libstdc++
bits/hashtable.h
Go to the documentation of this file.
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2016 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 
37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 
41  template<typename _Tp, typename _Hash>
42  using __cache_default
43  = __not_<__and_<// Do not cache for fast hasher.
44  __is_fast_hash<_Hash>,
45  // Mandatory to have erase not throwing.
46  __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47 
48  /**
49  * Primary class template _Hashtable.
50  *
51  * @ingroup hashtable-detail
52  *
53  * @tparam _Value CopyConstructible type.
54  *
55  * @tparam _Key CopyConstructible type.
56  *
57  * @tparam _Alloc An allocator type
58  * ([lib.allocator.requirements]) whose _Alloc::value_type is
59  * _Value. As a conforming extension, we allow for
60  * _Alloc::value_type != _Value.
61  *
62  * @tparam _ExtractKey Function object that takes an object of type
63  * _Value and returns a value of type _Key.
64  *
65  * @tparam _Equal Function object that takes two objects of type k
66  * and returns a bool-like value that is true if the two objects
67  * are considered equal.
68  *
69  * @tparam _H1 The hash function. A unary function object with
70  * argument type _Key and result type size_t. Return values should
71  * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72  *
73  * @tparam _H2 The range-hashing function (in the terminology of
74  * Tavori and Dreizin). A binary function object whose argument
75  * types and result type are all size_t. Given arguments r and N,
76  * the return value is in the range [0, N).
77  *
78  * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
79  * binary function whose argument types are _Key and size_t and
80  * whose result type is size_t. Given arguments k and N, the
81  * return value is in the range [0, N). Default: hash(k, N) =
82  * h2(h1(k), N). If _Hash is anything other than the default, _H1
83  * and _H2 are ignored.
84  *
85  * @tparam _RehashPolicy Policy class with three members, all of
86  * which govern the bucket count. _M_next_bkt(n) returns a bucket
87  * count no smaller than n. _M_bkt_for_elements(n) returns a
88  * bucket count appropriate for an element count of n.
89  * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90  * current bucket count is n_bkt and the current element count is
91  * n_elt, we need to increase the bucket count. If so, returns
92  * make_pair(true, n), where n is the new bucket count. If not,
93  * returns make_pair(false, <anything>)
94  *
95  * @tparam _Traits Compile-time class with three boolean
96  * std::integral_constant members: __cache_hash_code, __constant_iterators,
97  * __unique_keys.
98  *
99  * Each _Hashtable data structure has:
100  *
101  * - _Bucket[] _M_buckets
102  * - _Hash_node_base _M_before_begin
103  * - size_type _M_bucket_count
104  * - size_type _M_element_count
105  *
106  * with _Bucket being _Hash_node* and _Hash_node containing:
107  *
108  * - _Hash_node* _M_next
109  * - Tp _M_value
110  * - size_t _M_hash_code if cache_hash_code is true
111  *
112  * In terms of Standard containers the hashtable is like the aggregation of:
113  *
114  * - std::forward_list<_Node> containing the elements
115  * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116  *
117  * The non-empty buckets contain the node before the first node in the
118  * bucket. This design makes it possible to implement something like a
119  * std::forward_list::insert_after on container insertion and
120  * std::forward_list::erase_after on container erase
121  * calls. _M_before_begin is equivalent to
122  * std::forward_list::before_begin. Empty buckets contain
123  * nullptr. Note that one of the non-empty buckets contains
124  * &_M_before_begin which is not a dereferenceable node so the
125  * node pointer in a bucket shall never be dereferenced, only its
126  * next node can be.
127  *
128  * Walking through a bucket's nodes requires a check on the hash code to
129  * see if each node is still in the bucket. Such a design assumes a
130  * quite efficient hash functor and is one of the reasons it is
131  * highly advisable to set __cache_hash_code to true.
132  *
133  * The container iterators are simply built from nodes. This way
134  * incrementing the iterator is perfectly efficient independent of
135  * how many empty buckets there are in the container.
136  *
137  * On insert we compute the element's hash code and use it to find the
138  * bucket index. If the element must be inserted in an empty bucket
139  * we add it at the beginning of the singly linked list and make the
140  * bucket point to _M_before_begin. The bucket that used to point to
141  * _M_before_begin, if any, is updated to point to its new before
142  * begin node.
143  *
144  * On erase, the simple iterator design requires using the hash
145  * functor to get the index of the bucket to update. For this
146  * reason, when __cache_hash_code is set to false the hash functor must
147  * not throw and this is enforced by a static assertion.
148  *
149  * Functionality is implemented by decomposition into base classes,
150  * where the derived _Hashtable class is used in _Map_base,
151  * _Insert, _Rehash_base, and _Equality base classes to access the
152  * "this" pointer. _Hashtable_base is used in the base classes as a
153  * non-recursive, fully-completed-type so that detailed nested type
154  * information, such as iterator type and node type, can be
155  * used. This is similar to the "Curiously Recurring Template
156  * Pattern" (CRTP) technique, but uses a reconstructed, not
157  * explicitly passed, template pattern.
158  *
159  * Base class templates are:
160  * - __detail::_Hashtable_base
161  * - __detail::_Map_base
162  * - __detail::_Insert
163  * - __detail::_Rehash_base
164  * - __detail::_Equality
165  */
166  template<typename _Key, typename _Value, typename _Alloc,
167  typename _ExtractKey, typename _Equal,
168  typename _H1, typename _H2, typename _Hash,
169  typename _RehashPolicy, typename _Traits>
171  : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172  _H1, _H2, _Hash, _Traits>,
173  public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175  public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177  public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179  public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182  __alloc_rebind<_Alloc,
183  __detail::_Hash_node<_Value,
184  _Traits::__hash_cached::value>>>
185  {
186  using __traits_type = _Traits;
187  using __hash_cached = typename __traits_type::__hash_cached;
189  using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
190 
192 
193  using __value_alloc_traits =
195  using __node_alloc_traits =
197  using __node_base = typename __hashtable_alloc::__node_base;
198  using __bucket_type = typename __hashtable_alloc::__bucket_type;
199 
200  public:
201  typedef _Key key_type;
202  typedef _Value value_type;
203  typedef _Alloc allocator_type;
204  typedef _Equal key_equal;
205 
206  // mapped_type, if present, comes from _Map_base.
207  // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
208  typedef typename __value_alloc_traits::pointer pointer;
209  typedef typename __value_alloc_traits::const_pointer const_pointer;
210  typedef value_type& reference;
211  typedef const value_type& const_reference;
212 
213  private:
214  using __rehash_type = _RehashPolicy;
215  using __rehash_state = typename __rehash_type::_State;
216 
217  using __constant_iterators = typename __traits_type::__constant_iterators;
218  using __unique_keys = typename __traits_type::__unique_keys;
219 
220  using __key_extract = typename std::conditional<
221  __constant_iterators::value,
222  __detail::_Identity,
223  __detail::_Select1st>::type;
224 
225  using __hashtable_base = __detail::
226  _Hashtable_base<_Key, _Value, _ExtractKey,
227  _Equal, _H1, _H2, _Hash, _Traits>;
228 
229  using __hash_code_base = typename __hashtable_base::__hash_code_base;
230  using __hash_code = typename __hashtable_base::__hash_code;
231  using __ireturn_type = typename __hashtable_base::__ireturn_type;
232 
233  using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
234  _Equal, _H1, _H2, _Hash,
235  _RehashPolicy, _Traits>;
236 
237  using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
238  _ExtractKey, _Equal,
239  _H1, _H2, _Hash,
240  _RehashPolicy, _Traits>;
241 
242  using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
243  _Equal, _H1, _H2, _Hash,
244  _RehashPolicy, _Traits>;
245 
246  using __reuse_or_alloc_node_type =
247  __detail::_ReuseOrAllocNode<__node_alloc_type>;
248 
249  // Metaprogramming for picking apart hash caching.
250  template<typename _Cond>
251  using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
252 
253  template<typename _Cond>
254  using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
255 
256  // Compile-time diagnostics.
257 
258  // _Hash_code_base has everything protected, so use this derived type to
259  // access it.
260  struct __hash_code_base_access : __hash_code_base
261  { using __hash_code_base::_M_bucket_index; };
262 
263  // Getting a bucket index from a node shall not throw because it is used
264  // in methods (erase, swap...) that shall not throw.
265  static_assert(noexcept(declval<const __hash_code_base_access&>()
266  ._M_bucket_index((const __node_type*)nullptr,
267  (std::size_t)0)),
268  "Cache the hash code or qualify your functors involved"
269  " in hash code and bucket index computation with noexcept");
270 
271  // Following two static assertions are necessary to guarantee
272  // that local_iterator will be default constructible.
273 
274  // When hash codes are cached local iterator inherits from H2 functor
275  // which must then be default constructible.
276  static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
277  "Functor used to map hash code to bucket index"
278  " must be default constructible");
279 
280  template<typename _Keya, typename _Valuea, typename _Alloca,
281  typename _ExtractKeya, typename _Equala,
282  typename _H1a, typename _H2a, typename _Hasha,
283  typename _RehashPolicya, typename _Traitsa,
284  bool _Unique_keysa>
285  friend struct __detail::_Map_base;
286 
287  template<typename _Keya, typename _Valuea, typename _Alloca,
288  typename _ExtractKeya, typename _Equala,
289  typename _H1a, typename _H2a, typename _Hasha,
290  typename _RehashPolicya, typename _Traitsa>
291  friend struct __detail::_Insert_base;
292 
293  template<typename _Keya, typename _Valuea, typename _Alloca,
294  typename _ExtractKeya, typename _Equala,
295  typename _H1a, typename _H2a, typename _Hasha,
296  typename _RehashPolicya, typename _Traitsa,
297  bool _Constant_iteratorsa, bool _Unique_keysa>
298  friend struct __detail::_Insert;
299 
300  public:
301  using size_type = typename __hashtable_base::size_type;
302  using difference_type = typename __hashtable_base::difference_type;
303 
304  using iterator = typename __hashtable_base::iterator;
305  using const_iterator = typename __hashtable_base::const_iterator;
306 
307  using local_iterator = typename __hashtable_base::local_iterator;
308  using const_local_iterator = typename __hashtable_base::
309  const_local_iterator;
310 
311  private:
312  __bucket_type* _M_buckets = &_M_single_bucket;
313  size_type _M_bucket_count = 1;
314  __node_base _M_before_begin;
315  size_type _M_element_count = 0;
316  _RehashPolicy _M_rehash_policy;
317 
318  // A single bucket used when only need for 1 bucket. Especially
319  // interesting in move semantic to leave hashtable with only 1 buckets
320  // which is not allocated so that we can have those operations noexcept
321  // qualified.
322  // Note that we can't leave hashtable with 0 bucket without adding
323  // numerous checks in the code to avoid 0 modulus.
324  __bucket_type _M_single_bucket = nullptr;
325 
326  bool
327  _M_uses_single_bucket(__bucket_type* __bkts) const
328  { return __builtin_expect(__bkts == &_M_single_bucket, false); }
329 
330  bool
331  _M_uses_single_bucket() const
332  { return _M_uses_single_bucket(_M_buckets); }
333 
335  _M_base_alloc() { return *this; }
336 
337  __bucket_type*
338  _M_allocate_buckets(size_type __n)
339  {
340  if (__builtin_expect(__n == 1, false))
341  {
342  _M_single_bucket = nullptr;
343  return &_M_single_bucket;
344  }
345 
346  return __hashtable_alloc::_M_allocate_buckets(__n);
347  }
348 
349  void
350  _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
351  {
352  if (_M_uses_single_bucket(__bkts))
353  return;
354 
355  __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
356  }
357 
358  void
359  _M_deallocate_buckets()
360  { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
361 
362  // Gets bucket begin, deals with the fact that non-empty buckets contain
363  // their before begin node.
364  __node_type*
365  _M_bucket_begin(size_type __bkt) const;
366 
367  __node_type*
368  _M_begin() const
369  { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
370 
371  template<typename _NodeGenerator>
372  void
373  _M_assign(const _Hashtable&, const _NodeGenerator&);
374 
375  void
376  _M_move_assign(_Hashtable&&, std::true_type);
377 
378  void
379  _M_move_assign(_Hashtable&&, std::false_type);
380 
381  void
382  _M_reset() noexcept;
383 
384  _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
385  const _Equal& __eq, const _ExtractKey& __exk,
386  const allocator_type& __a)
387  : __hashtable_base(__exk, __h1, __h2, __h, __eq),
388  __hashtable_alloc(__node_alloc_type(__a))
389  { }
390 
391  public:
392  // Constructor, destructor, assignment, swap
393  _Hashtable() = default;
394  _Hashtable(size_type __bucket_hint,
395  const _H1&, const _H2&, const _Hash&,
396  const _Equal&, const _ExtractKey&,
397  const allocator_type&);
398 
399  template<typename _InputIterator>
400  _Hashtable(_InputIterator __first, _InputIterator __last,
401  size_type __bucket_hint,
402  const _H1&, const _H2&, const _Hash&,
403  const _Equal&, const _ExtractKey&,
404  const allocator_type&);
405 
406  _Hashtable(const _Hashtable&);
407 
408  _Hashtable(_Hashtable&&) noexcept;
409 
410  _Hashtable(const _Hashtable&, const allocator_type&);
411 
412  _Hashtable(_Hashtable&&, const allocator_type&);
413 
414  // Use delegating constructors.
415  explicit
416  _Hashtable(const allocator_type& __a)
417  : __hashtable_alloc(__node_alloc_type(__a))
418  { }
419 
420  explicit
421  _Hashtable(size_type __n,
422  const _H1& __hf = _H1(),
423  const key_equal& __eql = key_equal(),
424  const allocator_type& __a = allocator_type())
425  : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
426  __key_extract(), __a)
427  { }
428 
429  template<typename _InputIterator>
430  _Hashtable(_InputIterator __f, _InputIterator __l,
431  size_type __n = 0,
432  const _H1& __hf = _H1(),
433  const key_equal& __eql = key_equal(),
434  const allocator_type& __a = allocator_type())
435  : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
436  __key_extract(), __a)
437  { }
438 
440  size_type __n = 0,
441  const _H1& __hf = _H1(),
442  const key_equal& __eql = key_equal(),
443  const allocator_type& __a = allocator_type())
444  : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
445  __key_extract(), __a)
446  { }
447 
448  _Hashtable&
449  operator=(const _Hashtable& __ht);
450 
451  _Hashtable&
452  operator=(_Hashtable&& __ht)
453  noexcept(__node_alloc_traits::_S_nothrow_move()
454  && is_nothrow_move_assignable<_H1>::value
455  && is_nothrow_move_assignable<_Equal>::value)
456  {
457  constexpr bool __move_storage =
458  __node_alloc_traits::_S_propagate_on_move_assign()
459  || __node_alloc_traits::_S_always_equal();
460  _M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
461  return *this;
462  }
463 
464  _Hashtable&
465  operator=(initializer_list<value_type> __l)
466  {
467  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
468  _M_before_begin._M_nxt = nullptr;
469  clear();
470  this->_M_insert_range(__l.begin(), __l.end(), __roan);
471  return *this;
472  }
473 
474  ~_Hashtable() noexcept;
475 
476  void
477  swap(_Hashtable&)
478  noexcept(__is_nothrow_swappable<_H1>::value
479  && __is_nothrow_swappable<_Equal>::value);
480 
481  // Basic container operations
482  iterator
483  begin() noexcept
484  { return iterator(_M_begin()); }
485 
486  const_iterator
487  begin() const noexcept
488  { return const_iterator(_M_begin()); }
489 
490  iterator
491  end() noexcept
492  { return iterator(nullptr); }
493 
494  const_iterator
495  end() const noexcept
496  { return const_iterator(nullptr); }
497 
498  const_iterator
499  cbegin() const noexcept
500  { return const_iterator(_M_begin()); }
501 
502  const_iterator
503  cend() const noexcept
504  { return const_iterator(nullptr); }
505 
506  size_type
507  size() const noexcept
508  { return _M_element_count; }
509 
510  bool
511  empty() const noexcept
512  { return size() == 0; }
513 
514  allocator_type
515  get_allocator() const noexcept
516  { return allocator_type(this->_M_node_allocator()); }
517 
518  size_type
519  max_size() const noexcept
520  { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
521 
522  // Observers
523  key_equal
524  key_eq() const
525  { return this->_M_eq(); }
526 
527  // hash_function, if present, comes from _Hash_code_base.
528 
529  // Bucket operations
530  size_type
531  bucket_count() const noexcept
532  { return _M_bucket_count; }
533 
534  size_type
535  max_bucket_count() const noexcept
536  { return max_size(); }
537 
538  size_type
539  bucket_size(size_type __n) const
540  { return std::distance(begin(__n), end(__n)); }
541 
542  size_type
543  bucket(const key_type& __k) const
544  { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
545 
546  local_iterator
547  begin(size_type __n)
548  {
549  return local_iterator(*this, _M_bucket_begin(__n),
550  __n, _M_bucket_count);
551  }
552 
553  local_iterator
554  end(size_type __n)
555  { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
556 
557  const_local_iterator
558  begin(size_type __n) const
559  {
560  return const_local_iterator(*this, _M_bucket_begin(__n),
561  __n, _M_bucket_count);
562  }
563 
564  const_local_iterator
565  end(size_type __n) const
566  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
567 
568  // DR 691.
569  const_local_iterator
570  cbegin(size_type __n) const
571  {
572  return const_local_iterator(*this, _M_bucket_begin(__n),
573  __n, _M_bucket_count);
574  }
575 
576  const_local_iterator
577  cend(size_type __n) const
578  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
579 
580  float
581  load_factor() const noexcept
582  {
583  return static_cast<float>(size()) / static_cast<float>(bucket_count());
584  }
585 
586  // max_load_factor, if present, comes from _Rehash_base.
587 
588  // Generalization of max_load_factor. Extension, not found in
589  // TR1. Only useful if _RehashPolicy is something other than
590  // the default.
591  const _RehashPolicy&
592  __rehash_policy() const
593  { return _M_rehash_policy; }
594 
595  void
596  __rehash_policy(const _RehashPolicy& __pol)
597  { _M_rehash_policy = __pol; }
598 
599  // Lookup.
600  iterator
601  find(const key_type& __k);
602 
603  const_iterator
604  find(const key_type& __k) const;
605 
606  size_type
607  count(const key_type& __k) const;
608 
610  equal_range(const key_type& __k);
611 
613  equal_range(const key_type& __k) const;
614 
615  protected:
616  // Bucket index computation helpers.
617  size_type
618  _M_bucket_index(__node_type* __n) const noexcept
619  { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
620 
621  size_type
622  _M_bucket_index(const key_type& __k, __hash_code __c) const
623  { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
624 
625  // Find and insert helper functions and types
626  // Find the node before the one matching the criteria.
627  __node_base*
628  _M_find_before_node(size_type, const key_type&, __hash_code) const;
629 
630  __node_type*
631  _M_find_node(size_type __bkt, const key_type& __key,
632  __hash_code __c) const
633  {
634  __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
635  if (__before_n)
636  return static_cast<__node_type*>(__before_n->_M_nxt);
637  return nullptr;
638  }
639 
640  // Insert a node at the beginning of a bucket.
641  void
642  _M_insert_bucket_begin(size_type, __node_type*);
643 
644  // Remove the bucket first node
645  void
646  _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
647  size_type __next_bkt);
648 
649  // Get the node before __n in the bucket __bkt
650  __node_base*
651  _M_get_previous_node(size_type __bkt, __node_base* __n);
652 
653  // Insert node with hash code __code, in bucket bkt if no rehash (assumes
654  // no element with its key already present). Take ownership of the node,
655  // deallocate it on exception.
656  iterator
657  _M_insert_unique_node(size_type __bkt, __hash_code __code,
658  __node_type* __n);
659 
660  // Insert node with hash code __code. Take ownership of the node,
661  // deallocate it on exception.
662  iterator
663  _M_insert_multi_node(__node_type* __hint,
664  __hash_code __code, __node_type* __n);
665 
666  template<typename... _Args>
668  _M_emplace(std::true_type, _Args&&... __args);
669 
670  template<typename... _Args>
671  iterator
672  _M_emplace(std::false_type __uk, _Args&&... __args)
673  { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
674 
675  // Emplace with hint, useless when keys are unique.
676  template<typename... _Args>
677  iterator
678  _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
679  { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
680 
681  template<typename... _Args>
682  iterator
683  _M_emplace(const_iterator, std::false_type, _Args&&... __args);
684 
685  template<typename _Arg, typename _NodeGenerator>
687  _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
688 
689  template<typename _Arg, typename _NodeGenerator>
690  iterator
691  _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
692  std::false_type __uk)
693  {
694  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
695  __uk);
696  }
697 
698  // Insert with hint, not used when keys are unique.
699  template<typename _Arg, typename _NodeGenerator>
700  iterator
701  _M_insert(const_iterator, _Arg&& __arg,
702  const _NodeGenerator& __node_gen, std::true_type __uk)
703  {
704  return
705  _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
706  }
707 
708  // Insert with hint when keys are not unique.
709  template<typename _Arg, typename _NodeGenerator>
710  iterator
711  _M_insert(const_iterator, _Arg&&,
712  const _NodeGenerator&, std::false_type);
713 
714  size_type
715  _M_erase(std::true_type, const key_type&);
716 
717  size_type
718  _M_erase(std::false_type, const key_type&);
719 
720  iterator
721  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
722 
723  public:
724  // Emplace
725  template<typename... _Args>
726  __ireturn_type
727  emplace(_Args&&... __args)
728  { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
729 
730  template<typename... _Args>
731  iterator
732  emplace_hint(const_iterator __hint, _Args&&... __args)
733  {
734  return _M_emplace(__hint, __unique_keys(),
735  std::forward<_Args>(__args)...);
736  }
737 
738  // Insert member functions via inheritance.
739 
740  // Erase
741  iterator
742  erase(const_iterator);
743 
744  // LWG 2059.
745  iterator
746  erase(iterator __it)
747  { return erase(const_iterator(__it)); }
748 
749  size_type
750  erase(const key_type& __k)
751  { return _M_erase(__unique_keys(), __k); }
752 
753  iterator
754  erase(const_iterator, const_iterator);
755 
756  void
757  clear() noexcept;
758 
759  // Set number of buckets to be appropriate for container of n element.
760  void rehash(size_type __n);
761 
762  // DR 1189.
763  // reserve, if present, comes from _Rehash_base.
764 
765  private:
766  // Helper rehash method used when keys are unique.
767  void _M_rehash_aux(size_type __n, std::true_type);
768 
769  // Helper rehash method used when keys can be non-unique.
770  void _M_rehash_aux(size_type __n, std::false_type);
771 
772  // Unconditionally change size of bucket array to n, restore
773  // hash policy state to __state on exception.
774  void _M_rehash(size_type __n, const __rehash_state& __state);
775  };
776 
777 
778  // Definitions of class template _Hashtable's out-of-line member functions.
779  template<typename _Key, typename _Value,
780  typename _Alloc, typename _ExtractKey, typename _Equal,
781  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
782  typename _Traits>
783  auto
784  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
785  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
786  _M_bucket_begin(size_type __bkt) const
787  -> __node_type*
788  {
789  __node_base* __n = _M_buckets[__bkt];
790  return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
791  }
792 
793  template<typename _Key, typename _Value,
794  typename _Alloc, typename _ExtractKey, typename _Equal,
795  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
796  typename _Traits>
797  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
798  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
799  _Hashtable(size_type __bucket_hint,
800  const _H1& __h1, const _H2& __h2, const _Hash& __h,
801  const _Equal& __eq, const _ExtractKey& __exk,
802  const allocator_type& __a)
803  : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
804  {
805  auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
806  if (__bkt > _M_bucket_count)
807  {
808  _M_buckets = _M_allocate_buckets(__bkt);
809  _M_bucket_count = __bkt;
810  }
811  }
812 
813  template<typename _Key, typename _Value,
814  typename _Alloc, typename _ExtractKey, typename _Equal,
815  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
816  typename _Traits>
817  template<typename _InputIterator>
818  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
819  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
820  _Hashtable(_InputIterator __f, _InputIterator __l,
821  size_type __bucket_hint,
822  const _H1& __h1, const _H2& __h2, const _Hash& __h,
823  const _Equal& __eq, const _ExtractKey& __exk,
824  const allocator_type& __a)
825  : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
826  {
827  auto __nb_elems = __detail::__distance_fw(__f, __l);
828  auto __bkt_count =
829  _M_rehash_policy._M_next_bkt(
830  std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
831  __bucket_hint));
832 
833  if (__bkt_count > _M_bucket_count)
834  {
835  _M_buckets = _M_allocate_buckets(__bkt_count);
836  _M_bucket_count = __bkt_count;
837  }
838 
839  __try
840  {
841  for (; __f != __l; ++__f)
842  this->insert(*__f);
843  }
844  __catch(...)
845  {
846  clear();
847  _M_deallocate_buckets();
848  __throw_exception_again;
849  }
850  }
851 
852  template<typename _Key, typename _Value,
853  typename _Alloc, typename _ExtractKey, typename _Equal,
854  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
855  typename _Traits>
856  auto
857  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
858  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
859  operator=(const _Hashtable& __ht)
860  -> _Hashtable&
861  {
862  if (&__ht == this)
863  return *this;
864 
865  if (__node_alloc_traits::_S_propagate_on_copy_assign())
866  {
867  auto& __this_alloc = this->_M_node_allocator();
868  auto& __that_alloc = __ht._M_node_allocator();
869  if (!__node_alloc_traits::_S_always_equal()
870  && __this_alloc != __that_alloc)
871  {
872  // Replacement allocator cannot free existing storage.
873  this->_M_deallocate_nodes(_M_begin());
874  _M_before_begin._M_nxt = nullptr;
875  _M_deallocate_buckets();
876  _M_buckets = nullptr;
877  std::__alloc_on_copy(__this_alloc, __that_alloc);
878  __hashtable_base::operator=(__ht);
879  _M_bucket_count = __ht._M_bucket_count;
880  _M_element_count = __ht._M_element_count;
881  _M_rehash_policy = __ht._M_rehash_policy;
882  __try
883  {
884  _M_assign(__ht,
885  [this](const __node_type* __n)
886  { return this->_M_allocate_node(__n->_M_v()); });
887  }
888  __catch(...)
889  {
890  // _M_assign took care of deallocating all memory. Now we
891  // must make sure this instance remains in a usable state.
892  _M_reset();
893  __throw_exception_again;
894  }
895  return *this;
896  }
897  std::__alloc_on_copy(__this_alloc, __that_alloc);
898  }
899 
900  // Reuse allocated buckets and nodes.
901  __bucket_type* __former_buckets = nullptr;
902  std::size_t __former_bucket_count = _M_bucket_count;
903  const __rehash_state& __former_state = _M_rehash_policy._M_state();
904 
905  if (_M_bucket_count != __ht._M_bucket_count)
906  {
907  __former_buckets = _M_buckets;
908  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
909  _M_bucket_count = __ht._M_bucket_count;
910  }
911  else
912  __builtin_memset(_M_buckets, 0,
913  _M_bucket_count * sizeof(__bucket_type));
914 
915  __try
916  {
917  __hashtable_base::operator=(__ht);
918  _M_element_count = __ht._M_element_count;
919  _M_rehash_policy = __ht._M_rehash_policy;
920  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
921  _M_before_begin._M_nxt = nullptr;
922  _M_assign(__ht,
923  [&__roan](const __node_type* __n)
924  { return __roan(__n->_M_v()); });
925  if (__former_buckets)
926  _M_deallocate_buckets(__former_buckets, __former_bucket_count);
927  }
928  __catch(...)
929  {
930  if (__former_buckets)
931  {
932  // Restore previous buckets.
933  _M_deallocate_buckets();
934  _M_rehash_policy._M_reset(__former_state);
935  _M_buckets = __former_buckets;
936  _M_bucket_count = __former_bucket_count;
937  }
938  __builtin_memset(_M_buckets, 0,
939  _M_bucket_count * sizeof(__bucket_type));
940  __throw_exception_again;
941  }
942  return *this;
943  }
944 
945  template<typename _Key, typename _Value,
946  typename _Alloc, typename _ExtractKey, typename _Equal,
947  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
948  typename _Traits>
949  template<typename _NodeGenerator>
950  void
951  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
952  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
953  _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
954  {
955  __bucket_type* __buckets = nullptr;
956  if (!_M_buckets)
957  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
958 
959  __try
960  {
961  if (!__ht._M_before_begin._M_nxt)
962  return;
963 
964  // First deal with the special first node pointed to by
965  // _M_before_begin.
966  __node_type* __ht_n = __ht._M_begin();
967  __node_type* __this_n = __node_gen(__ht_n);
968  this->_M_copy_code(__this_n, __ht_n);
969  _M_before_begin._M_nxt = __this_n;
970  _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
971 
972  // Then deal with other nodes.
973  __node_base* __prev_n = __this_n;
974  for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
975  {
976  __this_n = __node_gen(__ht_n);
977  __prev_n->_M_nxt = __this_n;
978  this->_M_copy_code(__this_n, __ht_n);
979  size_type __bkt = _M_bucket_index(__this_n);
980  if (!_M_buckets[__bkt])
981  _M_buckets[__bkt] = __prev_n;
982  __prev_n = __this_n;
983  }
984  }
985  __catch(...)
986  {
987  clear();
988  if (__buckets)
989  _M_deallocate_buckets();
990  __throw_exception_again;
991  }
992  }
993 
994  template<typename _Key, typename _Value,
995  typename _Alloc, typename _ExtractKey, typename _Equal,
996  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
997  typename _Traits>
998  void
999  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1000  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1001  _M_reset() noexcept
1002  {
1003  _M_rehash_policy._M_reset();
1004  _M_bucket_count = 1;
1005  _M_single_bucket = nullptr;
1006  _M_buckets = &_M_single_bucket;
1007  _M_before_begin._M_nxt = nullptr;
1008  _M_element_count = 0;
1009  }
1010 
1011  template<typename _Key, typename _Value,
1012  typename _Alloc, typename _ExtractKey, typename _Equal,
1013  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1014  typename _Traits>
1015  void
1016  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1017  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1018  _M_move_assign(_Hashtable&& __ht, std::true_type)
1019  {
1020  this->_M_deallocate_nodes(_M_begin());
1021  _M_deallocate_buckets();
1022  __hashtable_base::operator=(std::move(__ht));
1023  _M_rehash_policy = __ht._M_rehash_policy;
1024  if (!__ht._M_uses_single_bucket())
1025  _M_buckets = __ht._M_buckets;
1026  else
1027  {
1028  _M_buckets = &_M_single_bucket;
1029  _M_single_bucket = __ht._M_single_bucket;
1030  }
1031  _M_bucket_count = __ht._M_bucket_count;
1032  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1033  _M_element_count = __ht._M_element_count;
1034  std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1035 
1036  // Fix buckets containing the _M_before_begin pointers that can't be
1037  // moved.
1038  if (_M_begin())
1039  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1040  __ht._M_reset();
1041  }
1042 
1043  template<typename _Key, typename _Value,
1044  typename _Alloc, typename _ExtractKey, typename _Equal,
1045  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1046  typename _Traits>
1047  void
1048  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1049  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1050  _M_move_assign(_Hashtable&& __ht, std::false_type)
1051  {
1052  if (__ht._M_node_allocator() == this->_M_node_allocator())
1053  _M_move_assign(std::move(__ht), std::true_type());
1054  else
1055  {
1056  // Can't move memory, move elements then.
1057  __bucket_type* __former_buckets = nullptr;
1058  size_type __former_bucket_count = _M_bucket_count;
1059  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1060 
1061  if (_M_bucket_count != __ht._M_bucket_count)
1062  {
1063  __former_buckets = _M_buckets;
1064  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1065  _M_bucket_count = __ht._M_bucket_count;
1066  }
1067  else
1068  __builtin_memset(_M_buckets, 0,
1069  _M_bucket_count * sizeof(__bucket_type));
1070 
1071  __try
1072  {
1073  __hashtable_base::operator=(std::move(__ht));
1074  _M_element_count = __ht._M_element_count;
1075  _M_rehash_policy = __ht._M_rehash_policy;
1076  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1077  _M_before_begin._M_nxt = nullptr;
1078  _M_assign(__ht,
1079  [&__roan](__node_type* __n)
1080  { return __roan(std::move_if_noexcept(__n->_M_v())); });
1081  __ht.clear();
1082  }
1083  __catch(...)
1084  {
1085  if (__former_buckets)
1086  {
1087  _M_deallocate_buckets();
1088  _M_rehash_policy._M_reset(__former_state);
1089  _M_buckets = __former_buckets;
1090  _M_bucket_count = __former_bucket_count;
1091  }
1092  __builtin_memset(_M_buckets, 0,
1093  _M_bucket_count * sizeof(__bucket_type));
1094  __throw_exception_again;
1095  }
1096  }
1097  }
1098 
1099  template<typename _Key, typename _Value,
1100  typename _Alloc, typename _ExtractKey, typename _Equal,
1101  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1102  typename _Traits>
1103  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1104  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1105  _Hashtable(const _Hashtable& __ht)
1106  : __hashtable_base(__ht),
1107  __map_base(__ht),
1108  __rehash_base(__ht),
1110  __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1111  _M_buckets(nullptr),
1112  _M_bucket_count(__ht._M_bucket_count),
1113  _M_element_count(__ht._M_element_count),
1114  _M_rehash_policy(__ht._M_rehash_policy)
1115  {
1116  _M_assign(__ht,
1117  [this](const __node_type* __n)
1118  { return this->_M_allocate_node(__n->_M_v()); });
1119  }
1120 
1121  template<typename _Key, typename _Value,
1122  typename _Alloc, typename _ExtractKey, typename _Equal,
1123  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1124  typename _Traits>
1125  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1126  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1127  _Hashtable(_Hashtable&& __ht) noexcept
1128  : __hashtable_base(__ht),
1129  __map_base(__ht),
1130  __rehash_base(__ht),
1131  __hashtable_alloc(std::move(__ht._M_base_alloc())),
1132  _M_buckets(__ht._M_buckets),
1133  _M_bucket_count(__ht._M_bucket_count),
1134  _M_before_begin(__ht._M_before_begin._M_nxt),
1135  _M_element_count(__ht._M_element_count),
1136  _M_rehash_policy(__ht._M_rehash_policy)
1137  {
1138  // Update, if necessary, buckets if __ht is using its single bucket.
1139  if (__ht._M_uses_single_bucket())
1140  {
1141  _M_buckets = &_M_single_bucket;
1142  _M_single_bucket = __ht._M_single_bucket;
1143  }
1144 
1145  // Update, if necessary, bucket pointing to before begin that hasn't
1146  // moved.
1147  if (_M_begin())
1148  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1149 
1150  __ht._M_reset();
1151  }
1152 
1153  template<typename _Key, typename _Value,
1154  typename _Alloc, typename _ExtractKey, typename _Equal,
1155  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1156  typename _Traits>
1157  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1158  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1159  _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1160  : __hashtable_base(__ht),
1161  __map_base(__ht),
1162  __rehash_base(__ht),
1163  __hashtable_alloc(__node_alloc_type(__a)),
1164  _M_buckets(),
1165  _M_bucket_count(__ht._M_bucket_count),
1166  _M_element_count(__ht._M_element_count),
1167  _M_rehash_policy(__ht._M_rehash_policy)
1168  {
1169  _M_assign(__ht,
1170  [this](const __node_type* __n)
1171  { return this->_M_allocate_node(__n->_M_v()); });
1172  }
1173 
1174  template<typename _Key, typename _Value,
1175  typename _Alloc, typename _ExtractKey, typename _Equal,
1176  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1177  typename _Traits>
1178  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1179  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1180  _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1181  : __hashtable_base(__ht),
1182  __map_base(__ht),
1183  __rehash_base(__ht),
1184  __hashtable_alloc(__node_alloc_type(__a)),
1185  _M_buckets(nullptr),
1186  _M_bucket_count(__ht._M_bucket_count),
1187  _M_element_count(__ht._M_element_count),
1188  _M_rehash_policy(__ht._M_rehash_policy)
1189  {
1190  if (__ht._M_node_allocator() == this->_M_node_allocator())
1191  {
1192  if (__ht._M_uses_single_bucket())
1193  {
1194  _M_buckets = &_M_single_bucket;
1195  _M_single_bucket = __ht._M_single_bucket;
1196  }
1197  else
1198  _M_buckets = __ht._M_buckets;
1199 
1200  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1201  // Update, if necessary, bucket pointing to before begin that hasn't
1202  // moved.
1203  if (_M_begin())
1204  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1205  __ht._M_reset();
1206  }
1207  else
1208  {
1209  _M_assign(__ht,
1210  [this](__node_type* __n)
1211  {
1212  return this->_M_allocate_node(
1213  std::move_if_noexcept(__n->_M_v()));
1214  });
1215  __ht.clear();
1216  }
1217  }
1218 
1219  template<typename _Key, typename _Value,
1220  typename _Alloc, typename _ExtractKey, typename _Equal,
1221  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1222  typename _Traits>
1223  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1224  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1225  ~_Hashtable() noexcept
1226  {
1227  clear();
1228  _M_deallocate_buckets();
1229  }
1230 
1231  template<typename _Key, typename _Value,
1232  typename _Alloc, typename _ExtractKey, typename _Equal,
1233  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1234  typename _Traits>
1235  void
1236  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1237  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1238  swap(_Hashtable& __x)
1239  noexcept(__is_nothrow_swappable<_H1>::value
1240  && __is_nothrow_swappable<_Equal>::value)
1241  {
1242  // The only base class with member variables is hash_code_base.
1243  // We define _Hash_code_base::_M_swap because different
1244  // specializations have different members.
1245  this->_M_swap(__x);
1246 
1247  std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1248  std::swap(_M_rehash_policy, __x._M_rehash_policy);
1249 
1250  // Deal properly with potentially moved instances.
1251  if (this->_M_uses_single_bucket())
1252  {
1253  if (!__x._M_uses_single_bucket())
1254  {
1255  _M_buckets = __x._M_buckets;
1256  __x._M_buckets = &__x._M_single_bucket;
1257  }
1258  }
1259  else if (__x._M_uses_single_bucket())
1260  {
1261  __x._M_buckets = _M_buckets;
1262  _M_buckets = &_M_single_bucket;
1263  }
1264  else
1265  std::swap(_M_buckets, __x._M_buckets);
1266 
1267  std::swap(_M_bucket_count, __x._M_bucket_count);
1268  std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1269  std::swap(_M_element_count, __x._M_element_count);
1270  std::swap(_M_single_bucket, __x._M_single_bucket);
1271 
1272  // Fix buckets containing the _M_before_begin pointers that can't be
1273  // swapped.
1274  if (_M_begin())
1275  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1276 
1277  if (__x._M_begin())
1278  __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1279  = &__x._M_before_begin;
1280  }
1281 
1282  template<typename _Key, typename _Value,
1283  typename _Alloc, typename _ExtractKey, typename _Equal,
1284  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1285  typename _Traits>
1286  auto
1287  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1288  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1289  find(const key_type& __k)
1290  -> iterator
1291  {
1292  __hash_code __code = this->_M_hash_code(__k);
1293  std::size_t __n = _M_bucket_index(__k, __code);
1294  __node_type* __p = _M_find_node(__n, __k, __code);
1295  return __p ? iterator(__p) : end();
1296  }
1297 
1298  template<typename _Key, typename _Value,
1299  typename _Alloc, typename _ExtractKey, typename _Equal,
1300  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1301  typename _Traits>
1302  auto
1303  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1304  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1305  find(const key_type& __k) const
1306  -> const_iterator
1307  {
1308  __hash_code __code = this->_M_hash_code(__k);
1309  std::size_t __n = _M_bucket_index(__k, __code);
1310  __node_type* __p = _M_find_node(__n, __k, __code);
1311  return __p ? const_iterator(__p) : end();
1312  }
1313 
1314  template<typename _Key, typename _Value,
1315  typename _Alloc, typename _ExtractKey, typename _Equal,
1316  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1317  typename _Traits>
1318  auto
1319  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1320  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1321  count(const key_type& __k) const
1322  -> size_type
1323  {
1324  __hash_code __code = this->_M_hash_code(__k);
1325  std::size_t __n = _M_bucket_index(__k, __code);
1326  __node_type* __p = _M_bucket_begin(__n);
1327  if (!__p)
1328  return 0;
1329 
1330  std::size_t __result = 0;
1331  for (;; __p = __p->_M_next())
1332  {
1333  if (this->_M_equals(__k, __code, __p))
1334  ++__result;
1335  else if (__result)
1336  // All equivalent values are next to each other, if we
1337  // found a non-equivalent value after an equivalent one it
1338  // means that we won't find any new equivalent value.
1339  break;
1340  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1341  break;
1342  }
1343  return __result;
1344  }
1345 
1346  template<typename _Key, typename _Value,
1347  typename _Alloc, typename _ExtractKey, typename _Equal,
1348  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1349  typename _Traits>
1350  auto
1351  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1352  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1353  equal_range(const key_type& __k)
1355  {
1356  __hash_code __code = this->_M_hash_code(__k);
1357  std::size_t __n = _M_bucket_index(__k, __code);
1358  __node_type* __p = _M_find_node(__n, __k, __code);
1359 
1360  if (__p)
1361  {
1362  __node_type* __p1 = __p->_M_next();
1363  while (__p1 && _M_bucket_index(__p1) == __n
1364  && this->_M_equals(__k, __code, __p1))
1365  __p1 = __p1->_M_next();
1366 
1367  return std::make_pair(iterator(__p), iterator(__p1));
1368  }
1369  else
1370  return std::make_pair(end(), end());
1371  }
1372 
1373  template<typename _Key, typename _Value,
1374  typename _Alloc, typename _ExtractKey, typename _Equal,
1375  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1376  typename _Traits>
1377  auto
1378  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1379  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1380  equal_range(const key_type& __k) const
1382  {
1383  __hash_code __code = this->_M_hash_code(__k);
1384  std::size_t __n = _M_bucket_index(__k, __code);
1385  __node_type* __p = _M_find_node(__n, __k, __code);
1386 
1387  if (__p)
1388  {
1389  __node_type* __p1 = __p->_M_next();
1390  while (__p1 && _M_bucket_index(__p1) == __n
1391  && this->_M_equals(__k, __code, __p1))
1392  __p1 = __p1->_M_next();
1393 
1394  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1395  }
1396  else
1397  return std::make_pair(end(), end());
1398  }
1399 
1400  // Find the node whose key compares equal to k in the bucket n.
1401  // Return nullptr if no node is found.
1402  template<typename _Key, typename _Value,
1403  typename _Alloc, typename _ExtractKey, typename _Equal,
1404  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1405  typename _Traits>
1406  auto
1407  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1408  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1409  _M_find_before_node(size_type __n, const key_type& __k,
1410  __hash_code __code) const
1411  -> __node_base*
1412  {
1413  __node_base* __prev_p = _M_buckets[__n];
1414  if (!__prev_p)
1415  return nullptr;
1416 
1417  for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1418  __p = __p->_M_next())
1419  {
1420  if (this->_M_equals(__k, __code, __p))
1421  return __prev_p;
1422 
1423  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1424  break;
1425  __prev_p = __p;
1426  }
1427  return nullptr;
1428  }
1429 
1430  template<typename _Key, typename _Value,
1431  typename _Alloc, typename _ExtractKey, typename _Equal,
1432  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1433  typename _Traits>
1434  void
1435  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1436  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1437  _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1438  {
1439  if (_M_buckets[__bkt])
1440  {
1441  // Bucket is not empty, we just need to insert the new node
1442  // after the bucket before begin.
1443  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1444  _M_buckets[__bkt]->_M_nxt = __node;
1445  }
1446  else
1447  {
1448  // The bucket is empty, the new node is inserted at the
1449  // beginning of the singly-linked list and the bucket will
1450  // contain _M_before_begin pointer.
1451  __node->_M_nxt = _M_before_begin._M_nxt;
1452  _M_before_begin._M_nxt = __node;
1453  if (__node->_M_nxt)
1454  // We must update former begin bucket that is pointing to
1455  // _M_before_begin.
1456  _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1457  _M_buckets[__bkt] = &_M_before_begin;
1458  }
1459  }
1460 
1461  template<typename _Key, typename _Value,
1462  typename _Alloc, typename _ExtractKey, typename _Equal,
1463  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1464  typename _Traits>
1465  void
1466  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1467  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1468  _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1469  size_type __next_bkt)
1470  {
1471  if (!__next || __next_bkt != __bkt)
1472  {
1473  // Bucket is now empty
1474  // First update next bucket if any
1475  if (__next)
1476  _M_buckets[__next_bkt] = _M_buckets[__bkt];
1477 
1478  // Second update before begin node if necessary
1479  if (&_M_before_begin == _M_buckets[__bkt])
1480  _M_before_begin._M_nxt = __next;
1481  _M_buckets[__bkt] = nullptr;
1482  }
1483  }
1484 
1485  template<typename _Key, typename _Value,
1486  typename _Alloc, typename _ExtractKey, typename _Equal,
1487  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1488  typename _Traits>
1489  auto
1490  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1491  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1492  _M_get_previous_node(size_type __bkt, __node_base* __n)
1493  -> __node_base*
1494  {
1495  __node_base* __prev_n = _M_buckets[__bkt];
1496  while (__prev_n->_M_nxt != __n)
1497  __prev_n = __prev_n->_M_nxt;
1498  return __prev_n;
1499  }
1500 
1501  template<typename _Key, typename _Value,
1502  typename _Alloc, typename _ExtractKey, typename _Equal,
1503  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1504  typename _Traits>
1505  template<typename... _Args>
1506  auto
1507  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1508  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1509  _M_emplace(std::true_type, _Args&&... __args)
1511  {
1512  // First build the node to get access to the hash code
1513  __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1514  const key_type& __k = this->_M_extract()(__node->_M_v());
1515  __hash_code __code;
1516  __try
1517  {
1518  __code = this->_M_hash_code(__k);
1519  }
1520  __catch(...)
1521  {
1522  this->_M_deallocate_node(__node);
1523  __throw_exception_again;
1524  }
1525 
1526  size_type __bkt = _M_bucket_index(__k, __code);
1527  if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1528  {
1529  // There is already an equivalent node, no insertion
1530  this->_M_deallocate_node(__node);
1531  return std::make_pair(iterator(__p), false);
1532  }
1533 
1534  // Insert the node
1535  return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1536  true);
1537  }
1538 
1539  template<typename _Key, typename _Value,
1540  typename _Alloc, typename _ExtractKey, typename _Equal,
1541  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1542  typename _Traits>
1543  template<typename... _Args>
1544  auto
1545  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1546  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1547  _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1548  -> iterator
1549  {
1550  // First build the node to get its hash code.
1551  __node_type* __node =
1552  this->_M_allocate_node(std::forward<_Args>(__args)...);
1553 
1554  __hash_code __code;
1555  __try
1556  {
1557  __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1558  }
1559  __catch(...)
1560  {
1561  this->_M_deallocate_node(__node);
1562  __throw_exception_again;
1563  }
1564 
1565  return _M_insert_multi_node(__hint._M_cur, __code, __node);
1566  }
1567 
1568  template<typename _Key, typename _Value,
1569  typename _Alloc, typename _ExtractKey, typename _Equal,
1570  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1571  typename _Traits>
1572  auto
1573  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1574  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1575  _M_insert_unique_node(size_type __bkt, __hash_code __code,
1576  __node_type* __node)
1577  -> iterator
1578  {
1579  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1580  std::pair<bool, std::size_t> __do_rehash
1581  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1582 
1583  __try
1584  {
1585  if (__do_rehash.first)
1586  {
1587  _M_rehash(__do_rehash.second, __saved_state);
1588  __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1589  }
1590 
1591  this->_M_store_code(__node, __code);
1592 
1593  // Always insert at the beginning of the bucket.
1594  _M_insert_bucket_begin(__bkt, __node);
1595  ++_M_element_count;
1596  return iterator(__node);
1597  }
1598  __catch(...)
1599  {
1600  this->_M_deallocate_node(__node);
1601  __throw_exception_again;
1602  }
1603  }
1604 
1605  // Insert node, in bucket bkt if no rehash (assumes no element with its key
1606  // already present). Take ownership of the node, deallocate it on exception.
1607  template<typename _Key, typename _Value,
1608  typename _Alloc, typename _ExtractKey, typename _Equal,
1609  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1610  typename _Traits>
1611  auto
1612  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1613  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1614  _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1615  __node_type* __node)
1616  -> iterator
1617  {
1618  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1619  std::pair<bool, std::size_t> __do_rehash
1620  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1621 
1622  __try
1623  {
1624  if (__do_rehash.first)
1625  _M_rehash(__do_rehash.second, __saved_state);
1626 
1627  this->_M_store_code(__node, __code);
1628  const key_type& __k = this->_M_extract()(__node->_M_v());
1629  size_type __bkt = _M_bucket_index(__k, __code);
1630 
1631  // Find the node before an equivalent one or use hint if it exists and
1632  // if it is equivalent.
1633  __node_base* __prev
1634  = __builtin_expect(__hint != nullptr, false)
1635  && this->_M_equals(__k, __code, __hint)
1636  ? __hint
1637  : _M_find_before_node(__bkt, __k, __code);
1638  if (__prev)
1639  {
1640  // Insert after the node before the equivalent one.
1641  __node->_M_nxt = __prev->_M_nxt;
1642  __prev->_M_nxt = __node;
1643  if (__builtin_expect(__prev == __hint, false))
1644  // hint might be the last bucket node, in this case we need to
1645  // update next bucket.
1646  if (__node->_M_nxt
1647  && !this->_M_equals(__k, __code, __node->_M_next()))
1648  {
1649  size_type __next_bkt = _M_bucket_index(__node->_M_next());
1650  if (__next_bkt != __bkt)
1651  _M_buckets[__next_bkt] = __node;
1652  }
1653  }
1654  else
1655  // The inserted node has no equivalent in the
1656  // hashtable. We must insert the new node at the
1657  // beginning of the bucket to preserve equivalent
1658  // elements' relative positions.
1659  _M_insert_bucket_begin(__bkt, __node);
1660  ++_M_element_count;
1661  return iterator(__node);
1662  }
1663  __catch(...)
1664  {
1665  this->_M_deallocate_node(__node);
1666  __throw_exception_again;
1667  }
1668  }
1669 
1670  // Insert v if no element with its key is already present.
1671  template<typename _Key, typename _Value,
1672  typename _Alloc, typename _ExtractKey, typename _Equal,
1673  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1674  typename _Traits>
1675  template<typename _Arg, typename _NodeGenerator>
1676  auto
1677  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1678  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1679  _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1681  {
1682  const key_type& __k = this->_M_extract()(__v);
1683  __hash_code __code = this->_M_hash_code(__k);
1684  size_type __bkt = _M_bucket_index(__k, __code);
1685 
1686  __node_type* __n = _M_find_node(__bkt, __k, __code);
1687  if (__n)
1688  return std::make_pair(iterator(__n), false);
1689 
1690  __n = __node_gen(std::forward<_Arg>(__v));
1691  return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1692  }
1693 
1694  // Insert v unconditionally.
1695  template<typename _Key, typename _Value,
1696  typename _Alloc, typename _ExtractKey, typename _Equal,
1697  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1698  typename _Traits>
1699  template<typename _Arg, typename _NodeGenerator>
1700  auto
1701  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1702  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1703  _M_insert(const_iterator __hint, _Arg&& __v,
1704  const _NodeGenerator& __node_gen, std::false_type)
1705  -> iterator
1706  {
1707  // First compute the hash code so that we don't do anything if it
1708  // throws.
1709  __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1710 
1711  // Second allocate new node so that we don't rehash if it throws.
1712  __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1713 
1714  return _M_insert_multi_node(__hint._M_cur, __code, __node);
1715  }
1716 
1717  template<typename _Key, typename _Value,
1718  typename _Alloc, typename _ExtractKey, typename _Equal,
1719  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1720  typename _Traits>
1721  auto
1722  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1723  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1724  erase(const_iterator __it)
1725  -> iterator
1726  {
1727  __node_type* __n = __it._M_cur;
1728  std::size_t __bkt = _M_bucket_index(__n);
1729 
1730  // Look for previous node to unlink it from the erased one, this
1731  // is why we need buckets to contain the before begin to make
1732  // this search fast.
1733  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1734  return _M_erase(__bkt, __prev_n, __n);
1735  }
1736 
1737  template<typename _Key, typename _Value,
1738  typename _Alloc, typename _ExtractKey, typename _Equal,
1739  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1740  typename _Traits>
1741  auto
1742  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1743  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1744  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1745  -> iterator
1746  {
1747  if (__prev_n == _M_buckets[__bkt])
1748  _M_remove_bucket_begin(__bkt, __n->_M_next(),
1749  __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1750  else if (__n->_M_nxt)
1751  {
1752  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1753  if (__next_bkt != __bkt)
1754  _M_buckets[__next_bkt] = __prev_n;
1755  }
1756 
1757  __prev_n->_M_nxt = __n->_M_nxt;
1758  iterator __result(__n->_M_next());
1759  this->_M_deallocate_node(__n);
1760  --_M_element_count;
1761 
1762  return __result;
1763  }
1764 
1765  template<typename _Key, typename _Value,
1766  typename _Alloc, typename _ExtractKey, typename _Equal,
1767  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1768  typename _Traits>
1769  auto
1770  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1771  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1772  _M_erase(std::true_type, const key_type& __k)
1773  -> size_type
1774  {
1775  __hash_code __code = this->_M_hash_code(__k);
1776  std::size_t __bkt = _M_bucket_index(__k, __code);
1777 
1778  // Look for the node before the first matching node.
1779  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1780  if (!__prev_n)
1781  return 0;
1782 
1783  // We found a matching node, erase it.
1784  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1785  _M_erase(__bkt, __prev_n, __n);
1786  return 1;
1787  }
1788 
1789  template<typename _Key, typename _Value,
1790  typename _Alloc, typename _ExtractKey, typename _Equal,
1791  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1792  typename _Traits>
1793  auto
1794  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1795  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1796  _M_erase(std::false_type, const key_type& __k)
1797  -> size_type
1798  {
1799  __hash_code __code = this->_M_hash_code(__k);
1800  std::size_t __bkt = _M_bucket_index(__k, __code);
1801 
1802  // Look for the node before the first matching node.
1803  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1804  if (!__prev_n)
1805  return 0;
1806 
1807  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1808  // 526. Is it undefined if a function in the standard changes
1809  // in parameters?
1810  // We use one loop to find all matching nodes and another to deallocate
1811  // them so that the key stays valid during the first loop. It might be
1812  // invalidated indirectly when destroying nodes.
1813  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1814  __node_type* __n_last = __n;
1815  std::size_t __n_last_bkt = __bkt;
1816  do
1817  {
1818  __n_last = __n_last->_M_next();
1819  if (!__n_last)
1820  break;
1821  __n_last_bkt = _M_bucket_index(__n_last);
1822  }
1823  while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1824 
1825  // Deallocate nodes.
1826  size_type __result = 0;
1827  do
1828  {
1829  __node_type* __p = __n->_M_next();
1830  this->_M_deallocate_node(__n);
1831  __n = __p;
1832  ++__result;
1833  --_M_element_count;
1834  }
1835  while (__n != __n_last);
1836 
1837  if (__prev_n == _M_buckets[__bkt])
1838  _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1839  else if (__n_last && __n_last_bkt != __bkt)
1840  _M_buckets[__n_last_bkt] = __prev_n;
1841  __prev_n->_M_nxt = __n_last;
1842  return __result;
1843  }
1844 
1845  template<typename _Key, typename _Value,
1846  typename _Alloc, typename _ExtractKey, typename _Equal,
1847  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1848  typename _Traits>
1849  auto
1850  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1851  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1852  erase(const_iterator __first, const_iterator __last)
1853  -> iterator
1854  {
1855  __node_type* __n = __first._M_cur;
1856  __node_type* __last_n = __last._M_cur;
1857  if (__n == __last_n)
1858  return iterator(__n);
1859 
1860  std::size_t __bkt = _M_bucket_index(__n);
1861 
1862  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1863  bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1864  std::size_t __n_bkt = __bkt;
1865  for (;;)
1866  {
1867  do
1868  {
1869  __node_type* __tmp = __n;
1870  __n = __n->_M_next();
1871  this->_M_deallocate_node(__tmp);
1872  --_M_element_count;
1873  if (!__n)
1874  break;
1875  __n_bkt = _M_bucket_index(__n);
1876  }
1877  while (__n != __last_n && __n_bkt == __bkt);
1878  if (__is_bucket_begin)
1879  _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1880  if (__n == __last_n)
1881  break;
1882  __is_bucket_begin = true;
1883  __bkt = __n_bkt;
1884  }
1885 
1886  if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1887  _M_buckets[__n_bkt] = __prev_n;
1888  __prev_n->_M_nxt = __n;
1889  return iterator(__n);
1890  }
1891 
1892  template<typename _Key, typename _Value,
1893  typename _Alloc, typename _ExtractKey, typename _Equal,
1894  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1895  typename _Traits>
1896  void
1897  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1898  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1899  clear() noexcept
1900  {
1901  this->_M_deallocate_nodes(_M_begin());
1902  __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1903  _M_element_count = 0;
1904  _M_before_begin._M_nxt = nullptr;
1905  }
1906 
1907  template<typename _Key, typename _Value,
1908  typename _Alloc, typename _ExtractKey, typename _Equal,
1909  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1910  typename _Traits>
1911  void
1912  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1913  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1914  rehash(size_type __n)
1915  {
1916  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1917  std::size_t __buckets
1918  = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1919  __n);
1920  __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1921 
1922  if (__buckets != _M_bucket_count)
1923  _M_rehash(__buckets, __saved_state);
1924  else
1925  // No rehash, restore previous state to keep a consistent state.
1926  _M_rehash_policy._M_reset(__saved_state);
1927  }
1928 
1929  template<typename _Key, typename _Value,
1930  typename _Alloc, typename _ExtractKey, typename _Equal,
1931  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1932  typename _Traits>
1933  void
1934  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1935  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1936  _M_rehash(size_type __n, const __rehash_state& __state)
1937  {
1938  __try
1939  {
1940  _M_rehash_aux(__n, __unique_keys());
1941  }
1942  __catch(...)
1943  {
1944  // A failure here means that buckets allocation failed. We only
1945  // have to restore hash policy previous state.
1946  _M_rehash_policy._M_reset(__state);
1947  __throw_exception_again;
1948  }
1949  }
1950 
1951  // Rehash when there is no equivalent elements.
1952  template<typename _Key, typename _Value,
1953  typename _Alloc, typename _ExtractKey, typename _Equal,
1954  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1955  typename _Traits>
1956  void
1957  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1958  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1959  _M_rehash_aux(size_type __n, std::true_type)
1960  {
1961  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1962  __node_type* __p = _M_begin();
1963  _M_before_begin._M_nxt = nullptr;
1964  std::size_t __bbegin_bkt = 0;
1965  while (__p)
1966  {
1967  __node_type* __next = __p->_M_next();
1968  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1969  if (!__new_buckets[__bkt])
1970  {
1971  __p->_M_nxt = _M_before_begin._M_nxt;
1972  _M_before_begin._M_nxt = __p;
1973  __new_buckets[__bkt] = &_M_before_begin;
1974  if (__p->_M_nxt)
1975  __new_buckets[__bbegin_bkt] = __p;
1976  __bbegin_bkt = __bkt;
1977  }
1978  else
1979  {
1980  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1981  __new_buckets[__bkt]->_M_nxt = __p;
1982  }
1983  __p = __next;
1984  }
1985 
1986  _M_deallocate_buckets();
1987  _M_bucket_count = __n;
1988  _M_buckets = __new_buckets;
1989  }
1990 
1991  // Rehash when there can be equivalent elements, preserve their relative
1992  // order.
1993  template<typename _Key, typename _Value,
1994  typename _Alloc, typename _ExtractKey, typename _Equal,
1995  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1996  typename _Traits>
1997  void
1998  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1999  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2000  _M_rehash_aux(size_type __n, std::false_type)
2001  {
2002  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2003 
2004  __node_type* __p = _M_begin();
2005  _M_before_begin._M_nxt = nullptr;
2006  std::size_t __bbegin_bkt = 0;
2007  std::size_t __prev_bkt = 0;
2008  __node_type* __prev_p = nullptr;
2009  bool __check_bucket = false;
2010 
2011  while (__p)
2012  {
2013  __node_type* __next = __p->_M_next();
2014  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2015 
2016  if (__prev_p && __prev_bkt == __bkt)
2017  {
2018  // Previous insert was already in this bucket, we insert after
2019  // the previously inserted one to preserve equivalent elements
2020  // relative order.
2021  __p->_M_nxt = __prev_p->_M_nxt;
2022  __prev_p->_M_nxt = __p;
2023 
2024  // Inserting after a node in a bucket require to check that we
2025  // haven't change the bucket last node, in this case next
2026  // bucket containing its before begin node must be updated. We
2027  // schedule a check as soon as we move out of the sequence of
2028  // equivalent nodes to limit the number of checks.
2029  __check_bucket = true;
2030  }
2031  else
2032  {
2033  if (__check_bucket)
2034  {
2035  // Check if we shall update the next bucket because of
2036  // insertions into __prev_bkt bucket.
2037  if (__prev_p->_M_nxt)
2038  {
2039  std::size_t __next_bkt
2040  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2041  __n);
2042  if (__next_bkt != __prev_bkt)
2043  __new_buckets[__next_bkt] = __prev_p;
2044  }
2045  __check_bucket = false;
2046  }
2047 
2048  if (!__new_buckets[__bkt])
2049  {
2050  __p->_M_nxt = _M_before_begin._M_nxt;
2051  _M_before_begin._M_nxt = __p;
2052  __new_buckets[__bkt] = &_M_before_begin;
2053  if (__p->_M_nxt)
2054  __new_buckets[__bbegin_bkt] = __p;
2055  __bbegin_bkt = __bkt;
2056  }
2057  else
2058  {
2059  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2060  __new_buckets[__bkt]->_M_nxt = __p;
2061  }
2062  }
2063  __prev_p = __p;
2064  __prev_bkt = __bkt;
2065  __p = __next;
2066  }
2067 
2068  if (__check_bucket && __prev_p->_M_nxt)
2069  {
2070  std::size_t __next_bkt
2071  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2072  if (__next_bkt != __prev_bkt)
2073  __new_buckets[__next_bkt] = __prev_p;
2074  }
2075 
2076  _M_deallocate_buckets();
2077  _M_bucket_count = __n;
2078  _M_buckets = __new_buckets;
2079  }
2080 
2081 _GLIBCXX_END_NAMESPACE_VERSION
2082 } // namespace std
2083 
2084 #endif // _HASHTABLE_H
_T2 second
first is a copy of the first object
Definition: stl_pair.h:196
Uniform interface to C++98 and C++11 allocators.
constexpr auto cend(const _Container &__cont) noexcept(noexcept(std::end(__cont))) -> decltype(std::end(__cont))
Return an iterator pointing to one past the last element of the const container.
Definition: range_access.h:127
_GLIBCXX14_CONSTEXPR const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:219
constexpr const _Tp * begin(initializer_list< _Tp > __ils) noexcept
Return an iterator pointing to the first element of the initializer_list.
initializer_list
_T1 first
second_type is the second bound type
Definition: stl_pair.h:195
constexpr const _Tp * end(initializer_list< _Tp > __ils) noexcept
Return an iterator pointing to one past the last element of the initializer_list. ...
integral_constant
Definition: type_traits:69
constexpr auto cbegin(const _Container &__cont) noexcept(noexcept(std::begin(__cont))) -> decltype(std::begin(__cont))
Return an iterator pointing to the first element of the const container.
Definition: range_access.h:116
Node iterators, used to iterate through all the hashtable.
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:190
constexpr pair< typename __decay_and_strip< _T1 >::__type, typename __decay_and_strip< _T2 >::__type > make_pair(_T1 &&__x, _T2 &&__y)
A convenience wrapper for creating a pair from two objects.
Definition: stl_pair.h:493
Uniform interface to all allocator types.
Node const_iterators, used to iterate through all the hashtable.
constexpr conditional< __move_if_noexcept_cond< _Tp >::value, const _Tp &, _Tp && >::type move_if_noexcept(_Tp &__x) noexcept
Conditionally convert a value to an rvalue.
Definition: move.h:121
ISO C++ entities toplevel namespace is std.
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:87
iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.