29 #if !defined __cplusplus || defined _GLIBCXX_INCLUDE_NEXT_C_HEADERS 30 # include_next <math.h> 33 #ifndef _GLIBCXX_MATH_H 34 #define _GLIBCXX_MATH_H 1 62 #if _GLIBCXX_USE_C99_MATH 63 using std::fpclassify;
70 using std::isgreaterequal;
72 using std::islessequal;
73 using std::islessgreater;
74 using std::isunordered;
77 #if __cplusplus >= 201103L && defined(_GLIBCXX_USE_C99_MATH_TR1) 101 using std::nearbyint;
102 using std::nextafter;
103 using std::nexttoward;
104 using std::remainder;
112 #endif // C++11 && _GLIBCXX_USE_C99_MATH_TR1 114 #if __STDCPP_WANT_MATH_SPEC_FUNCS__ == 1 178 #endif // __STDCPP_WANT_MATH_SPEC_FUNCS__ 180 #endif // _GLIBCXX_MATH_H 181 #endif // __cplusplus float comp_ellint_3f(float __k, float __nu)
Return the complete elliptic integral of the third kind for float modulus k.
float cyl_bessel_jf(float __nu, float __x)
long double laguerrel(unsigned int __n, long double __x)
float sph_neumannf(unsigned int __n, float __x)
float legendref(unsigned int __l, float __x)
float ellint_2f(float __k, float __phi)
Return the incomplete elliptic integral of the second kind for float argument.
long double sph_bessell(unsigned int __n, long double __x)
std::complex< _Tp > asin(const std::complex< _Tp > &)
asin(__z) [8.1.3].
float assoc_laguerref(unsigned int __n, unsigned int __m, float __x)
float laguerref(unsigned int __n, float __x)
__gnu_cxx::__promote< _Tp >::__type sph_bessel(unsigned int __n, _Tp __x)
long double riemann_zetal(long double __s)
long double comp_ellint_1l(long double __k)
std::complex< _Tp > atanh(const std::complex< _Tp > &)
atanh(__z) [8.1.7].
long double cyl_bessel_jl(long double __nu, long double __x)
long double comp_ellint_3l(long double __k, long double __nu)
Return the complete elliptic integral of the third kind for long double modulus k.
float ellint_1f(float __k, float __phi)
__gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_2(_Tp __k, _Tpp __phi)
float sph_besself(unsigned int __n, float __x)
float hermitef(unsigned int __n, float __x)
_Tp abs(const complex< _Tp > &)
Return magnitude of z.
long double ellint_1l(long double __k, long double __phi)
complex< _Tp > sqrt(const complex< _Tp > &)
Return complex square root of z.
long double ellint_2l(long double __k, long double __phi)
Return the incomplete elliptic integral of the second kind .
complex< _Tp > cos(const complex< _Tp > &)
Return complex cosine of z.
__gnu_cxx::__promote< _Tp >::__type hermite(unsigned int __n, _Tp __x)
float comp_ellint_2f(float __k)
__gnu_cxx::__promote_2< _Tpa, _Tpb >::__type beta(_Tpa __a, _Tpb __b)
long double assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x)
float assoc_legendref(unsigned int __l, unsigned int __m, float __x)
complex< _Tp > exp(const complex< _Tp > &)
Return complex base e exponential of z.
float comp_ellint_1f(float __k)
complex< _Tp > tan(const complex< _Tp > &)
Return complex tangent of z.
__gnu_cxx::__promote< _Tp >::__type laguerre(unsigned int __n, _Tp __x)
std::complex< _Tp > asinh(const std::complex< _Tp > &)
asinh(__z) [8.1.6].
std::complex< _Tp > acos(const std::complex< _Tp > &)
acos(__z) [8.1.2].
__gnu_cxx::__promote< _Tp >::__type comp_ellint_2(_Tp __k)
long double cyl_bessel_kl(long double __nu, long double __x)
float sph_legendref(unsigned int __l, unsigned int __m, float __theta)
__gnu_cxx::__promote< _Tp >::__type riemann_zeta(_Tp __s)
__gnu_cxx::__promote< _Tp >::__type comp_ellint_1(_Tp __k)
__gnu_cxx::__promote< _Tp >::__type sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
long double cyl_bessel_il(long double __nu, long double __x)
long double assoc_legendrel(unsigned int __l, unsigned int __m, long double __x)
float betaf(float __a, float __b)
__gnu_cxx::__promote< _Tp >::__type assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
__gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_1(_Tp __k, _Tpp __phi)
complex< _Tp > cosh(const complex< _Tp > &)
Return complex hyperbolic cosine of z.
__gnu_cxx::__promote< _Tp >::__type expint(_Tp __x)
__gnu_cxx::__promote_2< _Tp, _Tpn >::__type comp_ellint_3(_Tp __k, _Tpn __nu)
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_k(_Tpnu __nu, _Tp __x)
long double sph_legendrel(unsigned int __l, unsigned int __m, long double __theta)
_Tp fabs(const std::complex< _Tp > &)
fabs(__z) [8.1.8].
std::complex< _Tp > acosh(const std::complex< _Tp > &)
acosh(__z) [8.1.5].
long double expintl(long double __x)
long double comp_ellint_2l(long double __k)
long double hermitel(unsigned int __n, long double __x)
float cyl_bessel_if(float __nu, float __x)
long double cyl_neumannl(long double __nu, long double __x)
long double betal(long double __a, long double __b)
complex< _Tp > log10(const complex< _Tp > &)
Return complex base 10 logarithm of z.
complex< _Tp > sin(const complex< _Tp > &)
Return complex sine of z.
complex< _Tp > pow(const complex< _Tp > &, int)
Return x to the y'th power.
__gnu_cxx::__promote< _Tp >::__type sph_neumann(unsigned int __n, _Tp __x)
float cyl_neumannf(float __nu, float __x)
complex< _Tp > log(const complex< _Tp > &)
Return complex natural logarithm of z.
complex< _Tp > tanh(const complex< _Tp > &)
Return complex hyperbolic tangent of z.
__gnu_cxx::__promote_3< _Tp, _Tpn, _Tpp >::__type ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
Return the incomplete elliptic integral of the third kind .
complex< _Tp > sinh(const complex< _Tp > &)
Return complex hyperbolic sine of z.
float riemann_zetaf(float __s)
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_i(_Tpnu __nu, _Tp __x)
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_neumann(_Tpnu __nu, _Tp __x)
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_j(_Tpnu __nu, _Tp __x)
long double legendrel(unsigned int __l, long double __x)
float cyl_bessel_kf(float __nu, float __x)
float ellint_3f(float __k, float __nu, float __phi)
Return the incomplete elliptic integral of the third kind for float argument.
std::complex< _Tp > atan(const std::complex< _Tp > &)
atan(__z) [8.1.4].
long double sph_neumannl(unsigned int __n, long double __x)
__gnu_cxx::__promote< _Tp >::__type assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
__gnu_cxx::__promote< _Tp >::__type legendre(unsigned int __l, _Tp __x)
long double ellint_3l(long double __k, long double __nu, long double __phi)
Return the incomplete elliptic integral of the third kind .