704  return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1705  }
1706 
1707  // Insert v unconditionally.
1708  template<typename _Key, typename _Value,
1709  typename _Alloc, typename _ExtractKey, typename _Equal,
1710  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1711  typename _Traits>
1712  template<typename _Arg, typename _NodeGenerator>
1713  auto
1714  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1715  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1716  _M_insert(const_iterator __hint, _Arg&& __v,
1717  const _NodeGenerator& __node_gen, std::false_type)
1718  -> iterator
1719  {
1720  // First compute the hash code so that we don't do anything if it
1721  // throws.
1722  __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1723 
1724  // Second allocate new node so that we don't rehash if it throws.
1725  __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1726 
1727  return _M_insert_multi_node(__hint._M_cur, __code, __node);
1728  }
1729 
1730  template<typename _Key, typename _Value,
1731  typename _Alloc, typename _ExtractKey, typename _Equal,
1732  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1733  typename _Traits>
1734  auto
1735  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1736  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1737  erase(const_iterator __it)
1738  -> iterator
1739  {
1740  __node_type* __n = __it._M_cur;
1741  std::size_t __bkt = _M_bucket_index(__n);
1742 
1743  // Look for previous node to unlink it from the erased one, this
1744  // is why we need buckets to contain the before begin to make
1745  // this search fast.
1746  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1747  return _M_erase(__bkt, __prev_n, __n);
1748  }
1749 
1750  template<typename _Key, typename _Value,
1751  typename _Alloc, typename _ExtractKey, typename _Equal,
1752  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1753  typename _Traits>
1754  auto
1755  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1756  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1757  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1758  -> iterator
1759  {
1760  if (__prev_n == _M_buckets[__bkt])
1761  _M_remove_bucket_begin(__bkt, __n->_M_next(),
1762  __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1763  else if (__n->_M_nxt)
1764  {
1765  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1766  if (__next_bkt != __bkt)
1767  _M_buckets[__next_bkt] = __prev_n;
1768  }
1769 
1770  __prev_n->_M_nxt = __n->_M_nxt;
1771  iterator __result(__n->_M_next());
1772  this->_M_deallocate_node(__n);
1773  --_M_element_count;
1774 
1775  return __result;
1776  }
1777 
1778  template<typename _Key, typename _Value,
1779  typename _Alloc, typename _ExtractKey, typename _Equal,
1780  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1781  typename _Traits>
1782  auto
1783  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1784  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1785  _M_erase(std::true_type, const key_type& __k)
1786  -> size_type
1787  {
1788  __hash_code __code = this->_M_hash_code(__k);
1789  std::size_t __bkt = _M_bucket_index(__k, __code);
1790 
1791  // Look for the node before the first matching node.
1792  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1793  if (!__prev_n)
1794  return 0;
1795 
1796  // We found a matching node, erase it.
1797  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1798  _M_erase(__bkt, __prev_n, __n);
1799  return 1;
1800  }
1801 
1802  template<typename _Key, typename _Value,
1803  typename _Alloc, typename _ExtractKey, typename _Equal,
1804  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1805  typename _Traits>
1806  auto
1807  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1808  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1809  _M_erase(std::false_type, const key_type& __k)
1810  -> size_type
1811  {
1812  __hash_code __code = this->_M_hash_code(__k);
1813  std::size_t __bkt = _M_bucket_index(__k, __code);
1814 
1815  // Look for the node before the first matching node.
1816  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1817  if (!__prev_n)
1818  return 0;
1819 
1820  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1821  // 526. Is it undefined if a function in the standard changes
1822  // in parameters?
1823  // We use one loop to find all matching nodes and another to deallocate
1824  // them so that the key stays valid during the first loop. It might be
1825  // invalidated indirectly when destroying nodes.
1826  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1827  __node_type* __n_last = __n;
1828  std::size_t __n_last_bkt = __bkt;
1829  do
1830  {
1831  __n_last = __n_last->_M_next();
1832  if (!__n_last)
1833  break;
1834  __n_last_bkt = _M_bucket_index(__n_last);
1835  }
1836  while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1837 
1838  // Deallocate nodes.
1839  size_type __result = 0;
1840  do
1841  {
1842  __node_type* __p = __n->_M_next();
1843  this->_M_deallocate_node(__n);
1844  __n = __p;
1845  ++__result;
1846  --_M_element_count;
1847  }
1848  while (__n != __n_last);
1849 
1850  if (__prev_n == _M_buckets[__bkt])
1851  _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1852  else if (__n_last && __n_last_bkt != __bkt)
1853  _M_buckets[__n_last_bkt] = __prev_n;
1854  __prev_n->_M_nxt = __n_last;
1855  return __result;
1856  }
1857 
1858  template<typename _Key, typename _Value,
1859  typename _Alloc, typename _ExtractKey, typename _Equal,
1860  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1861  typename _Traits>
1862  auto
1863  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1864  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1865  erase(const_iterator __first, const_iterator __last)
1866  -> iterator
1867  {
1868  __node_type* __n = __first._M_cur;
1869  __node_type* __last_n = __last._M_cur;
1870  if (__n == __last_n)
1871  return iterator(__n);
1872 
1873  std::size_t __bkt = _M_bucket_index(__n);
1874 
1875  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1876  bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1877  std::size_t __n_bkt = __bkt;
1878  for (;;)
1879  {
1880  do
1881  {
1882  __node_type* __tmp = __n;
1883  __n = __n->_M_next();
1884  this->_M_deallocate_node(__tmp);
1885  --_M_element_count;
1886  if (!__n)
1887  break;
1888  __n_bkt = _M_bucket_index(__n);
1889  }
1890  while (__n != __last_n && __n_bkt == __bkt);
1891  if (__is_bucket_begin)
1892  _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1893  if (__n == __last_n)
1894  break;
1895  __is_bucket_begin = true;
1896  __bkt = __n_bkt;
1897  }
1898 
1899  if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1900  _M_buckets[__n_bkt] = __prev_n;
1901  __prev_n->_M_nxt = __n;
1902  return iterator(__n);
1903  }
1904 
1905  template<typename _Key, typename _Value,
1906  typename _Alloc, typename _ExtractKey, typename _Equal,
1907  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1908  typename _Traits>
1909  void
1910  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1911  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1912  clear() noexcept
1913  {
1914  this->_M_deallocate_nodes(_M_begin());
1915  __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1916  _M_element_count = 0;
1917  _M_before_begin._M_nxt = nullptr;
1918  }
1919 
1920  template<typename _Key, typename _Value,
1921  typename _Alloc, typename _ExtractKey, typename _Equal,
1922  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1923  typename _Traits>
1924  void
1925  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1926  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1927  rehash(size_type __n)
1928  {
1929  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1930  std::size_t __buckets
1931  = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1932  __n);
1933  __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1934 
1935  if (__buckets != _M_bucket_count)
1936  _M_rehash(__buckets, __saved_state);
1937  else
1938  // No rehash, restore previous state to keep a consistent state.
1939  _M_rehash_policy._M_reset(__saved_state);
1940  }
1941 
1942  template<typename _Key, typename _Value,
1943  typename _Alloc, typename _ExtractKey, typename _Equal,
1944  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1945  typename _Traits>
1946  void
1947  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1948  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1949  _M_rehash(size_type __n, const __rehash_state& __state)
1950  {
1951  __try
1952  {
1953  _M_rehash_aux(__n, __unique_keys());
1954  }
1955  __catch(...)
1956  {
1957  // A failure here means that buckets allocation failed. We only
1958  // have to restore hash policy previous state.
1959  _M_rehash_policy._M_reset(__state);
1960  __throw_exception_again;
1961  }
1962  }
1963 
1964  // Rehash when there is no equivalent elements.
1965  template<typename _Key, typename _Value,
1966  typename _Alloc, typename _ExtractKey, typename _Equal,
1967  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1968  typename _Traits>
1969  void
1970  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1971  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1972  _M_rehash_aux(size_type __n, std::true_type)
1973  {
1974  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1975  __node_type* __p = _M_begin();
1976  _M_before_begin._M_nxt = nullptr;
1977  std::size_t __bbegin_bkt = 0;
1978  while (__p)
1979  {
1980  __node_type* __next = __p->_M_next();
1981  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1982  if (!__new_buckets[__bkt])
1983  {
1984  __p->_M_nxt = _M_before_begin._M_nxt;
1985  _M_before_begin._M_nxt = __p;
1986  __new_buckets[__bkt] = &_M_before_begin;
1987  if (__p->_M_nxt)
1988  __new_buckets[__bbegin_bkt] = __p;
1989  __bbegin_bkt = __bkt;
1990  }
1991  else
1992  {
1993  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1994  __new_buckets[__bkt]->_M_nxt = __p;
1995  }
1996  __p = __next;
1997  }
1998 
1999  _M_deallocate_buckets();
2000  _M_bucket_count = __n;
2001  _M_buckets = __new_buckets;
2002  }
2003 
2004  // Rehash when there can be equivalent elements, preserve their relative
2005  // order.
2006  template<typename _Key, typename _Value,
2007  typename _Alloc, typename _ExtractKey, typename _Equal,
2008  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2009  typename _Traits>
2010  void
2011  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2012  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2013  _M_rehash_aux(size_type __n, std::false_type)
2014  {
2015  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2016 
2017  __node_type* __p = _M_begin();
2018  _M_before_begin._M_nxt = nullptr;
2019  std::size_t __bbegin_bkt = 0;
2020  std::size_t __prev_bkt = 0;
2021  __node_type* __prev_p = nullptr;
2022  bool __check_bucket = false;
2023 
2024  while (__p)
2025  {
2026  __node_type* __next = __p->_M_next();
2027  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2028 
2029  if (__prev_p && __prev_bkt == __bkt)
2030  {
2031  // Previous insert was already in this bucket, we insert after
2032  // the previously inserted one to preserve equivalent elements
2033  // relative order.
2034  __p->_M_nxt = __prev_p->_M_nxt;
2035  __prev_p->_M_nxt = __p;
2036 
2037  // Inserting after a node in a bucket require to check that we
2038  // haven't change the bucket last node, in this case next
2039  // bucket containing its before begin node must be updated. We
2040  // schedule a check as soon as we move out of the sequence of
2041  // equivalent nodes to limit the number of checks.
2042  __check_bucket = true;
2043  }
2044  else
2045  {
2046  if (__check_bucket)
2047  {
2048  // Check if we shall update the next bucket because of
2049  // insertions into __prev_bkt bucket.
2050  if (__prev_p->_M_nxt)
2051  {
2052  std::size_t __next_bkt
2053  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2054  __n);
2055  if (__next_bkt != __prev_bkt)
2056  __new_buckets[__next_bkt] = __prev_p;
2057  }
2058  __check_bucket = false;
2059  }
2060 
2061  if (!__new_buckets[__bkt])
2062  {
2063  __p->_M_nxt = _M_before_begin._M_nxt;
2064  _M_before_begin._M_nxt = __p;
2065  __new_buckets[__bkt] = &_M_before_begin;
2066  if (__p->_M_nxt)
2067  __new_buckets[__bbegin_bkt] = __p;
2068  __bbegin_bkt = __bkt;
2069  }
2070  else
2071  {
2072  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2073  __new_buckets[__bkt]->_M_nxt = __p;
2074  }
2075  }
2076  __prev_p = __p;
2077  __prev_bkt = __bkt;
2078  __p = __next;
2079  }
2080 
2081  if (__check_bucket && __prev_p->_M_nxt)
2082  {
2083  std::size_t __next_bkt
2084  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2085  if (__next_bkt != __prev_bkt)
2086  __new_buckets[__next_bkt] = __prev_p;
2087  }
2088 
2089  _M_deallocate_buckets();
2090  _M_bucket_count = __n;
2091  _M_buckets = __new_buckets;
2092  }
2093 
2094 _GLIBCXX_END_NAMESPACE_VERSION
2095 } // namespace std
2096 
2097 #endif // _HASHTABLE_H
Uniform interface to all allocator types.
constexpr pair< typename __decay_and_strip< _T1 >::__type, typename __decay_and_strip< _T2 >::__type > make_pair(_T1 &&__x, _T2 &&__y)
A convenience wrapper for creating a pair from two objects.
Definition: stl_pair.h:276
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:87
iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
constexpr auto cend(const _Container &__cont) noexcept(noexcept(std::end(__cont))) -> decltype(std::end(__cont))
Return an iterator pointing to one past the last element of the const container.
Definition: range_access.h:127
initializer_list
constexpr const _Tp * begin(initializer_list< _Tp > __ils) noexcept
Return an iterator pointing to the first element of the initializer_list.
_GLIBCXX14_CONSTEXPR const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:219
Node const_iterators, used to iterate through all the hashtable.
constexpr auto cbegin(const _Container &__cont) noexcept(noexcept(std::begin(__cont))) -> decltype(std::begin(__cont))
Return an iterator pointing to the first element of the const container.
Definition: range_access.h:116
integral_constant
Definition: type_traits:69
constexpr conditional< __move_if_noexcept_cond< _Tp >::value, const _Tp &, _Tp && >::type move_if_noexcept(_Tp &__x) noexcept
Conditionally convert a value to an rvalue.
Definition: move.h:121
_T2 second
first is a copy of the first object
Definition: stl_pair.h:102
Node iterators, used to iterate through all the hashtable.
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:96
_T1 first
second_type is the second bound type
Definition: stl_pair.h:101
ISO C++ entities toplevel namespace is std.
constexpr const _Tp * end(initializer_list< _Tp > __ils) noexcept
Return an iterator pointing to one past the last element of the initializer_list. ...
Uniform interface to C++98 and C++0x allocators.