libstdc++
stl_map.h
Go to the documentation of this file.
1 // Map implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2016 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation. Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose. It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation. Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose. It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_map.h
52  * This is an internal header file, included by other library headers.
53  * Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MAP_H
57 #define _STL_MAP_H 1
58 
59 #include <bits/functexcept.h>
60 #include <bits/concept_check.h>
61 #if __cplusplus >= 201103L
62 #include <initializer_list>
63 #include <tuple>
64 #endif
65 
66 namespace std _GLIBCXX_VISIBILITY(default)
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69 
70  /**
71  * @brief A standard container made up of (key,value) pairs, which can be
72  * retrieved based on a key, in logarithmic time.
73  *
74  * @ingroup associative_containers
75  *
76  * @tparam _Key Type of key objects.
77  * @tparam _Tp Type of mapped objects.
78  * @tparam _Compare Comparison function object type, defaults to less<_Key>.
79  * @tparam _Alloc Allocator type, defaults to
80  * allocator<pair<const _Key, _Tp>.
81  *
82  * Meets the requirements of a <a href="tables.html#65">container</a>, a
83  * <a href="tables.html#66">reversible container</a>, and an
84  * <a href="tables.html#69">associative container</a> (using unique keys).
85  * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
86  * value_type is std::pair<const Key,T>.
87  *
88  * Maps support bidirectional iterators.
89  *
90  * The private tree data is declared exactly the same way for map and
91  * multimap; the distinction is made entirely in how the tree functions are
92  * called (*_unique versus *_equal, same as the standard).
93  */
94  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
95  typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
96  class map
97  {
98  public:
99  typedef _Key key_type;
100  typedef _Tp mapped_type;
102  typedef _Compare key_compare;
103  typedef _Alloc allocator_type;
104 
105  private:
106  // concept requirements
107  typedef typename _Alloc::value_type _Alloc_value_type;
108  __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
109  __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
110  _BinaryFunctionConcept)
111  __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
112 
113  public:
114  class value_compare
115  : public std::binary_function<value_type, value_type, bool>
116  {
117  friend class map<_Key, _Tp, _Compare, _Alloc>;
118  protected:
119  _Compare comp;
120 
121  value_compare(_Compare __c)
122  : comp(__c) { }
123 
124  public:
125  bool operator()(const value_type& __x, const value_type& __y) const
126  { return comp(__x.first, __y.first); }
127  };
128 
129  private:
130  /// This turns a red-black tree into a [multi]map.
132  rebind<value_type>::other _Pair_alloc_type;
133 
134  typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
135  key_compare, _Pair_alloc_type> _Rep_type;
136 
137  /// The actual tree structure.
138  _Rep_type _M_t;
139 
141 
142  public:
143  // many of these are specified differently in ISO, but the following are
144  // "functionally equivalent"
145  typedef typename _Alloc_traits::pointer pointer;
146  typedef typename _Alloc_traits::const_pointer const_pointer;
147  typedef typename _Alloc_traits::reference reference;
148  typedef typename _Alloc_traits::const_reference const_reference;
149  typedef typename _Rep_type::iterator iterator;
150  typedef typename _Rep_type::const_iterator const_iterator;
151  typedef typename _Rep_type::size_type size_type;
152  typedef typename _Rep_type::difference_type difference_type;
155 
156  // [23.3.1.1] construct/copy/destroy
157  // (get_allocator() is also listed in this section)
158 
159  /**
160  * @brief Default constructor creates no elements.
161  */
162  map()
163  _GLIBCXX_NOEXCEPT_IF(
164  is_nothrow_default_constructible<allocator_type>::value
165  && is_nothrow_default_constructible<key_compare>::value)
166  : _M_t() { }
167 
168  /**
169  * @brief Creates a %map with no elements.
170  * @param __comp A comparison object.
171  * @param __a An allocator object.
172  */
173  explicit
174  map(const _Compare& __comp,
175  const allocator_type& __a = allocator_type())
176  : _M_t(__comp, _Pair_alloc_type(__a)) { }
177 
178  /**
179  * @brief %Map copy constructor.
180  * @param __x A %map of identical element and allocator types.
181  *
182  * The newly-created %map uses a copy of the allocation object
183  * used by @a __x.
184  */
185  map(const map& __x)
186  : _M_t(__x._M_t) { }
187 
188 #if __cplusplus >= 201103L
189  /**
190  * @brief %Map move constructor.
191  * @param __x A %map of identical element and allocator types.
192  *
193  * The newly-created %map contains the exact contents of @a __x.
194  * The contents of @a __x are a valid, but unspecified %map.
195  */
196  map(map&& __x)
197  noexcept(is_nothrow_copy_constructible<_Compare>::value)
198  : _M_t(std::move(__x._M_t)) { }
199 
200  /**
201  * @brief Builds a %map from an initializer_list.
202  * @param __l An initializer_list.
203  * @param __comp A comparison object.
204  * @param __a An allocator object.
205  *
206  * Create a %map consisting of copies of the elements in the
207  * initializer_list @a __l.
208  * This is linear in N if the range is already sorted, and NlogN
209  * otherwise (where N is @a __l.size()).
210  */
212  const _Compare& __comp = _Compare(),
213  const allocator_type& __a = allocator_type())
214  : _M_t(__comp, _Pair_alloc_type(__a))
215  { _M_t._M_insert_unique(__l.begin(), __l.end()); }
216 
217  /// Allocator-extended default constructor.
218  explicit
219  map(const allocator_type& __a)
220  : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
221 
222  /// Allocator-extended copy constructor.
223  map(const map& __m, const allocator_type& __a)
224  : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
225 
226  /// Allocator-extended move constructor.
227  map(map&& __m, const allocator_type& __a)
228  noexcept(is_nothrow_copy_constructible<_Compare>::value
229  && _Alloc_traits::_S_always_equal())
230  : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
231 
232  /// Allocator-extended initialier-list constructor.
233  map(initializer_list<value_type> __l, const allocator_type& __a)
234  : _M_t(_Compare(), _Pair_alloc_type(__a))
235  { _M_t._M_insert_unique(__l.begin(), __l.end()); }
236 
237  /// Allocator-extended range constructor.
238  template<typename _InputIterator>
239  map(_InputIterator __first, _InputIterator __last,
240  const allocator_type& __a)
241  : _M_t(_Compare(), _Pair_alloc_type(__a))
242  { _M_t._M_insert_unique(__first, __last); }
243 #endif
244 
245  /**
246  * @brief Builds a %map from a range.
247  * @param __first An input iterator.
248  * @param __last An input iterator.
249  *
250  * Create a %map consisting of copies of the elements from
251  * [__first,__last). This is linear in N if the range is
252  * already sorted, and NlogN otherwise (where N is
253  * distance(__first,__last)).
254  */
255  template<typename _InputIterator>
256  map(_InputIterator __first, _InputIterator __last)
257  : _M_t()
258  { _M_t._M_insert_unique(__first, __last); }
259 
260  /**
261  * @brief Builds a %map from a range.
262  * @param __first An input iterator.
263  * @param __last An input iterator.
264  * @param __comp A comparison functor.
265  * @param __a An allocator object.
266  *
267  * Create a %map consisting of copies of the elements from
268  * [__first,__last). This is linear in N if the range is
269  * already sorted, and NlogN otherwise (where N is
270  * distance(__first,__last)).
271  */
272  template<typename _InputIterator>
273  map(_InputIterator __first, _InputIterator __last,
274  const _Compare& __comp,
275  const allocator_type& __a = allocator_type())
276  : _M_t(__comp, _Pair_alloc_type(__a))
277  { _M_t._M_insert_unique(__first, __last); }
278 
279  // FIXME There is no dtor declared, but we should have something
280  // generated by Doxygen. I don't know what tags to add to this
281  // paragraph to make that happen:
282  /**
283  * The dtor only erases the elements, and note that if the elements
284  * themselves are pointers, the pointed-to memory is not touched in any
285  * way. Managing the pointer is the user's responsibility.
286  */
287 
288  /**
289  * @brief %Map assignment operator.
290  * @param __x A %map of identical element and allocator types.
291  *
292  * All the elements of @a __x are copied, but unlike the copy
293  * constructor, the allocator object is not copied.
294  */
295  map&
296  operator=(const map& __x)
297  {
298  _M_t = __x._M_t;
299  return *this;
300  }
301 
302 #if __cplusplus >= 201103L
303  /// Move assignment operator.
304  map&
305  operator=(map&&) = default;
306 
307  /**
308  * @brief %Map list assignment operator.
309  * @param __l An initializer_list.
310  *
311  * This function fills a %map with copies of the elements in the
312  * initializer list @a __l.
313  *
314  * Note that the assignment completely changes the %map and
315  * that the resulting %map's size is the same as the number
316  * of elements assigned. Old data may be lost.
317  */
318  map&
320  {
321  _M_t._M_assign_unique(__l.begin(), __l.end());
322  return *this;
323  }
324 #endif
325 
326  /// Get a copy of the memory allocation object.
327  allocator_type
328  get_allocator() const _GLIBCXX_NOEXCEPT
329  { return allocator_type(_M_t.get_allocator()); }
330 
331  // iterators
332  /**
333  * Returns a read/write iterator that points to the first pair in the
334  * %map.
335  * Iteration is done in ascending order according to the keys.
336  */
337  iterator
338  begin() _GLIBCXX_NOEXCEPT
339  { return _M_t.begin(); }
340 
341  /**
342  * Returns a read-only (constant) iterator that points to the first pair
343  * in the %map. Iteration is done in ascending order according to the
344  * keys.
345  */
346  const_iterator
347  begin() const _GLIBCXX_NOEXCEPT
348  { return _M_t.begin(); }
349 
350  /**
351  * Returns a read/write iterator that points one past the last
352  * pair in the %map. Iteration is done in ascending order
353  * according to the keys.
354  */
355  iterator
356  end() _GLIBCXX_NOEXCEPT
357  { return _M_t.end(); }
358 
359  /**
360  * Returns a read-only (constant) iterator that points one past the last
361  * pair in the %map. Iteration is done in ascending order according to
362  * the keys.
363  */
364  const_iterator
365  end() const _GLIBCXX_NOEXCEPT
366  { return _M_t.end(); }
367 
368  /**
369  * Returns a read/write reverse iterator that points to the last pair in
370  * the %map. Iteration is done in descending order according to the
371  * keys.
372  */
373  reverse_iterator
374  rbegin() _GLIBCXX_NOEXCEPT
375  { return _M_t.rbegin(); }
376 
377  /**
378  * Returns a read-only (constant) reverse iterator that points to the
379  * last pair in the %map. Iteration is done in descending order
380  * according to the keys.
381  */
382  const_reverse_iterator
383  rbegin() const _GLIBCXX_NOEXCEPT
384  { return _M_t.rbegin(); }
385 
386  /**
387  * Returns a read/write reverse iterator that points to one before the
388  * first pair in the %map. Iteration is done in descending order
389  * according to the keys.
390  */
391  reverse_iterator
392  rend() _GLIBCXX_NOEXCEPT
393  { return _M_t.rend(); }
394 
395  /**
396  * Returns a read-only (constant) reverse iterator that points to one
397  * before the first pair in the %map. Iteration is done in descending
398  * order according to the keys.
399  */
400  const_reverse_iterator
401  rend() const _GLIBCXX_NOEXCEPT
402  { return _M_t.rend(); }
403 
404 #if __cplusplus >= 201103L
405  /**
406  * Returns a read-only (constant) iterator that points to the first pair
407  * in the %map. Iteration is done in ascending order according to the
408  * keys.
409  */
410  const_iterator
411  cbegin() const noexcept
412  { return _M_t.begin(); }
413 
414  /**
415  * Returns a read-only (constant) iterator that points one past the last
416  * pair in the %map. Iteration is done in ascending order according to
417  * the keys.
418  */
419  const_iterator
420  cend() const noexcept
421  { return _M_t.end(); }
422 
423  /**
424  * Returns a read-only (constant) reverse iterator that points to the
425  * last pair in the %map. Iteration is done in descending order
426  * according to the keys.
427  */
428  const_reverse_iterator
429  crbegin() const noexcept
430  { return _M_t.rbegin(); }
431 
432  /**
433  * Returns a read-only (constant) reverse iterator that points to one
434  * before the first pair in the %map. Iteration is done in descending
435  * order according to the keys.
436  */
437  const_reverse_iterator
438  crend() const noexcept
439  { return _M_t.rend(); }
440 #endif
441 
442  // capacity
443  /** Returns true if the %map is empty. (Thus begin() would equal
444  * end().)
445  */
446  bool
447  empty() const _GLIBCXX_NOEXCEPT
448  { return _M_t.empty(); }
449 
450  /** Returns the size of the %map. */
451  size_type
452  size() const _GLIBCXX_NOEXCEPT
453  { return _M_t.size(); }
454 
455  /** Returns the maximum size of the %map. */
456  size_type
457  max_size() const _GLIBCXX_NOEXCEPT
458  { return _M_t.max_size(); }
459 
460  // [23.3.1.2] element access
461  /**
462  * @brief Subscript ( @c [] ) access to %map data.
463  * @param __k The key for which data should be retrieved.
464  * @return A reference to the data of the (key,data) %pair.
465  *
466  * Allows for easy lookup with the subscript ( @c [] )
467  * operator. Returns data associated with the key specified in
468  * subscript. If the key does not exist, a pair with that key
469  * is created using default values, which is then returned.
470  *
471  * Lookup requires logarithmic time.
472  */
473  mapped_type&
474  operator[](const key_type& __k)
475  {
476  // concept requirements
477  __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
478 
479  iterator __i = lower_bound(__k);
480  // __i->first is greater than or equivalent to __k.
481  if (__i == end() || key_comp()(__k, (*__i).first))
482 #if __cplusplus >= 201103L
483  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
485  std::tuple<>());
486 #else
487  __i = insert(__i, value_type(__k, mapped_type()));
488 #endif
489  return (*__i).second;
490  }
491 
492 #if __cplusplus >= 201103L
493  mapped_type&
494  operator[](key_type&& __k)
495  {
496  // concept requirements
497  __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
498 
499  iterator __i = lower_bound(__k);
500  // __i->first is greater than or equivalent to __k.
501  if (__i == end() || key_comp()(__k, (*__i).first))
502  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
503  std::forward_as_tuple(std::move(__k)),
504  std::tuple<>());
505  return (*__i).second;
506  }
507 #endif
508 
509  // _GLIBCXX_RESOLVE_LIB_DEFECTS
510  // DR 464. Suggestion for new member functions in standard containers.
511  /**
512  * @brief Access to %map data.
513  * @param __k The key for which data should be retrieved.
514  * @return A reference to the data whose key is equivalent to @a __k, if
515  * such a data is present in the %map.
516  * @throw std::out_of_range If no such data is present.
517  */
518  mapped_type&
519  at(const key_type& __k)
520  {
521  iterator __i = lower_bound(__k);
522  if (__i == end() || key_comp()(__k, (*__i).first))
523  __throw_out_of_range(__N("map::at"));
524  return (*__i).second;
525  }
526 
527  const mapped_type&
528  at(const key_type& __k) const
529  {
530  const_iterator __i = lower_bound(__k);
531  if (__i == end() || key_comp()(__k, (*__i).first))
532  __throw_out_of_range(__N("map::at"));
533  return (*__i).second;
534  }
535 
536  // modifiers
537 #if __cplusplus >= 201103L
538  /**
539  * @brief Attempts to build and insert a std::pair into the %map.
540  *
541  * @param __args Arguments used to generate a new pair instance (see
542  * std::piecewise_contruct for passing arguments to each
543  * part of the pair constructor).
544  *
545  * @return A pair, of which the first element is an iterator that points
546  * to the possibly inserted pair, and the second is a bool that
547  * is true if the pair was actually inserted.
548  *
549  * This function attempts to build and insert a (key, value) %pair into
550  * the %map.
551  * A %map relies on unique keys and thus a %pair is only inserted if its
552  * first element (the key) is not already present in the %map.
553  *
554  * Insertion requires logarithmic time.
555  */
556  template<typename... _Args>
558  emplace(_Args&&... __args)
559  { return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
560 
561  /**
562  * @brief Attempts to build and insert a std::pair into the %map.
563  *
564  * @param __pos An iterator that serves as a hint as to where the pair
565  * should be inserted.
566  * @param __args Arguments used to generate a new pair instance (see
567  * std::piecewise_contruct for passing arguments to each
568  * part of the pair constructor).
569  * @return An iterator that points to the element with key of the
570  * std::pair built from @a __args (may or may not be that
571  * std::pair).
572  *
573  * This function is not concerned about whether the insertion took place,
574  * and thus does not return a boolean like the single-argument emplace()
575  * does.
576  * Note that the first parameter is only a hint and can potentially
577  * improve the performance of the insertion process. A bad hint would
578  * cause no gains in efficiency.
579  *
580  * See
581  * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
582  * for more on @a hinting.
583  *
584  * Insertion requires logarithmic time (if the hint is not taken).
585  */
586  template<typename... _Args>
587  iterator
588  emplace_hint(const_iterator __pos, _Args&&... __args)
589  {
590  return _M_t._M_emplace_hint_unique(__pos,
591  std::forward<_Args>(__args)...);
592  }
593 #endif
594 
595 #if __cplusplus > 201402L
596 #define __cpp_lib_map_try_emplace 201411
597  /**
598  * @brief Attempts to build and insert a std::pair into the %map.
599  *
600  * @param __k Key to use for finding a possibly existing pair in
601  * the map.
602  * @param __args Arguments used to generate the .second for a new pair
603  * instance.
604  *
605  * @return A pair, of which the first element is an iterator that points
606  * to the possibly inserted pair, and the second is a bool that
607  * is true if the pair was actually inserted.
608  *
609  * This function attempts to build and insert a (key, value) %pair into
610  * the %map.
611  * A %map relies on unique keys and thus a %pair is only inserted if its
612  * first element (the key) is not already present in the %map.
613  * If a %pair is not inserted, this function has no effect.
614  *
615  * Insertion requires logarithmic time.
616  */
617  template <typename... _Args>
619  try_emplace(const key_type& __k, _Args&&... __args)
620  {
621  iterator __i = lower_bound(__k);
622  if (__i == end() || key_comp()(__k, (*__i).first))
623  {
625  std::forward_as_tuple(__k),
626  std::forward_as_tuple(
627  std::forward<_Args>(__args)...));
628  return {__i, true};
629  }
630  return {__i, false};
631  }
632 
633  // move-capable overload
634  template <typename... _Args>
636  try_emplace(key_type&& __k, _Args&&... __args)
637  {
638  iterator __i = lower_bound(__k);
639  if (__i == end() || key_comp()(__k, (*__i).first))
640  {
642  std::forward_as_tuple(std::move(__k)),
643  std::forward_as_tuple(
644  std::forward<_Args>(__args)...));
645  return {__i, true};
646  }
647  return {__i, false};
648  }
649 
650  /**
651  * @brief Attempts to build and insert a std::pair into the %map.
652  *
653  * @param __hint An iterator that serves as a hint as to where the
654  * pair should be inserted.
655  * @param __k Key to use for finding a possibly existing pair in
656  * the map.
657  * @param __args Arguments used to generate the .second for a new pair
658  * instance.
659  * @return An iterator that points to the element with key of the
660  * std::pair built from @a __args (may or may not be that
661  * std::pair).
662  *
663  * This function is not concerned about whether the insertion took place,
664  * and thus does not return a boolean like the single-argument
665  * try_emplace() does. However, if insertion did not take place,
666  * this function has no effect.
667  * Note that the first parameter is only a hint and can potentially
668  * improve the performance of the insertion process. A bad hint would
669  * cause no gains in efficiency.
670  *
671  * See
672  * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
673  * for more on @a hinting.
674  *
675  * Insertion requires logarithmic time (if the hint is not taken).
676  */
677  template <typename... _Args>
678  iterator
679  try_emplace(const_iterator __hint, const key_type& __k,
680  _Args&&... __args)
681  {
682  iterator __i;
683  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
684  if (__true_hint.second)
685  __i = emplace_hint(iterator(__true_hint.second),
687  std::forward_as_tuple(__k),
688  std::forward_as_tuple(
689  std::forward<_Args>(__args)...));
690  else
691  __i = iterator(__true_hint.first);
692  return __i;
693  }
694 
695  // move-capable overload
696  template <typename... _Args>
697  iterator
698  try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
699  {
700  iterator __i;
701  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
702  if (__true_hint.second)
703  __i = emplace_hint(iterator(__true_hint.second),
705  std::forward_as_tuple(std::move(__k)),
706  std::forward_as_tuple(
707  std::forward<_Args>(__args)...));
708  else
709  __i = iterator(__true_hint.first);
710  return __i;
711  }
712 #endif
713 
714  /**
715  * @brief Attempts to insert a std::pair into the %map.
716 
717  * @param __x Pair to be inserted (see std::make_pair for easy
718  * creation of pairs).
719  *
720  * @return A pair, of which the first element is an iterator that
721  * points to the possibly inserted pair, and the second is
722  * a bool that is true if the pair was actually inserted.
723  *
724  * This function attempts to insert a (key, value) %pair into the %map.
725  * A %map relies on unique keys and thus a %pair is only inserted if its
726  * first element (the key) is not already present in the %map.
727  *
728  * Insertion requires logarithmic time.
729  */
731  insert(const value_type& __x)
732  { return _M_t._M_insert_unique(__x); }
733 
734 #if __cplusplus >= 201103L
735  template<typename _Pair, typename = typename
736  std::enable_if<std::is_constructible<value_type,
737  _Pair&&>::value>::type>
739  insert(_Pair&& __x)
740  { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
741 #endif
742 
743 #if __cplusplus >= 201103L
744  /**
745  * @brief Attempts to insert a list of std::pairs into the %map.
746  * @param __list A std::initializer_list<value_type> of pairs to be
747  * inserted.
748  *
749  * Complexity similar to that of the range constructor.
750  */
751  void
753  { insert(__list.begin(), __list.end()); }
754 #endif
755 
756  /**
757  * @brief Attempts to insert a std::pair into the %map.
758  * @param __position An iterator that serves as a hint as to where the
759  * pair should be inserted.
760  * @param __x Pair to be inserted (see std::make_pair for easy creation
761  * of pairs).
762  * @return An iterator that points to the element with key of
763  * @a __x (may or may not be the %pair passed in).
764  *
765 
766  * This function is not concerned about whether the insertion
767  * took place, and thus does not return a boolean like the
768  * single-argument insert() does. Note that the first
769  * parameter is only a hint and can potentially improve the
770  * performance of the insertion process. A bad hint would
771  * cause no gains in efficiency.
772  *
773  * See
774  * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
775  * for more on @a hinting.
776  *
777  * Insertion requires logarithmic time (if the hint is not taken).
778  */
779  iterator
780 #if __cplusplus >= 201103L
781  insert(const_iterator __position, const value_type& __x)
782 #else
783  insert(iterator __position, const value_type& __x)
784 #endif
785  { return _M_t._M_insert_unique_(__position, __x); }
786 
787 #if __cplusplus >= 201103L
788  template<typename _Pair, typename = typename
789  std::enable_if<std::is_constructible<value_type,
790  _Pair&&>::value>::type>
791  iterator
792  insert(const_iterator __position, _Pair&& __x)
793  { return _M_t._M_insert_unique_(__position,
794  std::forward<_Pair>(__x)); }
795 #endif
796 
797  /**
798  * @brief Template function that attempts to insert a range of elements.
799  * @param __first Iterator pointing to the start of the range to be
800  * inserted.
801  * @param __last Iterator pointing to the end of the range.
802  *
803  * Complexity similar to that of the range constructor.
804  */
805  template<typename _InputIterator>
806  void
807  insert(_InputIterator __first, _InputIterator __last)
808  { _M_t._M_insert_unique(__first, __last); }
809 
810 #if __cplusplus > 201402L
811 #define __cpp_lib_map_insertion 201411
812  /**
813  * @brief Attempts to insert or assign a std::pair into the %map.
814  * @param __k Key to use for finding a possibly existing pair in
815  * the map.
816  * @param __obj Argument used to generate the .second for a pair
817  * instance.
818  *
819  * @return A pair, of which the first element is an iterator that
820  * points to the possibly inserted pair, and the second is
821  * a bool that is true if the pair was actually inserted.
822  *
823  * This function attempts to insert a (key, value) %pair into the %map.
824  * A %map relies on unique keys and thus a %pair is only inserted if its
825  * first element (the key) is not already present in the %map.
826  * If the %pair was already in the %map, the .second of the %pair
827  * is assigned from __obj.
828  *
829  * Insertion requires logarithmic time.
830  */
831  template <typename _Obj>
833  insert_or_assign(const key_type& __k, _Obj&& __obj)
834  {
835  iterator __i = lower_bound(__k);
836  if (__i == end() || key_comp()(__k, (*__i).first))
837  {
839  std::forward_as_tuple(__k),
840  std::forward_as_tuple(
841  std::forward<_Obj>(__obj)));
842  return {__i, true};
843  }
844  (*__i).second = std::forward<_Obj>(__obj);
845  return {__i, false};
846  }
847 
848  // move-capable overload
849  template <typename _Obj>
851  insert_or_assign(key_type&& __k, _Obj&& __obj)
852  {
853  iterator __i = lower_bound(__k);
854  if (__i == end() || key_comp()(__k, (*__i).first))
855  {
857  std::forward_as_tuple(std::move(__k)),
858  std::forward_as_tuple(
859  std::forward<_Obj>(__obj)));
860  return {__i, true};
861  }
862  (*__i).second = std::forward<_Obj>(__obj);
863  return {__i, false};
864  }
865 
866  /**
867  * @brief Attempts to insert or assign a std::pair into the %map.
868  * @param __hint An iterator that serves as a hint as to where the
869  * pair should be inserted.
870  * @param __k Key to use for finding a possibly existing pair in
871  * the map.
872  * @param __obj Argument used to generate the .second for a pair
873  * instance.
874  *
875  * @return An iterator that points to the element with key of
876  * @a __x (may or may not be the %pair passed in).
877  *
878  * This function attempts to insert a (key, value) %pair into the %map.
879  * A %map relies on unique keys and thus a %pair is only inserted if its
880  * first element (the key) is not already present in the %map.
881  * If the %pair was already in the %map, the .second of the %pair
882  * is assigned from __obj.
883  *
884  * Insertion requires logarithmic time.
885  */
886  template <typename _Obj>
887  iterator
888  insert_or_assign(const_iterator __hint,
889  const key_type& __k, _Obj&& __obj)
890  {
891  iterator __i;
892  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
893  if (__true_hint.second)
894  {
895  return emplace_hint(iterator(__true_hint.second),
897  std::forward_as_tuple(__k),
898  std::forward_as_tuple(
899  std::forward<_Obj>(__obj)));
900  }
901  __i = iterator(__true_hint.first);
902  (*__i).second = std::forward<_Obj>(__obj);
903  return __i;
904  }
905 
906  // move-capable overload
907  template <typename _Obj>
908  iterator
909  insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
910  {
911  iterator __i;
912  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
913  if (__true_hint.second)
914  {
915  return emplace_hint(iterator(__true_hint.second),
917  std::forward_as_tuple(std::move(__k)),
918  std::forward_as_tuple(
919  std::forward<_Obj>(__obj)));
920  }
921  __i = iterator(__true_hint.first);
922  (*__i).second = std::forward<_Obj>(__obj);
923  return __i;
924  }
925 #endif
926 
927 #if __cplusplus >= 201103L
928  // _GLIBCXX_RESOLVE_LIB_DEFECTS
929  // DR 130. Associative erase should return an iterator.
930  /**
931  * @brief Erases an element from a %map.
932  * @param __position An iterator pointing to the element to be erased.
933  * @return An iterator pointing to the element immediately following
934  * @a position prior to the element being erased. If no such
935  * element exists, end() is returned.
936  *
937  * This function erases an element, pointed to by the given
938  * iterator, from a %map. Note that this function only erases
939  * the element, and that if the element is itself a pointer,
940  * the pointed-to memory is not touched in any way. Managing
941  * the pointer is the user's responsibility.
942  */
943  iterator
944  erase(const_iterator __position)
945  { return _M_t.erase(__position); }
946 
947  // LWG 2059
948  _GLIBCXX_ABI_TAG_CXX11
949  iterator
950  erase(iterator __position)
951  { return _M_t.erase(__position); }
952 #else
953  /**
954  * @brief Erases an element from a %map.
955  * @param __position An iterator pointing to the element to be erased.
956  *
957  * This function erases an element, pointed to by the given
958  * iterator, from a %map. Note that this function only erases
959  * the element, and that if the element is itself a pointer,
960  * the pointed-to memory is not touched in any way. Managing
961  * the pointer is the user's responsibility.
962  */
963  void
964  erase(iterator __position)
965  { _M_t.erase(__position); }
966 #endif
967 
968  /**
969  * @brief Erases elements according to the provided key.
970  * @param __x Key of element to be erased.
971  * @return The number of elements erased.
972  *
973  * This function erases all the elements located by the given key from
974  * a %map.
975  * Note that this function only erases the element, and that if
976  * the element is itself a pointer, the pointed-to memory is not touched
977  * in any way. Managing the pointer is the user's responsibility.
978  */
979  size_type
980  erase(const key_type& __x)
981  { return _M_t.erase(__x); }
982 
983 #if __cplusplus >= 201103L
984  // _GLIBCXX_RESOLVE_LIB_DEFECTS
985  // DR 130. Associative erase should return an iterator.
986  /**
987  * @brief Erases a [first,last) range of elements from a %map.
988  * @param __first Iterator pointing to the start of the range to be
989  * erased.
990  * @param __last Iterator pointing to the end of the range to
991  * be erased.
992  * @return The iterator @a __last.
993  *
994  * This function erases a sequence of elements from a %map.
995  * Note that this function only erases the element, and that if
996  * the element is itself a pointer, the pointed-to memory is not touched
997  * in any way. Managing the pointer is the user's responsibility.
998  */
999  iterator
1000  erase(const_iterator __first, const_iterator __last)
1001  { return _M_t.erase(__first, __last); }
1002 #else
1003  /**
1004  * @brief Erases a [__first,__last) range of elements from a %map.
1005  * @param __first Iterator pointing to the start of the range to be
1006  * erased.
1007  * @param __last Iterator pointing to the end of the range to
1008  * be erased.
1009  *
1010  * This function erases a sequence of elements from a %map.
1011  * Note that this function only erases the element, and that if
1012  * the element is itself a pointer, the pointed-to memory is not touched
1013  * in any way. Managing the pointer is the user's responsibility.
1014  */
1015  void
1016  erase(iterator __first, iterator __last)
1017  { _M_t.erase(__first, __last); }
1018 #endif
1019 
1020  /**
1021  * @brief Swaps data with another %map.
1022  * @param __x A %map of the same element and allocator types.
1023  *
1024  * This exchanges the elements between two maps in constant
1025  * time. (It is only swapping a pointer, an integer, and an
1026  * instance of the @c Compare type (which itself is often
1027  * stateless and empty), so it should be quite fast.) Note
1028  * that the global std::swap() function is specialized such
1029  * that std::swap(m1,m2) will feed to this function.
1030  */
1031  void
1032  swap(map& __x)
1033  _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
1034  { _M_t.swap(__x._M_t); }
1035 
1036  /**
1037  * Erases all elements in a %map. Note that this function only
1038  * erases the elements, and that if the elements themselves are
1039  * pointers, the pointed-to memory is not touched in any way.
1040  * Managing the pointer is the user's responsibility.
1041  */
1042  void
1043  clear() _GLIBCXX_NOEXCEPT
1044  { _M_t.clear(); }
1045 
1046  // observers
1047  /**
1048  * Returns the key comparison object out of which the %map was
1049  * constructed.
1050  */
1051  key_compare
1052  key_comp() const
1053  { return _M_t.key_comp(); }
1054 
1055  /**
1056  * Returns a value comparison object, built from the key comparison
1057  * object out of which the %map was constructed.
1058  */
1059  value_compare
1060  value_comp() const
1061  { return value_compare(_M_t.key_comp()); }
1062 
1063  // [23.3.1.3] map operations
1064 
1065  //@{
1066  /**
1067  * @brief Tries to locate an element in a %map.
1068  * @param __x Key of (key, value) %pair to be located.
1069  * @return Iterator pointing to sought-after element, or end() if not
1070  * found.
1071  *
1072  * This function takes a key and tries to locate the element with which
1073  * the key matches. If successful the function returns an iterator
1074  * pointing to the sought after %pair. If unsuccessful it returns the
1075  * past-the-end ( @c end() ) iterator.
1076  */
1077 
1078  iterator
1079  find(const key_type& __x)
1080  { return _M_t.find(__x); }
1081 
1082 #if __cplusplus > 201103L
1083  template<typename _Kt>
1084  auto
1085  find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
1086  { return _M_t._M_find_tr(__x); }
1087 #endif
1088  //@}
1089 
1090  //@{
1091  /**
1092  * @brief Tries to locate an element in a %map.
1093  * @param __x Key of (key, value) %pair to be located.
1094  * @return Read-only (constant) iterator pointing to sought-after
1095  * element, or end() if not found.
1096  *
1097  * This function takes a key and tries to locate the element with which
1098  * the key matches. If successful the function returns a constant
1099  * iterator pointing to the sought after %pair. If unsuccessful it
1100  * returns the past-the-end ( @c end() ) iterator.
1101  */
1102 
1103  const_iterator
1104  find(const key_type& __x) const
1105  { return _M_t.find(__x); }
1106 
1107 #if __cplusplus > 201103L
1108  template<typename _Kt>
1109  auto
1110  find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
1111  { return _M_t._M_find_tr(__x); }
1112 #endif
1113  //@}
1114 
1115  //@{
1116  /**
1117  * @brief Finds the number of elements with given key.
1118  * @param __x Key of (key, value) pairs to be located.
1119  * @return Number of elements with specified key.
1120  *
1121  * This function only makes sense for multimaps; for map the result will
1122  * either be 0 (not present) or 1 (present).
1123  */
1124  size_type
1125  count(const key_type& __x) const
1126  { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
1127 
1128 #if __cplusplus > 201103L
1129  template<typename _Kt>
1130  auto
1131  count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
1132  { return _M_t._M_find_tr(__x) == _M_t.end() ? 0 : 1; }
1133 #endif
1134  //@}
1135 
1136  //@{
1137  /**
1138  * @brief Finds the beginning of a subsequence matching given key.
1139  * @param __x Key of (key, value) pair to be located.
1140  * @return Iterator pointing to first element equal to or greater
1141  * than key, or end().
1142  *
1143  * This function returns the first element of a subsequence of elements
1144  * that matches the given key. If unsuccessful it returns an iterator
1145  * pointing to the first element that has a greater value than given key
1146  * or end() if no such element exists.
1147  */
1148  iterator
1149  lower_bound(const key_type& __x)
1150  { return _M_t.lower_bound(__x); }
1151 
1152 #if __cplusplus > 201103L
1153  template<typename _Kt>
1154  auto
1155  lower_bound(const _Kt& __x)
1156  -> decltype(_M_t._M_lower_bound_tr(__x))
1157  { return _M_t._M_lower_bound_tr(__x); }
1158 #endif
1159  //@}
1160 
1161  //@{
1162  /**
1163  * @brief Finds the beginning of a subsequence matching given key.
1164  * @param __x Key of (key, value) pair to be located.
1165  * @return Read-only (constant) iterator pointing to first element
1166  * equal to or greater than key, or end().
1167  *
1168  * This function returns the first element of a subsequence of elements
1169  * that matches the given key. If unsuccessful it returns an iterator
1170  * pointing to the first element that has a greater value than given key
1171  * or end() if no such element exists.
1172  */
1173  const_iterator
1174  lower_bound(const key_type& __x) const
1175  { return _M_t.lower_bound(__x); }
1176 
1177 #if __cplusplus > 201103L
1178  template<typename _Kt>
1179  auto
1180  lower_bound(const _Kt& __x) const
1181  -> decltype(_M_t._M_lower_bound_tr(__x))
1182  { return _M_t._M_lower_bound_tr(__x); }
1183 #endif
1184  //@}
1185 
1186  //@{
1187  /**
1188  * @brief Finds the end of a subsequence matching given key.
1189  * @param __x Key of (key, value) pair to be located.
1190  * @return Iterator pointing to the first element
1191  * greater than key, or end().
1192  */
1193  iterator
1194  upper_bound(const key_type& __x)
1195  { return _M_t.upper_bound(__x); }
1196 
1197 #if __cplusplus > 201103L
1198  template<typename _Kt>
1199  auto
1200  upper_bound(const _Kt& __x)
1201  -> decltype(_M_t._M_upper_bound_tr(__x))
1202  { return _M_t._M_upper_bound_tr(__x); }
1203 #endif
1204  //@}
1205 
1206  //@{
1207  /**
1208  * @brief Finds the end of a subsequence matching given key.
1209  * @param __x Key of (key, value) pair to be located.
1210  * @return Read-only (constant) iterator pointing to first iterator
1211  * greater than key, or end().
1212  */
1213  const_iterator
1214  upper_bound(const key_type& __x) const
1215  { return _M_t.upper_bound(__x); }
1216 
1217 #if __cplusplus > 201103L
1218  template<typename _Kt>
1219  auto
1220  upper_bound(const _Kt& __x) const
1221  -> decltype(_M_t._M_upper_bound_tr(__x))
1222  { return _M_t._M_upper_bound_tr(__x); }
1223 #endif
1224  //@}
1225 
1226  //@{
1227  /**
1228  * @brief Finds a subsequence matching given key.
1229  * @param __x Key of (key, value) pairs to be located.
1230  * @return Pair of iterators that possibly points to the subsequence
1231  * matching given key.
1232  *
1233  * This function is equivalent to
1234  * @code
1235  * std::make_pair(c.lower_bound(val),
1236  * c.upper_bound(val))
1237  * @endcode
1238  * (but is faster than making the calls separately).
1239  *
1240  * This function probably only makes sense for multimaps.
1241  */
1243  equal_range(const key_type& __x)
1244  { return _M_t.equal_range(__x); }
1245 
1246 #if __cplusplus > 201103L
1247  template<typename _Kt>
1248  auto
1249  equal_range(const _Kt& __x)
1250  -> decltype(_M_t._M_equal_range_tr(__x))
1251  { return _M_t._M_equal_range_tr(__x); }
1252 #endif
1253  //@}
1254 
1255  //@{
1256  /**
1257  * @brief Finds a subsequence matching given key.
1258  * @param __x Key of (key, value) pairs to be located.
1259  * @return Pair of read-only (constant) iterators that possibly points
1260  * to the subsequence matching given key.
1261  *
1262  * This function is equivalent to
1263  * @code
1264  * std::make_pair(c.lower_bound(val),
1265  * c.upper_bound(val))
1266  * @endcode
1267  * (but is faster than making the calls separately).
1268  *
1269  * This function probably only makes sense for multimaps.
1270  */
1272  equal_range(const key_type& __x) const
1273  { return _M_t.equal_range(__x); }
1274 
1275 #if __cplusplus > 201103L
1276  template<typename _Kt>
1277  auto
1278  equal_range(const _Kt& __x) const
1279  -> decltype(_M_t._M_equal_range_tr(__x))
1280  { return _M_t._M_equal_range_tr(__x); }
1281 #endif
1282  //@}
1283 
1284  template<typename _K1, typename _T1, typename _C1, typename _A1>
1285  friend bool
1287  const map<_K1, _T1, _C1, _A1>&);
1288 
1289  template<typename _K1, typename _T1, typename _C1, typename _A1>
1290  friend bool
1291  operator<(const map<_K1, _T1, _C1, _A1>&,
1292  const map<_K1, _T1, _C1, _A1>&);
1293  };
1294 
1295  /**
1296  * @brief Map equality comparison.
1297  * @param __x A %map.
1298  * @param __y A %map of the same type as @a x.
1299  * @return True iff the size and elements of the maps are equal.
1300  *
1301  * This is an equivalence relation. It is linear in the size of the
1302  * maps. Maps are considered equivalent if their sizes are equal,
1303  * and if corresponding elements compare equal.
1304  */
1305  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1306  inline bool
1309  { return __x._M_t == __y._M_t; }
1310 
1311  /**
1312  * @brief Map ordering relation.
1313  * @param __x A %map.
1314  * @param __y A %map of the same type as @a x.
1315  * @return True iff @a x is lexicographically less than @a y.
1316  *
1317  * This is a total ordering relation. It is linear in the size of the
1318  * maps. The elements must be comparable with @c <.
1319  *
1320  * See std::lexicographical_compare() for how the determination is made.
1321  */
1322  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1323  inline bool
1324  operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1326  { return __x._M_t < __y._M_t; }
1327 
1328  /// Based on operator==
1329  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1330  inline bool
1333  { return !(__x == __y); }
1334 
1335  /// Based on operator<
1336  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1337  inline bool
1340  { return __y < __x; }
1341 
1342  /// Based on operator<
1343  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1344  inline bool
1345  operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1347  { return !(__y < __x); }
1348 
1349  /// Based on operator<
1350  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1351  inline bool
1354  { return !(__x < __y); }
1355 
1356  /// See std::map::swap().
1357  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1358  inline void
1361  _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1362  { __x.swap(__y); }
1363 
1364 _GLIBCXX_END_NAMESPACE_CONTAINER
1365 } // namespace std
1366 
1367 #endif /* _STL_MAP_H */
void insert(std::initializer_list< value_type > __list)
Attempts to insert a list of std::pairs into the map.
Definition: stl_map.h:752
auto equal_range(const _Kt &__x) -> decltype(_M_t._M_equal_range_tr(__x))
Finds a subsequence matching given key.
Definition: stl_map.h:1249
const_reverse_iterator rend() const noexcept
Definition: stl_map.h:401
map(_InputIterator __first, _InputIterator __last)
Builds a map from a range.
Definition: stl_map.h:256
bool operator>(const map< _Key, _Tp, _Compare, _Alloc > &__x, const map< _Key, _Tp, _Compare, _Alloc > &__y)
Based on operator<.
Definition: stl_map.h:1338
key_compare key_comp() const
Definition: stl_map.h:1052
iterator erase(const_iterator __position)
Erases an element from a map.
Definition: stl_map.h:944
bool empty() const noexcept
Definition: stl_map.h:447
Uniform interface to C++98 and C++11 allocators.
const_iterator find(const key_type &__x) const
Tries to locate an element in a map.
Definition: stl_map.h:1104
map(map &&__x) noexcept(is_nothrow_copy_constructible< _Compare >::value)
Map move constructor.
Definition: stl_map.h:196
auto upper_bound(const _Kt &__x) const -> decltype(_M_t._M_upper_bound_tr(__x))
Finds the end of a subsequence matching given key.
Definition: stl_map.h:1220
const_reverse_iterator crend() const noexcept
Definition: stl_map.h:438
map(initializer_list< value_type > __l, const _Compare &__comp=_Compare(), const allocator_type &__a=allocator_type())
Builds a map from an initializer_list.
Definition: stl_map.h:211
std::pair< iterator, bool > emplace(_Args &&...__args)
Attempts to build and insert a std::pair into the map.
Definition: stl_map.h:558
Primary class template, tuple.
Definition: tuple:461
iterator insert(const_iterator __position, const value_type &__x)
Attempts to insert a std::pair into the map.
Definition: stl_map.h:781
size_type size() const noexcept
Definition: stl_map.h:452
initializer_list
_T1 first
second_type is the second bound type
Definition: stl_pair.h:195
size_type erase(const key_type &__x)
Erases elements according to the provided key.
Definition: stl_map.h:980
auto find(const _Kt &__x) -> decltype(_M_t._M_find_tr(__x))
Tries to locate an element in a map.
Definition: stl_map.h:1085
constexpr piecewise_construct_t piecewise_construct
piecewise_construct
Definition: stl_pair.h:79
map(const _Compare &__comp, const allocator_type &__a=allocator_type())
Creates a map with no elements.
Definition: stl_map.h:174
A standard container made up of (key,value) pairs, which can be retrieved based on a key...
Definition: stl_map.h:96
std::pair< iterator, iterator > equal_range(const key_type &__x)
Finds a subsequence matching given key.
Definition: stl_map.h:1243
auto lower_bound(const _Kt &__x) -> decltype(_M_t._M_lower_bound_tr(__x))
Finds the beginning of a subsequence matching given key.
Definition: stl_map.h:1155
void insert(_InputIterator __first, _InputIterator __last)
Template function that attempts to insert a range of elements.
Definition: stl_map.h:807
const_iterator cbegin() const noexcept
Definition: stl_map.h:411
bool operator!=(const map< _Key, _Tp, _Compare, _Alloc > &__x, const map< _Key, _Tp, _Compare, _Alloc > &__y)
Based on operator==.
Definition: stl_map.h:1331
map() noexcept(/*conditional */)
Default constructor creates no elements.
Definition: stl_map.h:162
iterator lower_bound(const key_type &__x)
Finds the beginning of a subsequence matching given key.
Definition: stl_map.h:1149
auto count(const _Kt &__x) const -> decltype(_M_t._M_count_tr(__x))
Finds the number of elements with given key.
Definition: stl_map.h:1131
allocator_type get_allocator() const noexcept
Get a copy of the memory allocation object.
Definition: stl_map.h:328
const_iterator lower_bound(const key_type &__x) const
Finds the beginning of a subsequence matching given key.
Definition: stl_map.h:1174
void clear() noexcept
Definition: stl_map.h:1043
map(const allocator_type &__a)
Allocator-extended default constructor.
Definition: stl_map.h:219
map(const map &__m, const allocator_type &__a)
Allocator-extended copy constructor.
Definition: stl_map.h:223
const_iterator end() const noexcept
Definition: stl_map.h:365
const_reverse_iterator rbegin() const noexcept
Definition: stl_map.h:383
iterator upper_bound(const key_type &__x)
Finds the end of a subsequence matching given key.
Definition: stl_map.h:1194
map(const map &__x)
Map copy constructor.
Definition: stl_map.h:185
value_compare value_comp() const
Definition: stl_map.h:1060
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:190
size_type count(const key_type &__x) const
Finds the number of elements with given key.
Definition: stl_map.h:1125
size_type max_size() const noexcept
Definition: stl_map.h:457
bool operator>=(const map< _Key, _Tp, _Compare, _Alloc > &__x, const map< _Key, _Tp, _Compare, _Alloc > &__y)
Based on operator<.
Definition: stl_map.h:1352
const_reverse_iterator crbegin() const noexcept
Definition: stl_map.h:429
const_iterator begin() const noexcept
Definition: stl_map.h:347
iterator emplace_hint(const_iterator __pos, _Args &&...__args)
Attempts to build and insert a std::pair into the map.
Definition: stl_map.h:588
map & operator=(const map &__x)
Map assignment operator.
Definition: stl_map.h:296
mapped_type & operator[](const key_type &__k)
Subscript ( [] ) access to map data.
Definition: stl_map.h:474
bool operator==(const map< _Key, _Tp, _Compare, _Alloc > &__x, const map< _Key, _Tp, _Compare, _Alloc > &__y)
Map equality comparison.
Definition: stl_map.h:1307
map(initializer_list< value_type > __l, const allocator_type &__a)
Allocator-extended initialier-list constructor.
Definition: stl_map.h:233
iterator erase(const_iterator __first, const_iterator __last)
Erases a [first,last) range of elements from a map.
Definition: stl_map.h:1000
auto find(const _Kt &__x) const -> decltype(_M_t._M_find_tr(__x))
Tries to locate an element in a map.
Definition: stl_map.h:1110
reverse_iterator rbegin() noexcept
Definition: stl_map.h:374
reverse_iterator rend() noexcept
Definition: stl_map.h:392
iterator find(const key_type &__x)
Tries to locate an element in a map.
Definition: stl_map.h:1079
map(map &&__m, const allocator_type &__a) noexcept(is_nothrow_copy_constructible< _Compare >::value &&_Alloc_traits::_S_always_equal())
Allocator-extended move constructor.
Definition: stl_map.h:227
std::pair< iterator, bool > insert(const value_type &__x)
Attempts to insert a std::pair into the map.
Definition: stl_map.h:731
map & operator=(initializer_list< value_type > __l)
Map list assignment operator.
Definition: stl_map.h:319
void swap(map &__x) noexcept(/*conditional */)
Swaps data with another map.
Definition: stl_map.h:1032
iterator end() noexcept
Definition: stl_map.h:356
auto upper_bound(const _Kt &__x) -> decltype(_M_t._M_upper_bound_tr(__x))
Finds the end of a subsequence matching given key.
Definition: stl_map.h:1200
std::pair< const_iterator, const_iterator > equal_range(const key_type &__x) const
Finds a subsequence matching given key.
Definition: stl_map.h:1272
mapped_type & at(const key_type &__k)
Access to map data.
Definition: stl_map.h:519
auto lower_bound(const _Kt &__x) const -> decltype(_M_t._M_lower_bound_tr(__x))
Finds the beginning of a subsequence matching given key.
Definition: stl_map.h:1180
ISO C++ entities toplevel namespace is std.
const_iterator cend() const noexcept
Definition: stl_map.h:420
map(_InputIterator __first, _InputIterator __last, const allocator_type &__a)
Allocator-extended range constructor.
Definition: stl_map.h:239
iterator begin() noexcept
Definition: stl_map.h:338
const_iterator upper_bound(const key_type &__x) const
Finds the end of a subsequence matching given key.
Definition: stl_map.h:1214
map(_InputIterator __first, _InputIterator __last, const _Compare &__comp, const allocator_type &__a=allocator_type())
Builds a map from a range.
Definition: stl_map.h:273
auto equal_range(const _Kt &__x) const -> decltype(_M_t._M_equal_range_tr(__x))
Finds a subsequence matching given key.
Definition: stl_map.h:1278