libstdc++
hashtable_policy.h
Go to the documentation of this file.
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2017 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable_policy.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly.
28  * @headername{unordered_map,unordered_set}
29  */
30 
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
33 
34 #include <bits/stl_algobase.h> // for std::min.
35 
36 namespace std _GLIBCXX_VISIBILITY(default)
37 {
38 _GLIBCXX_BEGIN_NAMESPACE_VERSION
39 
40  template<typename _Key, typename _Value, typename _Alloc,
41  typename _ExtractKey, typename _Equal,
42  typename _H1, typename _H2, typename _Hash,
43  typename _RehashPolicy, typename _Traits>
44  class _Hashtable;
45 
46 _GLIBCXX_END_NAMESPACE_VERSION
47 
48 namespace __detail
49 {
50 _GLIBCXX_BEGIN_NAMESPACE_VERSION
51 
52  /**
53  * @defgroup hashtable-detail Base and Implementation Classes
54  * @ingroup unordered_associative_containers
55  * @{
56  */
57  template<typename _Key, typename _Value,
58  typename _ExtractKey, typename _Equal,
59  typename _H1, typename _H2, typename _Hash, typename _Traits>
61 
62  // Helper function: return distance(first, last) for forward
63  // iterators, or 0 for input iterators.
64  template<class _Iterator>
65  inline typename std::iterator_traits<_Iterator>::difference_type
66  __distance_fw(_Iterator __first, _Iterator __last,
68  { return 0; }
69 
70  template<class _Iterator>
71  inline typename std::iterator_traits<_Iterator>::difference_type
72  __distance_fw(_Iterator __first, _Iterator __last,
74  { return std::distance(__first, __last); }
75 
76  template<class _Iterator>
77  inline typename std::iterator_traits<_Iterator>::difference_type
78  __distance_fw(_Iterator __first, _Iterator __last)
79  {
80  typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
81  return __distance_fw(__first, __last, _Tag());
82  }
83 
84  // Helper type used to detect whether the hash functor is noexcept.
85  template <typename _Key, typename _Hash>
86  struct __is_noexcept_hash : std::__bool_constant<
87  noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
88  { };
89 
90  struct _Identity
91  {
92  template<typename _Tp>
93  _Tp&&
94  operator()(_Tp&& __x) const
95  { return std::forward<_Tp>(__x); }
96  };
97 
98  struct _Select1st
99  {
100  template<typename _Tp>
101  auto
102  operator()(_Tp&& __x) const
103  -> decltype(std::get<0>(std::forward<_Tp>(__x)))
104  { return std::get<0>(std::forward<_Tp>(__x)); }
105  };
106 
107  template<typename _NodeAlloc>
109 
110  // Functor recycling a pool of nodes and using allocation once the pool is
111  // empty.
112  template<typename _NodeAlloc>
113  struct _ReuseOrAllocNode
114  {
115  private:
116  using __node_alloc_type = _NodeAlloc;
117  using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
118  using __value_alloc_type = typename __hashtable_alloc::__value_alloc_type;
119  using __value_alloc_traits =
120  typename __hashtable_alloc::__value_alloc_traits;
121  using __node_alloc_traits =
122  typename __hashtable_alloc::__node_alloc_traits;
123  using __node_type = typename __hashtable_alloc::__node_type;
124 
125  public:
126  _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
127  : _M_nodes(__nodes), _M_h(__h) { }
128  _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
129 
130  ~_ReuseOrAllocNode()
131  { _M_h._M_deallocate_nodes(_M_nodes); }
132 
133  template<typename _Arg>
134  __node_type*
135  operator()(_Arg&& __arg) const
136  {
137  if (_M_nodes)
138  {
139  __node_type* __node = _M_nodes;
140  _M_nodes = _M_nodes->_M_next();
141  __node->_M_nxt = nullptr;
142  __value_alloc_type __a(_M_h._M_node_allocator());
143  __value_alloc_traits::destroy(__a, __node->_M_valptr());
144  __try
145  {
146  __value_alloc_traits::construct(__a, __node->_M_valptr(),
147  std::forward<_Arg>(__arg));
148  }
149  __catch(...)
150  {
151  __node->~__node_type();
152  __node_alloc_traits::deallocate(_M_h._M_node_allocator(),
153  __node, 1);
154  __throw_exception_again;
155  }
156  return __node;
157  }
158  return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
159  }
160 
161  private:
162  mutable __node_type* _M_nodes;
163  __hashtable_alloc& _M_h;
164  };
165 
166  // Functor similar to the previous one but without any pool of nodes to
167  // recycle.
168  template<typename _NodeAlloc>
169  struct _AllocNode
170  {
171  private:
172  using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
173  using __node_type = typename __hashtable_alloc::__node_type;
174 
175  public:
176  _AllocNode(__hashtable_alloc& __h)
177  : _M_h(__h) { }
178 
179  template<typename _Arg>
180  __node_type*
181  operator()(_Arg&& __arg) const
182  { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
183 
184  private:
185  __hashtable_alloc& _M_h;
186  };
187 
188  // Auxiliary types used for all instantiations of _Hashtable nodes
189  // and iterators.
190 
191  /**
192  * struct _Hashtable_traits
193  *
194  * Important traits for hash tables.
195  *
196  * @tparam _Cache_hash_code Boolean value. True if the value of
197  * the hash function is stored along with the value. This is a
198  * time-space tradeoff. Storing it may improve lookup speed by
199  * reducing the number of times we need to call the _Equal
200  * function.
201  *
202  * @tparam _Constant_iterators Boolean value. True if iterator and
203  * const_iterator are both constant iterator types. This is true
204  * for unordered_set and unordered_multiset, false for
205  * unordered_map and unordered_multimap.
206  *
207  * @tparam _Unique_keys Boolean value. True if the return value
208  * of _Hashtable::count(k) is always at most one, false if it may
209  * be an arbitrary number. This is true for unordered_set and
210  * unordered_map, false for unordered_multiset and
211  * unordered_multimap.
212  */
213  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
215  {
219  };
220 
221  /**
222  * struct _Hash_node_base
223  *
224  * Nodes, used to wrap elements stored in the hash table. A policy
225  * template parameter of class template _Hashtable controls whether
226  * nodes also store a hash code. In some cases (e.g. strings) this
227  * may be a performance win.
228  */
230  {
231  _Hash_node_base* _M_nxt;
232 
233  _Hash_node_base() noexcept : _M_nxt() { }
234 
235  _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
236  };
237 
238  /**
239  * struct _Hash_node_value_base
240  *
241  * Node type with the value to store.
242  */
243  template<typename _Value>
245  {
246  typedef _Value value_type;
247 
248  __gnu_cxx::__aligned_buffer<_Value> _M_storage;
249 
250  _Value*
251  _M_valptr() noexcept
252  { return _M_storage._M_ptr(); }
253 
254  const _Value*
255  _M_valptr() const noexcept
256  { return _M_storage._M_ptr(); }
257 
258  _Value&
259  _M_v() noexcept
260  { return *_M_valptr(); }
261 
262  const _Value&
263  _M_v() const noexcept
264  { return *_M_valptr(); }
265  };
266 
267  /**
268  * Primary template struct _Hash_node.
269  */
270  template<typename _Value, bool _Cache_hash_code>
271  struct _Hash_node;
272 
273  /**
274  * Specialization for nodes with caches, struct _Hash_node.
275  *
276  * Base class is __detail::_Hash_node_value_base.
277  */
278  template<typename _Value>
279  struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
280  {
281  std::size_t _M_hash_code;
282 
283  _Hash_node*
284  _M_next() const noexcept
285  { return static_cast<_Hash_node*>(this->_M_nxt); }
286  };
287 
288  /**
289  * Specialization for nodes without caches, struct _Hash_node.
290  *
291  * Base class is __detail::_Hash_node_value_base.
292  */
293  template<typename _Value>
294  struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
295  {
296  _Hash_node*
297  _M_next() const noexcept
298  { return static_cast<_Hash_node*>(this->_M_nxt); }
299  };
300 
301  /// Base class for node iterators.
302  template<typename _Value, bool _Cache_hash_code>
304  {
306 
307  __node_type* _M_cur;
308 
309  _Node_iterator_base(__node_type* __p) noexcept
310  : _M_cur(__p) { }
311 
312  void
313  _M_incr() noexcept
314  { _M_cur = _M_cur->_M_next(); }
315  };
316 
317  template<typename _Value, bool _Cache_hash_code>
318  inline bool
319  operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
321  noexcept
322  { return __x._M_cur == __y._M_cur; }
323 
324  template<typename _Value, bool _Cache_hash_code>
325  inline bool
326  operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
328  noexcept
329  { return __x._M_cur != __y._M_cur; }
330 
331  /// Node iterators, used to iterate through all the hashtable.
332  template<typename _Value, bool __constant_iterators, bool __cache>
334  : public _Node_iterator_base<_Value, __cache>
335  {
336  private:
338  using __node_type = typename __base_type::__node_type;
339 
340  public:
341  typedef _Value value_type;
342  typedef std::ptrdiff_t difference_type;
344 
345  using pointer = typename std::conditional<__constant_iterators,
346  const _Value*, _Value*>::type;
347 
348  using reference = typename std::conditional<__constant_iterators,
349  const _Value&, _Value&>::type;
350 
351  _Node_iterator() noexcept
352  : __base_type(0) { }
353 
354  explicit
355  _Node_iterator(__node_type* __p) noexcept
356  : __base_type(__p) { }
357 
358  reference
359  operator*() const noexcept
360  { return this->_M_cur->_M_v(); }
361 
362  pointer
363  operator->() const noexcept
364  { return this->_M_cur->_M_valptr(); }
365 
367  operator++() noexcept
368  {
369  this->_M_incr();
370  return *this;
371  }
372 
374  operator++(int) noexcept
375  {
376  _Node_iterator __tmp(*this);
377  this->_M_incr();
378  return __tmp;
379  }
380  };
381 
382  /// Node const_iterators, used to iterate through all the hashtable.
383  template<typename _Value, bool __constant_iterators, bool __cache>
385  : public _Node_iterator_base<_Value, __cache>
386  {
387  private:
389  using __node_type = typename __base_type::__node_type;
390 
391  public:
392  typedef _Value value_type;
393  typedef std::ptrdiff_t difference_type;
395 
396  typedef const _Value* pointer;
397  typedef const _Value& reference;
398 
399  _Node_const_iterator() noexcept
400  : __base_type(0) { }
401 
402  explicit
403  _Node_const_iterator(__node_type* __p) noexcept
404  : __base_type(__p) { }
405 
406  _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
407  __cache>& __x) noexcept
408  : __base_type(__x._M_cur) { }
409 
410  reference
411  operator*() const noexcept
412  { return this->_M_cur->_M_v(); }
413 
414  pointer
415  operator->() const noexcept
416  { return this->_M_cur->_M_valptr(); }
417 
419  operator++() noexcept
420  {
421  this->_M_incr();
422  return *this;
423  }
424 
426  operator++(int) noexcept
427  {
428  _Node_const_iterator __tmp(*this);
429  this->_M_incr();
430  return __tmp;
431  }
432  };
433 
434  // Many of class template _Hashtable's template parameters are policy
435  // classes. These are defaults for the policies.
436 
437  /// Default range hashing function: use division to fold a large number
438  /// into the range [0, N).
440  {
441  typedef std::size_t first_argument_type;
442  typedef std::size_t second_argument_type;
443  typedef std::size_t result_type;
444 
445  result_type
446  operator()(first_argument_type __num,
447  second_argument_type __den) const noexcept
448  { return __num % __den; }
449  };
450 
451  /// Default ranged hash function H. In principle it should be a
452  /// function object composed from objects of type H1 and H2 such that
453  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
454  /// h1 and h2. So instead we'll just use a tag to tell class template
455  /// hashtable to do that composition.
457 
458  /// Default value for rehash policy. Bucket size is (usually) the
459  /// smallest prime that keeps the load factor small enough.
461  {
463 
464  _Prime_rehash_policy(float __z = 1.0) noexcept
465  : _M_max_load_factor(__z), _M_next_resize(0) { }
466 
467  float
468  max_load_factor() const noexcept
469  { return _M_max_load_factor; }
470 
471  // Return a bucket size no smaller than n.
472  std::size_t
473  _M_next_bkt(std::size_t __n) const;
474 
475  // Return a bucket count appropriate for n elements
476  std::size_t
477  _M_bkt_for_elements(std::size_t __n) const
478  { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
479 
480  // __n_bkt is current bucket count, __n_elt is current element count,
481  // and __n_ins is number of elements to be inserted. Do we need to
482  // increase bucket count? If so, return make_pair(true, n), where n
483  // is the new bucket count. If not, return make_pair(false, 0).
485  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
486  std::size_t __n_ins) const;
487 
488  typedef std::size_t _State;
489 
490  _State
491  _M_state() const
492  { return _M_next_resize; }
493 
494  void
495  _M_reset() noexcept
496  { _M_next_resize = 0; }
497 
498  void
499  _M_reset(_State __state)
500  { _M_next_resize = __state; }
501 
502  static const std::size_t _S_growth_factor = 2;
503 
504  float _M_max_load_factor;
505  mutable std::size_t _M_next_resize;
506  };
507 
508  /// Range hashing function assuming that second arg is a power of 2.
510  {
511  typedef std::size_t first_argument_type;
512  typedef std::size_t second_argument_type;
513  typedef std::size_t result_type;
514 
515  result_type
516  operator()(first_argument_type __num,
517  second_argument_type __den) const noexcept
518  { return __num & (__den - 1); }
519  };
520 
521  /// Compute closest power of 2.
522  _GLIBCXX14_CONSTEXPR
523  inline std::size_t
524  __clp2(std::size_t __n) noexcept
525  {
526 #if __SIZEOF_SIZE_T__ >= 8
527  std::uint_fast64_t __x = __n;
528 #else
529  std::uint_fast32_t __x = __n;
530 #endif
531  // Algorithm from Hacker's Delight, Figure 3-3.
532  __x = __x - 1;
533  __x = __x | (__x >> 1);
534  __x = __x | (__x >> 2);
535  __x = __x | (__x >> 4);
536  __x = __x | (__x >> 8);
537  __x = __x | (__x >>16);
538 #if __SIZEOF_SIZE_T__ >= 8
539  __x = __x | (__x >>32);
540 #endif
541  return __x + 1;
542  }
543 
544  /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
545  /// operations.
547  {
549 
550  _Power2_rehash_policy(float __z = 1.0) noexcept
551  : _M_max_load_factor(__z), _M_next_resize(0) { }
552 
553  float
554  max_load_factor() const noexcept
555  { return _M_max_load_factor; }
556 
557  // Return a bucket size no smaller than n (as long as n is not above the
558  // highest power of 2).
559  std::size_t
560  _M_next_bkt(std::size_t __n) noexcept
561  {
562  const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
563  const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
564  std::size_t __res = __clp2(__n);
565 
566  if (__res == __n)
567  __res <<= 1;
568 
569  if (__res == 0)
570  __res = __max_bkt;
571 
572  if (__res == __max_bkt)
573  // Set next resize to the max value so that we never try to rehash again
574  // as we already reach the biggest possible bucket number.
575  // Note that it might result in max_load_factor not being respected.
576  _M_next_resize = std::size_t(-1);
577  else
578  _M_next_resize
579  = __builtin_ceil(__res * (long double)_M_max_load_factor);
580 
581  return __res;
582  }
583 
584  // Return a bucket count appropriate for n elements
585  std::size_t
586  _M_bkt_for_elements(std::size_t __n) const noexcept
587  { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
588 
589  // __n_bkt is current bucket count, __n_elt is current element count,
590  // and __n_ins is number of elements to be inserted. Do we need to
591  // increase bucket count? If so, return make_pair(true, n), where n
592  // is the new bucket count. If not, return make_pair(false, 0).
594  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
595  std::size_t __n_ins) noexcept
596  {
597  if (__n_elt + __n_ins >= _M_next_resize)
598  {
599  long double __min_bkts = (__n_elt + __n_ins)
600  / (long double)_M_max_load_factor;
601  if (__min_bkts >= __n_bkt)
602  return std::make_pair(true,
603  _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
604  __n_bkt * _S_growth_factor)));
605 
606  _M_next_resize
607  = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
608  return std::make_pair(false, 0);
609  }
610  else
611  return std::make_pair(false, 0);
612  }
613 
614  typedef std::size_t _State;
615 
616  _State
617  _M_state() const noexcept
618  { return _M_next_resize; }
619 
620  void
621  _M_reset() noexcept
622  { _M_next_resize = 0; }
623 
624  void
625  _M_reset(_State __state) noexcept
626  { _M_next_resize = __state; }
627 
628  static const std::size_t _S_growth_factor = 2;
629 
630  float _M_max_load_factor;
631  std::size_t _M_next_resize;
632  };
633 
634  // Base classes for std::_Hashtable. We define these base classes
635  // because in some cases we want to do different things depending on
636  // the value of a policy class. In some cases the policy class
637  // affects which member functions and nested typedefs are defined;
638  // we handle that by specializing base class templates. Several of
639  // the base class templates need to access other members of class
640  // template _Hashtable, so we use a variant of the "Curiously
641  // Recurring Template Pattern" (CRTP) technique.
642 
643  /**
644  * Primary class template _Map_base.
645  *
646  * If the hashtable has a value type of the form pair<T1, T2> and a
647  * key extraction policy (_ExtractKey) that returns the first part
648  * of the pair, the hashtable gets a mapped_type typedef. If it
649  * satisfies those criteria and also has unique keys, then it also
650  * gets an operator[].
651  */
652  template<typename _Key, typename _Value, typename _Alloc,
653  typename _ExtractKey, typename _Equal,
654  typename _H1, typename _H2, typename _Hash,
655  typename _RehashPolicy, typename _Traits,
656  bool _Unique_keys = _Traits::__unique_keys::value>
657  struct _Map_base { };
658 
659  /// Partial specialization, __unique_keys set to false.
660  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
661  typename _H1, typename _H2, typename _Hash,
662  typename _RehashPolicy, typename _Traits>
663  struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
664  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
665  {
666  using mapped_type = typename std::tuple_element<1, _Pair>::type;
667  };
668 
669  /// Partial specialization, __unique_keys set to true.
670  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
671  typename _H1, typename _H2, typename _Hash,
672  typename _RehashPolicy, typename _Traits>
673  struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
674  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
675  {
676  private:
677  using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
678  _Select1st,
679  _Equal, _H1, _H2, _Hash,
680  _Traits>;
681 
682  using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
683  _Select1st, _Equal,
684  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
685 
686  using __hash_code = typename __hashtable_base::__hash_code;
687  using __node_type = typename __hashtable_base::__node_type;
688 
689  public:
690  using key_type = typename __hashtable_base::key_type;
691  using iterator = typename __hashtable_base::iterator;
692  using mapped_type = typename std::tuple_element<1, _Pair>::type;
693 
694  mapped_type&
695  operator[](const key_type& __k);
696 
697  mapped_type&
698  operator[](key_type&& __k);
699 
700  // _GLIBCXX_RESOLVE_LIB_DEFECTS
701  // DR 761. unordered_map needs an at() member function.
702  mapped_type&
703  at(const key_type& __k);
704 
705  const mapped_type&
706  at(const key_type& __k) const;
707  };
708 
709  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
710  typename _H1, typename _H2, typename _Hash,
711  typename _RehashPolicy, typename _Traits>
712  auto
713  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
714  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
715  operator[](const key_type& __k)
716  -> mapped_type&
717  {
718  __hashtable* __h = static_cast<__hashtable*>(this);
719  __hash_code __code = __h->_M_hash_code(__k);
720  std::size_t __n = __h->_M_bucket_index(__k, __code);
721  __node_type* __p = __h->_M_find_node(__n, __k, __code);
722 
723  if (!__p)
724  {
725  __p = __h->_M_allocate_node(std::piecewise_construct,
727  std::tuple<>());
728  return __h->_M_insert_unique_node(__n, __code, __p)->second;
729  }
730 
731  return __p->_M_v().second;
732  }
733 
734  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
735  typename _H1, typename _H2, typename _Hash,
736  typename _RehashPolicy, typename _Traits>
737  auto
738  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
739  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
740  operator[](key_type&& __k)
741  -> mapped_type&
742  {
743  __hashtable* __h = static_cast<__hashtable*>(this);
744  __hash_code __code = __h->_M_hash_code(__k);
745  std::size_t __n = __h->_M_bucket_index(__k, __code);
746  __node_type* __p = __h->_M_find_node(__n, __k, __code);
747 
748  if (!__p)
749  {
750  __p = __h->_M_allocate_node(std::piecewise_construct,
751  std::forward_as_tuple(std::move(__k)),
752  std::tuple<>());
753  return __h->_M_insert_unique_node(__n, __code, __p)->second;
754  }
755 
756  return __p->_M_v().second;
757  }
758 
759  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
760  typename _H1, typename _H2, typename _Hash,
761  typename _RehashPolicy, typename _Traits>
762  auto
763  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
764  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
765  at(const key_type& __k)
766  -> mapped_type&
767  {
768  __hashtable* __h = static_cast<__hashtable*>(this);
769  __hash_code __code = __h->_M_hash_code(__k);
770  std::size_t __n = __h->_M_bucket_index(__k, __code);
771  __node_type* __p = __h->_M_find_node(__n, __k, __code);
772 
773  if (!__p)
774  __throw_out_of_range(__N("_Map_base::at"));
775  return __p->_M_v().second;
776  }
777 
778  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
779  typename _H1, typename _H2, typename _Hash,
780  typename _RehashPolicy, typename _Traits>
781  auto
782  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
783  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
784  at(const key_type& __k) const
785  -> const mapped_type&
786  {
787  const __hashtable* __h = static_cast<const __hashtable*>(this);
788  __hash_code __code = __h->_M_hash_code(__k);
789  std::size_t __n = __h->_M_bucket_index(__k, __code);
790  __node_type* __p = __h->_M_find_node(__n, __k, __code);
791 
792  if (!__p)
793  __throw_out_of_range(__N("_Map_base::at"));
794  return __p->_M_v().second;
795  }
796 
797  /**
798  * Primary class template _Insert_base.
799  *
800  * Defines @c insert member functions appropriate to all _Hashtables.
801  */
802  template<typename _Key, typename _Value, typename _Alloc,
803  typename _ExtractKey, typename _Equal,
804  typename _H1, typename _H2, typename _Hash,
805  typename _RehashPolicy, typename _Traits>
807  {
808  protected:
809  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
810  _Equal, _H1, _H2, _Hash,
811  _RehashPolicy, _Traits>;
812 
813  using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
814  _Equal, _H1, _H2, _Hash,
815  _Traits>;
816 
817  using value_type = typename __hashtable_base::value_type;
818  using iterator = typename __hashtable_base::iterator;
819  using const_iterator = typename __hashtable_base::const_iterator;
820  using size_type = typename __hashtable_base::size_type;
821 
822  using __unique_keys = typename __hashtable_base::__unique_keys;
823  using __ireturn_type = typename __hashtable_base::__ireturn_type;
825  using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
826  using __node_gen_type = _AllocNode<__node_alloc_type>;
827 
828  __hashtable&
829  _M_conjure_hashtable()
830  { return *(static_cast<__hashtable*>(this)); }
831 
832  template<typename _InputIterator, typename _NodeGetter>
833  void
834  _M_insert_range(_InputIterator __first, _InputIterator __last,
835  const _NodeGetter&);
836 
837  public:
838  __ireturn_type
839  insert(const value_type& __v)
840  {
841  __hashtable& __h = _M_conjure_hashtable();
842  __node_gen_type __node_gen(__h);
843  return __h._M_insert(__v, __node_gen, __unique_keys());
844  }
845 
846  iterator
847  insert(const_iterator __hint, const value_type& __v)
848  {
849  __hashtable& __h = _M_conjure_hashtable();
850  __node_gen_type __node_gen(__h);
851  return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
852  }
853 
854  void
855  insert(initializer_list<value_type> __l)
856  { this->insert(__l.begin(), __l.end()); }
857 
858  template<typename _InputIterator>
859  void
860  insert(_InputIterator __first, _InputIterator __last)
861  {
862  __hashtable& __h = _M_conjure_hashtable();
863  __node_gen_type __node_gen(__h);
864  return _M_insert_range(__first, __last, __node_gen);
865  }
866  };
867 
868  template<typename _Key, typename _Value, typename _Alloc,
869  typename _ExtractKey, typename _Equal,
870  typename _H1, typename _H2, typename _Hash,
871  typename _RehashPolicy, typename _Traits>
872  template<typename _InputIterator, typename _NodeGetter>
873  void
874  _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
875  _RehashPolicy, _Traits>::
876  _M_insert_range(_InputIterator __first, _InputIterator __last,
877  const _NodeGetter& __node_gen)
878  {
879  using __rehash_type = typename __hashtable::__rehash_type;
880  using __rehash_state = typename __hashtable::__rehash_state;
881  using pair_type = std::pair<bool, std::size_t>;
882 
883  size_type __n_elt = __detail::__distance_fw(__first, __last);
884 
885  __hashtable& __h = _M_conjure_hashtable();
886  __rehash_type& __rehash = __h._M_rehash_policy;
887  const __rehash_state& __saved_state = __rehash._M_state();
888  pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
889  __h._M_element_count,
890  __n_elt);
891 
892  if (__do_rehash.first)
893  __h._M_rehash(__do_rehash.second, __saved_state);
894 
895  for (; __first != __last; ++__first)
896  __h._M_insert(*__first, __node_gen, __unique_keys());
897  }
898 
899  /**
900  * Primary class template _Insert.
901  *
902  * Defines @c insert member functions that depend on _Hashtable policies,
903  * via partial specializations.
904  */
905  template<typename _Key, typename _Value, typename _Alloc,
906  typename _ExtractKey, typename _Equal,
907  typename _H1, typename _H2, typename _Hash,
908  typename _RehashPolicy, typename _Traits,
909  bool _Constant_iterators = _Traits::__constant_iterators::value>
910  struct _Insert;
911 
912  /// Specialization.
913  template<typename _Key, typename _Value, typename _Alloc,
914  typename _ExtractKey, typename _Equal,
915  typename _H1, typename _H2, typename _Hash,
916  typename _RehashPolicy, typename _Traits>
917  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
918  _RehashPolicy, _Traits, true>
919  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
920  _H1, _H2, _Hash, _RehashPolicy, _Traits>
921  {
922  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
923  _Equal, _H1, _H2, _Hash,
924  _RehashPolicy, _Traits>;
925 
926  using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
927  _Equal, _H1, _H2, _Hash,
928  _Traits>;
929 
930  using value_type = typename __base_type::value_type;
931  using iterator = typename __base_type::iterator;
932  using const_iterator = typename __base_type::const_iterator;
933 
934  using __unique_keys = typename __base_type::__unique_keys;
935  using __ireturn_type = typename __hashtable_base::__ireturn_type;
936  using __hashtable = typename __base_type::__hashtable;
937  using __node_gen_type = typename __base_type::__node_gen_type;
938 
939  using __base_type::insert;
940 
941  __ireturn_type
942  insert(value_type&& __v)
943  {
944  __hashtable& __h = this->_M_conjure_hashtable();
945  __node_gen_type __node_gen(__h);
946  return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
947  }
948 
949  iterator
950  insert(const_iterator __hint, value_type&& __v)
951  {
952  __hashtable& __h = this->_M_conjure_hashtable();
953  __node_gen_type __node_gen(__h);
954  return __h._M_insert(__hint, std::move(__v), __node_gen,
955  __unique_keys());
956  }
957  };
958 
959  /// Specialization.
960  template<typename _Key, typename _Value, typename _Alloc,
961  typename _ExtractKey, typename _Equal,
962  typename _H1, typename _H2, typename _Hash,
963  typename _RehashPolicy, typename _Traits>
964  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
965  _RehashPolicy, _Traits, false>
966  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
967  _H1, _H2, _Hash, _RehashPolicy, _Traits>
968  {
969  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
970  _Equal, _H1, _H2, _Hash,
971  _RehashPolicy, _Traits>;
972  using value_type = typename __base_type::value_type;
973  using iterator = typename __base_type::iterator;
974  using const_iterator = typename __base_type::const_iterator;
975 
976  using __unique_keys = typename __base_type::__unique_keys;
977  using __hashtable = typename __base_type::__hashtable;
978  using __ireturn_type = typename __base_type::__ireturn_type;
979 
980  using __base_type::insert;
981 
982  template<typename _Pair>
983  using __is_cons = std::is_constructible<value_type, _Pair&&>;
984 
985  template<typename _Pair>
986  using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
987 
988  template<typename _Pair>
989  using _IFconsp = typename _IFcons<_Pair>::type;
990 
991  template<typename _Pair, typename = _IFconsp<_Pair>>
992  __ireturn_type
993  insert(_Pair&& __v)
994  {
995  __hashtable& __h = this->_M_conjure_hashtable();
996  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
997  }
998 
999  template<typename _Pair, typename = _IFconsp<_Pair>>
1000  iterator
1001  insert(const_iterator __hint, _Pair&& __v)
1002  {
1003  __hashtable& __h = this->_M_conjure_hashtable();
1004  return __h._M_emplace(__hint, __unique_keys(),
1005  std::forward<_Pair>(__v));
1006  }
1007  };
1008 
1009  template<typename _Policy>
1010  using __has_load_factor = typename _Policy::__has_load_factor;
1011 
1012  /**
1013  * Primary class template _Rehash_base.
1014  *
1015  * Give hashtable the max_load_factor functions and reserve iff the
1016  * rehash policy supports it.
1017  */
1018  template<typename _Key, typename _Value, typename _Alloc,
1019  typename _ExtractKey, typename _Equal,
1020  typename _H1, typename _H2, typename _Hash,
1021  typename _RehashPolicy, typename _Traits,
1022  typename =
1023  __detected_or_t<std::false_type, __has_load_factor, _RehashPolicy>>
1025 
1026  /// Specialization when rehash policy doesn't provide load factor management.
1027  template<typename _Key, typename _Value, typename _Alloc,
1028  typename _ExtractKey, typename _Equal,
1029  typename _H1, typename _H2, typename _Hash,
1030  typename _RehashPolicy, typename _Traits>
1031  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1032  _H1, _H2, _Hash, _RehashPolicy, _Traits,
1033  std::false_type>
1034  {
1035  };
1036 
1037  /// Specialization when rehash policy provide load factor management.
1038  template<typename _Key, typename _Value, typename _Alloc,
1039  typename _ExtractKey, typename _Equal,
1040  typename _H1, typename _H2, typename _Hash,
1041  typename _RehashPolicy, typename _Traits>
1042  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1043  _H1, _H2, _Hash, _RehashPolicy, _Traits,
1044  std::true_type>
1045  {
1046  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1047  _Equal, _H1, _H2, _Hash,
1048  _RehashPolicy, _Traits>;
1049 
1050  float
1051  max_load_factor() const noexcept
1052  {
1053  const __hashtable* __this = static_cast<const __hashtable*>(this);
1054  return __this->__rehash_policy().max_load_factor();
1055  }
1056 
1057  void
1058  max_load_factor(float __z)
1059  {
1060  __hashtable* __this = static_cast<__hashtable*>(this);
1061  __this->__rehash_policy(_RehashPolicy(__z));
1062  }
1063 
1064  void
1065  reserve(std::size_t __n)
1066  {
1067  __hashtable* __this = static_cast<__hashtable*>(this);
1068  __this->rehash(__builtin_ceil(__n / max_load_factor()));
1069  }
1070  };
1071 
1072  /**
1073  * Primary class template _Hashtable_ebo_helper.
1074  *
1075  * Helper class using EBO when it is not forbidden (the type is not
1076  * final) and when it is worth it (the type is empty.)
1077  */
1078  template<int _Nm, typename _Tp,
1079  bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1081 
1082  /// Specialization using EBO.
1083  template<int _Nm, typename _Tp>
1084  struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1085  : private _Tp
1086  {
1087  _Hashtable_ebo_helper() = default;
1088 
1089  template<typename _OtherTp>
1090  _Hashtable_ebo_helper(_OtherTp&& __tp)
1091  : _Tp(std::forward<_OtherTp>(__tp))
1092  { }
1093 
1094  static const _Tp&
1095  _S_cget(const _Hashtable_ebo_helper& __eboh)
1096  { return static_cast<const _Tp&>(__eboh); }
1097 
1098  static _Tp&
1099  _S_get(_Hashtable_ebo_helper& __eboh)
1100  { return static_cast<_Tp&>(__eboh); }
1101  };
1102 
1103  /// Specialization not using EBO.
1104  template<int _Nm, typename _Tp>
1105  struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1106  {
1107  _Hashtable_ebo_helper() = default;
1108 
1109  template<typename _OtherTp>
1110  _Hashtable_ebo_helper(_OtherTp&& __tp)
1111  : _M_tp(std::forward<_OtherTp>(__tp))
1112  { }
1113 
1114  static const _Tp&
1115  _S_cget(const _Hashtable_ebo_helper& __eboh)
1116  { return __eboh._M_tp; }
1117 
1118  static _Tp&
1119  _S_get(_Hashtable_ebo_helper& __eboh)
1120  { return __eboh._M_tp; }
1121 
1122  private:
1123  _Tp _M_tp;
1124  };
1125 
1126  /**
1127  * Primary class template _Local_iterator_base.
1128  *
1129  * Base class for local iterators, used to iterate within a bucket
1130  * but not between buckets.
1131  */
1132  template<typename _Key, typename _Value, typename _ExtractKey,
1133  typename _H1, typename _H2, typename _Hash,
1134  bool __cache_hash_code>
1136 
1137  /**
1138  * Primary class template _Hash_code_base.
1139  *
1140  * Encapsulates two policy issues that aren't quite orthogonal.
1141  * (1) the difference between using a ranged hash function and using
1142  * the combination of a hash function and a range-hashing function.
1143  * In the former case we don't have such things as hash codes, so
1144  * we have a dummy type as placeholder.
1145  * (2) Whether or not we cache hash codes. Caching hash codes is
1146  * meaningless if we have a ranged hash function.
1147  *
1148  * We also put the key extraction objects here, for convenience.
1149  * Each specialization derives from one or more of the template
1150  * parameters to benefit from Ebo. This is important as this type
1151  * is inherited in some cases by the _Local_iterator_base type used
1152  * to implement local_iterator and const_local_iterator. As with
1153  * any iterator type we prefer to make it as small as possible.
1154  *
1155  * Primary template is unused except as a hook for specializations.
1156  */
1157  template<typename _Key, typename _Value, typename _ExtractKey,
1158  typename _H1, typename _H2, typename _Hash,
1159  bool __cache_hash_code>
1161 
1162  /// Specialization: ranged hash function, no caching hash codes. H1
1163  /// and H2 are provided but ignored. We define a dummy hash code type.
1164  template<typename _Key, typename _Value, typename _ExtractKey,
1165  typename _H1, typename _H2, typename _Hash>
1166  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
1167  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1168  private _Hashtable_ebo_helper<1, _Hash>
1169  {
1170  private:
1173 
1174  protected:
1175  typedef void* __hash_code;
1177 
1178  // We need the default constructor for the local iterators and _Hashtable
1179  // default constructor.
1180  _Hash_code_base() = default;
1181 
1182  _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
1183  const _Hash& __h)
1184  : __ebo_extract_key(__ex), __ebo_hash(__h) { }
1185 
1186  __hash_code
1187  _M_hash_code(const _Key& __key) const
1188  { return 0; }
1189 
1190  std::size_t
1191  _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
1192  { return _M_ranged_hash()(__k, __n); }
1193 
1194  std::size_t
1195  _M_bucket_index(const __node_type* __p, std::size_t __n) const
1196  noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
1197  (std::size_t)0)) )
1198  { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); }
1199 
1200  void
1201  _M_store_code(__node_type*, __hash_code) const
1202  { }
1203 
1204  void
1205  _M_copy_code(__node_type*, const __node_type*) const
1206  { }
1207 
1208  void
1209  _M_swap(_Hash_code_base& __x)
1210  {
1211  std::swap(_M_extract(), __x._M_extract());
1212  std::swap(_M_ranged_hash(), __x._M_ranged_hash());
1213  }
1214 
1215  const _ExtractKey&
1216  _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1217 
1218  _ExtractKey&
1219  _M_extract() { return __ebo_extract_key::_S_get(*this); }
1220 
1221  const _Hash&
1222  _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
1223 
1224  _Hash&
1225  _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
1226  };
1227 
1228  // No specialization for ranged hash function while caching hash codes.
1229  // That combination is meaningless, and trying to do it is an error.
1230 
1231  /// Specialization: ranged hash function, cache hash codes. This
1232  /// combination is meaningless, so we provide only a declaration
1233  /// and no definition.
1234  template<typename _Key, typename _Value, typename _ExtractKey,
1235  typename _H1, typename _H2, typename _Hash>
1236  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1237 
1238  /// Specialization: hash function and range-hashing function, no
1239  /// caching of hash codes.
1240  /// Provides typedef and accessor required by C++ 11.
1241  template<typename _Key, typename _Value, typename _ExtractKey,
1242  typename _H1, typename _H2>
1243  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1244  _Default_ranged_hash, false>
1245  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1246  private _Hashtable_ebo_helper<1, _H1>,
1247  private _Hashtable_ebo_helper<2, _H2>
1248  {
1249  private:
1253 
1254  // Gives the local iterator implementation access to _M_bucket_index().
1255  friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1256  _Default_ranged_hash, false>;
1257 
1258  public:
1259  typedef _H1 hasher;
1260 
1261  hasher
1262  hash_function() const
1263  { return _M_h1(); }
1264 
1265  protected:
1266  typedef std::size_t __hash_code;
1268 
1269  // We need the default constructor for the local iterators and _Hashtable
1270  // default constructor.
1271  _Hash_code_base() = default;
1272 
1273  _Hash_code_base(const _ExtractKey& __ex,
1274  const _H1& __h1, const _H2& __h2,
1275  const _Default_ranged_hash&)
1276  : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1277 
1278  __hash_code
1279  _M_hash_code(const _Key& __k) const
1280  { return _M_h1()(__k); }
1281 
1282  std::size_t
1283  _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1284  { return _M_h2()(__c, __n); }
1285 
1286  std::size_t
1287  _M_bucket_index(const __node_type* __p, std::size_t __n) const
1288  noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
1289  && noexcept(declval<const _H2&>()((__hash_code)0,
1290  (std::size_t)0)) )
1291  { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); }
1292 
1293  void
1294  _M_store_code(__node_type*, __hash_code) const
1295  { }
1296 
1297  void
1298  _M_copy_code(__node_type*, const __node_type*) const
1299  { }
1300 
1301  void
1302  _M_swap(_Hash_code_base& __x)
1303  {
1304  std::swap(_M_extract(), __x._M_extract());
1305  std::swap(_M_h1(), __x._M_h1());
1306  std::swap(_M_h2(), __x._M_h2());
1307  }
1308 
1309  const _ExtractKey&
1310  _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1311 
1312  _ExtractKey&
1313  _M_extract() { return __ebo_extract_key::_S_get(*this); }
1314 
1315  const _H1&
1316  _M_h1() const { return __ebo_h1::_S_cget(*this); }
1317 
1318  _H1&
1319  _M_h1() { return __ebo_h1::_S_get(*this); }
1320 
1321  const _H2&
1322  _M_h2() const { return __ebo_h2::_S_cget(*this); }
1323 
1324  _H2&
1325  _M_h2() { return __ebo_h2::_S_get(*this); }
1326  };
1327 
1328  /// Specialization: hash function and range-hashing function,
1329  /// caching hash codes. H is provided but ignored. Provides
1330  /// typedef and accessor required by C++ 11.
1331  template<typename _Key, typename _Value, typename _ExtractKey,
1332  typename _H1, typename _H2>
1333  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1334  _Default_ranged_hash, true>
1335  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1336  private _Hashtable_ebo_helper<1, _H1>,
1337  private _Hashtable_ebo_helper<2, _H2>
1338  {
1339  private:
1340  // Gives the local iterator implementation access to _M_h2().
1341  friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1342  _Default_ranged_hash, true>;
1343 
1347 
1348  public:
1349  typedef _H1 hasher;
1350 
1351  hasher
1352  hash_function() const
1353  { return _M_h1(); }
1354 
1355  protected:
1356  typedef std::size_t __hash_code;
1358 
1359  // We need the default constructor for _Hashtable default constructor.
1360  _Hash_code_base() = default;
1361  _Hash_code_base(const _ExtractKey& __ex,
1362  const _H1& __h1, const _H2& __h2,
1363  const _Default_ranged_hash&)
1364  : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1365 
1366  __hash_code
1367  _M_hash_code(const _Key& __k) const
1368  { return _M_h1()(__k); }
1369 
1370  std::size_t
1371  _M_bucket_index(const _Key&, __hash_code __c,
1372  std::size_t __n) const
1373  { return _M_h2()(__c, __n); }
1374 
1375  std::size_t
1376  _M_bucket_index(const __node_type* __p, std::size_t __n) const
1377  noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
1378  (std::size_t)0)) )
1379  { return _M_h2()(__p->_M_hash_code, __n); }
1380 
1381  void
1382  _M_store_code(__node_type* __n, __hash_code __c) const
1383  { __n->_M_hash_code = __c; }
1384 
1385  void
1386  _M_copy_code(__node_type* __to, const __node_type* __from) const
1387  { __to->_M_hash_code = __from->_M_hash_code; }
1388 
1389  void
1390  _M_swap(_Hash_code_base& __x)
1391  {
1392  std::swap(_M_extract(), __x._M_extract());
1393  std::swap(_M_h1(), __x._M_h1());
1394  std::swap(_M_h2(), __x._M_h2());
1395  }
1396 
1397  const _ExtractKey&
1398  _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1399 
1400  _ExtractKey&
1401  _M_extract() { return __ebo_extract_key::_S_get(*this); }
1402 
1403  const _H1&
1404  _M_h1() const { return __ebo_h1::_S_cget(*this); }
1405 
1406  _H1&
1407  _M_h1() { return __ebo_h1::_S_get(*this); }
1408 
1409  const _H2&
1410  _M_h2() const { return __ebo_h2::_S_cget(*this); }
1411 
1412  _H2&
1413  _M_h2() { return __ebo_h2::_S_get(*this); }
1414  };
1415 
1416  /**
1417  * Primary class template _Equal_helper.
1418  *
1419  */
1420  template <typename _Key, typename _Value, typename _ExtractKey,
1421  typename _Equal, typename _HashCodeType,
1422  bool __cache_hash_code>
1424 
1425  /// Specialization.
1426  template<typename _Key, typename _Value, typename _ExtractKey,
1427  typename _Equal, typename _HashCodeType>
1428  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1429  {
1430  static bool
1431  _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1432  const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1433  { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); }
1434  };
1435 
1436  /// Specialization.
1437  template<typename _Key, typename _Value, typename _ExtractKey,
1438  typename _Equal, typename _HashCodeType>
1439  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1440  {
1441  static bool
1442  _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1443  const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1444  { return __eq(__k, __extract(__n->_M_v())); }
1445  };
1446 
1447 
1448  /// Partial specialization used when nodes contain a cached hash code.
1449  template<typename _Key, typename _Value, typename _ExtractKey,
1450  typename _H1, typename _H2, typename _Hash>
1451  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1452  _H1, _H2, _Hash, true>
1453  : private _Hashtable_ebo_helper<0, _H2>
1454  {
1455  protected:
1457  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1458  _H1, _H2, _Hash, true>;
1459 
1460  _Local_iterator_base() = default;
1461  _Local_iterator_base(const __hash_code_base& __base,
1463  std::size_t __bkt, std::size_t __bkt_count)
1464  : __base_type(__base._M_h2()),
1465  _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1466 
1467  void
1468  _M_incr()
1469  {
1470  _M_cur = _M_cur->_M_next();
1471  if (_M_cur)
1472  {
1473  std::size_t __bkt
1474  = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1475  _M_bucket_count);
1476  if (__bkt != _M_bucket)
1477  _M_cur = nullptr;
1478  }
1479  }
1480 
1481  _Hash_node<_Value, true>* _M_cur;
1482  std::size_t _M_bucket;
1483  std::size_t _M_bucket_count;
1484 
1485  public:
1486  const void*
1487  _M_curr() const { return _M_cur; } // for equality ops
1488 
1489  std::size_t
1490  _M_get_bucket() const { return _M_bucket; } // for debug mode
1491  };
1492 
1493  // Uninitialized storage for a _Hash_code_base.
1494  // This type is DefaultConstructible and Assignable even if the
1495  // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1496  // can be DefaultConstructible and Assignable.
1497  template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1498  struct _Hash_code_storage
1499  {
1500  __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1501 
1502  _Tp*
1503  _M_h() { return _M_storage._M_ptr(); }
1504 
1505  const _Tp*
1506  _M_h() const { return _M_storage._M_ptr(); }
1507  };
1508 
1509  // Empty partial specialization for empty _Hash_code_base types.
1510  template<typename _Tp>
1511  struct _Hash_code_storage<_Tp, true>
1512  {
1513  static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1514 
1515  // As _Tp is an empty type there will be no bytes written/read through
1516  // the cast pointer, so no strict-aliasing violation.
1517  _Tp*
1518  _M_h() { return reinterpret_cast<_Tp*>(this); }
1519 
1520  const _Tp*
1521  _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1522  };
1523 
1524  template<typename _Key, typename _Value, typename _ExtractKey,
1525  typename _H1, typename _H2, typename _Hash>
1526  using __hash_code_for_local_iter
1527  = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1528  _H1, _H2, _Hash, false>>;
1529 
1530  // Partial specialization used when hash codes are not cached
1531  template<typename _Key, typename _Value, typename _ExtractKey,
1532  typename _H1, typename _H2, typename _Hash>
1533  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1534  _H1, _H2, _Hash, false>
1535  : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
1536  {
1537  protected:
1538  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1539  _H1, _H2, _Hash, false>;
1540 
1541  _Local_iterator_base() : _M_bucket_count(-1) { }
1542 
1543  _Local_iterator_base(const __hash_code_base& __base,
1545  std::size_t __bkt, std::size_t __bkt_count)
1546  : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1547  { _M_init(__base); }
1548 
1550  {
1551  if (_M_bucket_count != -1)
1552  _M_destroy();
1553  }
1554 
1556  : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
1557  _M_bucket_count(__iter._M_bucket_count)
1558  {
1559  if (_M_bucket_count != -1)
1560  _M_init(*__iter._M_h());
1561  }
1562 
1564  operator=(const _Local_iterator_base& __iter)
1565  {
1566  if (_M_bucket_count != -1)
1567  _M_destroy();
1568  _M_cur = __iter._M_cur;
1569  _M_bucket = __iter._M_bucket;
1570  _M_bucket_count = __iter._M_bucket_count;
1571  if (_M_bucket_count != -1)
1572  _M_init(*__iter._M_h());
1573  return *this;
1574  }
1575 
1576  void
1577  _M_incr()
1578  {
1579  _M_cur = _M_cur->_M_next();
1580  if (_M_cur)
1581  {
1582  std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
1583  _M_bucket_count);
1584  if (__bkt != _M_bucket)
1585  _M_cur = nullptr;
1586  }
1587  }
1588 
1589  _Hash_node<_Value, false>* _M_cur;
1590  std::size_t _M_bucket;
1591  std::size_t _M_bucket_count;
1592 
1593  void
1594  _M_init(const __hash_code_base& __base)
1595  { ::new(this->_M_h()) __hash_code_base(__base); }
1596 
1597  void
1598  _M_destroy() { this->_M_h()->~__hash_code_base(); }
1599 
1600  public:
1601  const void*
1602  _M_curr() const { return _M_cur; } // for equality ops and debug mode
1603 
1604  std::size_t
1605  _M_get_bucket() const { return _M_bucket; } // for debug mode
1606  };
1607 
1608  template<typename _Key, typename _Value, typename _ExtractKey,
1609  typename _H1, typename _H2, typename _Hash, bool __cache>
1610  inline bool
1611  operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1612  _H1, _H2, _Hash, __cache>& __x,
1613  const _Local_iterator_base<_Key, _Value, _ExtractKey,
1614  _H1, _H2, _Hash, __cache>& __y)
1615  { return __x._M_curr() == __y._M_curr(); }
1616 
1617  template<typename _Key, typename _Value, typename _ExtractKey,
1618  typename _H1, typename _H2, typename _Hash, bool __cache>
1619  inline bool
1620  operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1621  _H1, _H2, _Hash, __cache>& __x,
1622  const _Local_iterator_base<_Key, _Value, _ExtractKey,
1623  _H1, _H2, _Hash, __cache>& __y)
1624  { return __x._M_curr() != __y._M_curr(); }
1625 
1626  /// local iterators
1627  template<typename _Key, typename _Value, typename _ExtractKey,
1628  typename _H1, typename _H2, typename _Hash,
1629  bool __constant_iterators, bool __cache>
1631  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1632  _H1, _H2, _Hash, __cache>
1633  {
1634  private:
1635  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1636  _H1, _H2, _Hash, __cache>;
1637  using __hash_code_base = typename __base_type::__hash_code_base;
1638  public:
1639  typedef _Value value_type;
1640  typedef typename std::conditional<__constant_iterators,
1641  const _Value*, _Value*>::type
1642  pointer;
1643  typedef typename std::conditional<__constant_iterators,
1644  const _Value&, _Value&>::type
1645  reference;
1646  typedef std::ptrdiff_t difference_type;
1648 
1649  _Local_iterator() = default;
1650 
1651  _Local_iterator(const __hash_code_base& __base,
1653  std::size_t __bkt, std::size_t __bkt_count)
1654  : __base_type(__base, __p, __bkt, __bkt_count)
1655  { }
1656 
1657  reference
1658  operator*() const
1659  { return this->_M_cur->_M_v(); }
1660 
1661  pointer
1662  operator->() const
1663  { return this->_M_cur->_M_valptr(); }
1664 
1666  operator++()
1667  {
1668  this->_M_incr();
1669  return *this;
1670  }
1671 
1673  operator++(int)
1674  {
1675  _Local_iterator __tmp(*this);
1676  this->_M_incr();
1677  return __tmp;
1678  }
1679  };
1680 
1681  /// local const_iterators
1682  template<typename _Key, typename _Value, typename _ExtractKey,
1683  typename _H1, typename _H2, typename _Hash,
1684  bool __constant_iterators, bool __cache>
1686  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1687  _H1, _H2, _Hash, __cache>
1688  {
1689  private:
1690  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1691  _H1, _H2, _Hash, __cache>;
1692  using __hash_code_base = typename __base_type::__hash_code_base;
1693 
1694  public:
1695  typedef _Value value_type;
1696  typedef const _Value* pointer;
1697  typedef const _Value& reference;
1698  typedef std::ptrdiff_t difference_type;
1700 
1701  _Local_const_iterator() = default;
1702 
1703  _Local_const_iterator(const __hash_code_base& __base,
1705  std::size_t __bkt, std::size_t __bkt_count)
1706  : __base_type(__base, __p, __bkt, __bkt_count)
1707  { }
1708 
1709  _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1710  _H1, _H2, _Hash,
1711  __constant_iterators,
1712  __cache>& __x)
1713  : __base_type(__x)
1714  { }
1715 
1716  reference
1717  operator*() const
1718  { return this->_M_cur->_M_v(); }
1719 
1720  pointer
1721  operator->() const
1722  { return this->_M_cur->_M_valptr(); }
1723 
1725  operator++()
1726  {
1727  this->_M_incr();
1728  return *this;
1729  }
1730 
1732  operator++(int)
1733  {
1734  _Local_const_iterator __tmp(*this);
1735  this->_M_incr();
1736  return __tmp;
1737  }
1738  };
1739 
1740  /**
1741  * Primary class template _Hashtable_base.
1742  *
1743  * Helper class adding management of _Equal functor to
1744  * _Hash_code_base type.
1745  *
1746  * Base class templates are:
1747  * - __detail::_Hash_code_base
1748  * - __detail::_Hashtable_ebo_helper
1749  */
1750  template<typename _Key, typename _Value,
1751  typename _ExtractKey, typename _Equal,
1752  typename _H1, typename _H2, typename _Hash, typename _Traits>
1753  struct _Hashtable_base
1754  : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1755  _Traits::__hash_cached::value>,
1756  private _Hashtable_ebo_helper<0, _Equal>
1757  {
1758  public:
1759  typedef _Key key_type;
1760  typedef _Value value_type;
1761  typedef _Equal key_equal;
1762  typedef std::size_t size_type;
1763  typedef std::ptrdiff_t difference_type;
1764 
1765  using __traits_type = _Traits;
1766  using __hash_cached = typename __traits_type::__hash_cached;
1767  using __constant_iterators = typename __traits_type::__constant_iterators;
1768  using __unique_keys = typename __traits_type::__unique_keys;
1769 
1770  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1771  _H1, _H2, _Hash,
1772  __hash_cached::value>;
1773 
1774  using __hash_code = typename __hash_code_base::__hash_code;
1775  using __node_type = typename __hash_code_base::__node_type;
1776 
1777  using iterator = __detail::_Node_iterator<value_type,
1778  __constant_iterators::value,
1779  __hash_cached::value>;
1780 
1781  using const_iterator = __detail::_Node_const_iterator<value_type,
1782  __constant_iterators::value,
1783  __hash_cached::value>;
1784 
1785  using local_iterator = __detail::_Local_iterator<key_type, value_type,
1786  _ExtractKey, _H1, _H2, _Hash,
1787  __constant_iterators::value,
1788  __hash_cached::value>;
1789 
1790  using const_local_iterator = __detail::_Local_const_iterator<key_type,
1791  value_type,
1792  _ExtractKey, _H1, _H2, _Hash,
1793  __constant_iterators::value,
1794  __hash_cached::value>;
1795 
1796  using __ireturn_type = typename std::conditional<__unique_keys::value,
1798  iterator>::type;
1799  private:
1800  using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1801  using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1802  __hash_code, __hash_cached::value>;
1803 
1804  protected:
1805  _Hashtable_base() = default;
1806  _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1807  const _Hash& __hash, const _Equal& __eq)
1808  : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1809  { }
1810 
1811  bool
1812  _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1813  {
1814  return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1815  __k, __c, __n);
1816  }
1817 
1818  void
1819  _M_swap(_Hashtable_base& __x)
1820  {
1821  __hash_code_base::_M_swap(__x);
1822  std::swap(_M_eq(), __x._M_eq());
1823  }
1824 
1825  const _Equal&
1826  _M_eq() const { return _EqualEBO::_S_cget(*this); }
1827 
1828  _Equal&
1829  _M_eq() { return _EqualEBO::_S_get(*this); }
1830  };
1831 
1832  /**
1833  * struct _Equality_base.
1834  *
1835  * Common types and functions for class _Equality.
1836  */
1838  {
1839  protected:
1840  template<typename _Uiterator>
1841  static bool
1842  _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1843  };
1844 
1845  // See std::is_permutation in N3068.
1846  template<typename _Uiterator>
1847  bool
1848  _Equality_base::
1849  _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1850  _Uiterator __first2)
1851  {
1852  for (; __first1 != __last1; ++__first1, ++__first2)
1853  if (!(*__first1 == *__first2))
1854  break;
1855 
1856  if (__first1 == __last1)
1857  return true;
1858 
1859  _Uiterator __last2 = __first2;
1860  std::advance(__last2, std::distance(__first1, __last1));
1861 
1862  for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1863  {
1864  _Uiterator __tmp = __first1;
1865  while (__tmp != __it1 && !bool(*__tmp == *__it1))
1866  ++__tmp;
1867 
1868  // We've seen this one before.
1869  if (__tmp != __it1)
1870  continue;
1871 
1872  std::ptrdiff_t __n2 = 0;
1873  for (__tmp = __first2; __tmp != __last2; ++__tmp)
1874  if (*__tmp == *__it1)
1875  ++__n2;
1876 
1877  if (!__n2)
1878  return false;
1879 
1880  std::ptrdiff_t __n1 = 0;
1881  for (__tmp = __it1; __tmp != __last1; ++__tmp)
1882  if (*__tmp == *__it1)
1883  ++__n1;
1884 
1885  if (__n1 != __n2)
1886  return false;
1887  }
1888  return true;
1889  }
1890 
1891  /**
1892  * Primary class template _Equality.
1893  *
1894  * This is for implementing equality comparison for unordered
1895  * containers, per N3068, by John Lakos and Pablo Halpern.
1896  * Algorithmically, we follow closely the reference implementations
1897  * therein.
1898  */
1899  template<typename _Key, typename _Value, typename _Alloc,
1900  typename _ExtractKey, typename _Equal,
1901  typename _H1, typename _H2, typename _Hash,
1902  typename _RehashPolicy, typename _Traits,
1903  bool _Unique_keys = _Traits::__unique_keys::value>
1904  struct _Equality;
1905 
1906  /// Specialization.
1907  template<typename _Key, typename _Value, typename _Alloc,
1908  typename _ExtractKey, typename _Equal,
1909  typename _H1, typename _H2, typename _Hash,
1910  typename _RehashPolicy, typename _Traits>
1911  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1912  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1913  {
1914  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1915  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1916 
1917  bool
1918  _M_equal(const __hashtable&) const;
1919  };
1920 
1921  template<typename _Key, typename _Value, typename _Alloc,
1922  typename _ExtractKey, typename _Equal,
1923  typename _H1, typename _H2, typename _Hash,
1924  typename _RehashPolicy, typename _Traits>
1925  bool
1926  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1927  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1928  _M_equal(const __hashtable& __other) const
1929  {
1930  const __hashtable* __this = static_cast<const __hashtable*>(this);
1931 
1932  if (__this->size() != __other.size())
1933  return false;
1934 
1935  for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1936  {
1937  const auto __ity = __other.find(_ExtractKey()(*__itx));
1938  if (__ity == __other.end() || !bool(*__ity == *__itx))
1939  return false;
1940  }
1941  return true;
1942  }
1943 
1944  /// Specialization.
1945  template<typename _Key, typename _Value, typename _Alloc,
1946  typename _ExtractKey, typename _Equal,
1947  typename _H1, typename _H2, typename _Hash,
1948  typename _RehashPolicy, typename _Traits>
1949  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1950  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1951  : public _Equality_base
1952  {
1953  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1954  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1955 
1956  bool
1957  _M_equal(const __hashtable&) const;
1958  };
1959 
1960  template<typename _Key, typename _Value, typename _Alloc,
1961  typename _ExtractKey, typename _Equal,
1962  typename _H1, typename _H2, typename _Hash,
1963  typename _RehashPolicy, typename _Traits>
1964  bool
1965  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1966  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1967  _M_equal(const __hashtable& __other) const
1968  {
1969  const __hashtable* __this = static_cast<const __hashtable*>(this);
1970 
1971  if (__this->size() != __other.size())
1972  return false;
1973 
1974  for (auto __itx = __this->begin(); __itx != __this->end();)
1975  {
1976  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1977  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1978 
1979  if (std::distance(__xrange.first, __xrange.second)
1980  != std::distance(__yrange.first, __yrange.second))
1981  return false;
1982 
1983  if (!_S_is_permutation(__xrange.first, __xrange.second,
1984  __yrange.first))
1985  return false;
1986 
1987  __itx = __xrange.second;
1988  }
1989  return true;
1990  }
1991 
1992  /**
1993  * This type deals with all allocation and keeps an allocator instance through
1994  * inheritance to benefit from EBO when possible.
1995  */
1996  template<typename _NodeAlloc>
1997  struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
1998  {
1999  private:
2000  using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
2001  public:
2002  using __node_type = typename _NodeAlloc::value_type;
2003  using __node_alloc_type = _NodeAlloc;
2004  // Use __gnu_cxx to benefit from _S_always_equal and al.
2005  using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
2006 
2007  using __value_type = typename __node_type::value_type;
2008  using __value_alloc_type =
2009  __alloc_rebind<__node_alloc_type, __value_type>;
2010  using __value_alloc_traits = std::allocator_traits<__value_alloc_type>;
2011 
2012  using __node_base = __detail::_Hash_node_base;
2013  using __bucket_type = __node_base*;
2014  using __bucket_alloc_type =
2015  __alloc_rebind<__node_alloc_type, __bucket_type>;
2016  using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
2017 
2018  _Hashtable_alloc() = default;
2019  _Hashtable_alloc(const _Hashtable_alloc&) = default;
2020  _Hashtable_alloc(_Hashtable_alloc&&) = default;
2021 
2022  template<typename _Alloc>
2023  _Hashtable_alloc(_Alloc&& __a)
2024  : __ebo_node_alloc(std::forward<_Alloc>(__a))
2025  { }
2026 
2027  __node_alloc_type&
2028  _M_node_allocator()
2029  { return __ebo_node_alloc::_S_get(*this); }
2030 
2031  const __node_alloc_type&
2032  _M_node_allocator() const
2033  { return __ebo_node_alloc::_S_cget(*this); }
2034 
2035  template<typename... _Args>
2036  __node_type*
2037  _M_allocate_node(_Args&&... __args);
2038 
2039  void
2040  _M_deallocate_node(__node_type* __n);
2041 
2042  // Deallocate the linked list of nodes pointed to by __n
2043  void
2044  _M_deallocate_nodes(__node_type* __n);
2045 
2046  __bucket_type*
2047  _M_allocate_buckets(std::size_t __n);
2048 
2049  void
2050  _M_deallocate_buckets(__bucket_type*, std::size_t __n);
2051  };
2052 
2053  // Definitions of class template _Hashtable_alloc's out-of-line member
2054  // functions.
2055  template<typename _NodeAlloc>
2056  template<typename... _Args>
2057  typename _Hashtable_alloc<_NodeAlloc>::__node_type*
2059  {
2060  auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
2061  __node_type* __n = std::__addressof(*__nptr);
2062  __try
2063  {
2064  __value_alloc_type __a(_M_node_allocator());
2065  ::new ((void*)__n) __node_type;
2066  __value_alloc_traits::construct(__a, __n->_M_valptr(),
2067  std::forward<_Args>(__args)...);
2068  return __n;
2069  }
2070  __catch(...)
2071  {
2072  __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
2073  __throw_exception_again;
2074  }
2075  }
2076 
2077  template<typename _NodeAlloc>
2078  void
2080  {
2081  typedef typename __node_alloc_traits::pointer _Ptr;
2082  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
2083  __value_alloc_type __a(_M_node_allocator());
2084  __value_alloc_traits::destroy(__a, __n->_M_valptr());
2085  __n->~__node_type();
2086  __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
2087  }
2088 
2089  template<typename _NodeAlloc>
2090  void
2092  {
2093  while (__n)
2094  {
2095  __node_type* __tmp = __n;
2096  __n = __n->_M_next();
2097  _M_deallocate_node(__tmp);
2098  }
2099  }
2100 
2101  template<typename _NodeAlloc>
2104  {
2105  __bucket_alloc_type __alloc(_M_node_allocator());
2106 
2107  auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n);
2108  __bucket_type* __p = std::__addressof(*__ptr);
2109  __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
2110  return __p;
2111  }
2112 
2113  template<typename _NodeAlloc>
2114  void
2116  std::size_t __n)
2117  {
2118  typedef typename __bucket_alloc_traits::pointer _Ptr;
2119  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2120  __bucket_alloc_type __alloc(_M_node_allocator());
2121  __bucket_alloc_traits::deallocate(__alloc, __ptr, __n);
2122  }
2123 
2124  //@} hashtable-detail
2125 _GLIBCXX_END_NAMESPACE_VERSION
2126 } // namespace __detail
2127 } // namespace std
2128 
2129 #endif // _HASHTABLE_POLICY_H
Rehash policy providing power of 2 bucket numbers. Avoids modulo operations.
Uniform interface to C++98 and C++11 allocators.
Uniform interface to all pointer-like types.
Definition: ptr_traits.h:78
Default ranged hash function H. In principle it should be a function object composed from objects of ...
complex< _Tp > operator*(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x times y.
Definition: complex:386
Node iterators, used to iterate through all the hashtable.
tuple_element
Definition: array:351
_GLIBCXX17_INLINE constexpr piecewise_construct_t piecewise_construct
piecewise_construct
Definition: stl_pair.h:79
Primary class template, tuple.
Definition: tuple:53
initializer_list
constexpr _Tp && forward(typename std::remove_reference< _Tp >::type &__t) noexcept
Forward an lvalue.
Definition: move.h:73
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:87
is_empty
Definition: type_traits:707
integral_constant
Definition: type_traits:69
ISO C++ entities toplevel namespace is std.
constexpr pair< typename __decay_and_strip< _T1 >::__type, typename __decay_and_strip< _T2 >::__type > make_pair(_T1 &&__x, _T2 &&__y)
A convenience wrapper for creating a pair from two objects.
Definition: stl_pair.h:519
constexpr _Tp * __addressof(_Tp &__r) noexcept
Same as C++11 std::addressof.
Definition: move.h:47
Node const_iterators, used to iterate through all the hashtable.
_GLIBCXX17_CONSTEXPR iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
Range hashing function assuming that second arg is a power of 2.
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:198
_GLIBCXX14_CONSTEXPR std::size_t __clp2(std::size_t __n) noexcept
Compute closest power of 2.
Default value for rehash policy. Bucket size is (usually) the smallest prime that keeps the load fact...
_GLIBCXX17_CONSTEXPR void advance(_InputIterator &__i, _Distance __n)
A generalization of pointer arithmetic.
Uniform interface to all allocator types.
Common iterator class.
Forward iterators support a superset of input iterator operations.
Default range hashing function: use division to fold a large number into the range [0...
Marking input iterators.
Base class for node iterators.