libstdc++
hashtable_policy.h
Go to the documentation of this file.
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2019 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable_policy.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly.
28  * @headername{unordered_map,unordered_set}
29  */
30 
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
33 
34 #include <tuple> // for std::tuple, std::forward_as_tuple
35 #include <limits> // for std::numeric_limits
36 #include <bits/stl_algobase.h> // for std::min.
37 
38 namespace std _GLIBCXX_VISIBILITY(default)
39 {
40 _GLIBCXX_BEGIN_NAMESPACE_VERSION
41 
42  template<typename _Key, typename _Value, typename _Alloc,
43  typename _ExtractKey, typename _Equal,
44  typename _H1, typename _H2, typename _Hash,
45  typename _RehashPolicy, typename _Traits>
46  class _Hashtable;
47 
48 namespace __detail
49 {
50  /**
51  * @defgroup hashtable-detail Base and Implementation Classes
52  * @ingroup unordered_associative_containers
53  * @{
54  */
55  template<typename _Key, typename _Value,
56  typename _ExtractKey, typename _Equal,
57  typename _H1, typename _H2, typename _Hash, typename _Traits>
59 
60  // Helper function: return distance(first, last) for forward
61  // iterators, or 0/1 for input iterators.
62  template<class _Iterator>
63  inline typename std::iterator_traits<_Iterator>::difference_type
64  __distance_fw(_Iterator __first, _Iterator __last,
66  { return __first != __last ? 1 : 0; }
67 
68  template<class _Iterator>
69  inline typename std::iterator_traits<_Iterator>::difference_type
70  __distance_fw(_Iterator __first, _Iterator __last,
72  { return std::distance(__first, __last); }
73 
74  template<class _Iterator>
75  inline typename std::iterator_traits<_Iterator>::difference_type
76  __distance_fw(_Iterator __first, _Iterator __last)
77  { return __distance_fw(__first, __last,
78  std::__iterator_category(__first)); }
79 
80  struct _Identity
81  {
82  template<typename _Tp>
83  _Tp&&
84  operator()(_Tp&& __x) const
85  { return std::forward<_Tp>(__x); }
86  };
87 
88  struct _Select1st
89  {
90  template<typename _Tp>
91  auto
92  operator()(_Tp&& __x) const
93  -> decltype(std::get<0>(std::forward<_Tp>(__x)))
94  { return std::get<0>(std::forward<_Tp>(__x)); }
95  };
96 
97  template<typename _NodeAlloc>
99 
100  // Functor recycling a pool of nodes and using allocation once the pool is
101  // empty.
102  template<typename _NodeAlloc>
103  struct _ReuseOrAllocNode
104  {
105  private:
106  using __node_alloc_type = _NodeAlloc;
107  using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
108  using __node_alloc_traits =
109  typename __hashtable_alloc::__node_alloc_traits;
110  using __node_type = typename __hashtable_alloc::__node_type;
111 
112  public:
113  _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
114  : _M_nodes(__nodes), _M_h(__h) { }
115  _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
116 
117  ~_ReuseOrAllocNode()
118  { _M_h._M_deallocate_nodes(_M_nodes); }
119 
120  template<typename _Arg>
121  __node_type*
122  operator()(_Arg&& __arg) const
123  {
124  if (_M_nodes)
125  {
126  __node_type* __node = _M_nodes;
127  _M_nodes = _M_nodes->_M_next();
128  __node->_M_nxt = nullptr;
129  auto& __a = _M_h._M_node_allocator();
130  __node_alloc_traits::destroy(__a, __node->_M_valptr());
131  __try
132  {
133  __node_alloc_traits::construct(__a, __node->_M_valptr(),
134  std::forward<_Arg>(__arg));
135  }
136  __catch(...)
137  {
138  _M_h._M_deallocate_node_ptr(__node);
139  __throw_exception_again;
140  }
141  return __node;
142  }
143  return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
144  }
145 
146  private:
147  mutable __node_type* _M_nodes;
148  __hashtable_alloc& _M_h;
149  };
150 
151  // Functor similar to the previous one but without any pool of nodes to
152  // recycle.
153  template<typename _NodeAlloc>
154  struct _AllocNode
155  {
156  private:
157  using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
158  using __node_type = typename __hashtable_alloc::__node_type;
159 
160  public:
161  _AllocNode(__hashtable_alloc& __h)
162  : _M_h(__h) { }
163 
164  template<typename _Arg>
165  __node_type*
166  operator()(_Arg&& __arg) const
167  { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
168 
169  private:
170  __hashtable_alloc& _M_h;
171  };
172 
173  // Auxiliary types used for all instantiations of _Hashtable nodes
174  // and iterators.
175 
176  /**
177  * struct _Hashtable_traits
178  *
179  * Important traits for hash tables.
180  *
181  * @tparam _Cache_hash_code Boolean value. True if the value of
182  * the hash function is stored along with the value. This is a
183  * time-space tradeoff. Storing it may improve lookup speed by
184  * reducing the number of times we need to call the _Equal
185  * function.
186  *
187  * @tparam _Constant_iterators Boolean value. True if iterator and
188  * const_iterator are both constant iterator types. This is true
189  * for unordered_set and unordered_multiset, false for
190  * unordered_map and unordered_multimap.
191  *
192  * @tparam _Unique_keys Boolean value. True if the return value
193  * of _Hashtable::count(k) is always at most one, false if it may
194  * be an arbitrary number. This is true for unordered_set and
195  * unordered_map, false for unordered_multiset and
196  * unordered_multimap.
197  */
198  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
200  {
204  };
205 
206  /**
207  * struct _Hash_node_base
208  *
209  * Nodes, used to wrap elements stored in the hash table. A policy
210  * template parameter of class template _Hashtable controls whether
211  * nodes also store a hash code. In some cases (e.g. strings) this
212  * may be a performance win.
213  */
215  {
216  _Hash_node_base* _M_nxt;
217 
218  _Hash_node_base() noexcept : _M_nxt() { }
219 
220  _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
221  };
222 
223  /**
224  * struct _Hash_node_value_base
225  *
226  * Node type with the value to store.
227  */
228  template<typename _Value>
230  {
231  typedef _Value value_type;
232 
233  __gnu_cxx::__aligned_buffer<_Value> _M_storage;
234 
235  _Value*
236  _M_valptr() noexcept
237  { return _M_storage._M_ptr(); }
238 
239  const _Value*
240  _M_valptr() const noexcept
241  { return _M_storage._M_ptr(); }
242 
243  _Value&
244  _M_v() noexcept
245  { return *_M_valptr(); }
246 
247  const _Value&
248  _M_v() const noexcept
249  { return *_M_valptr(); }
250  };
251 
252  /**
253  * Primary template struct _Hash_node.
254  */
255  template<typename _Value, bool _Cache_hash_code>
256  struct _Hash_node;
257 
258  /**
259  * Specialization for nodes with caches, struct _Hash_node.
260  *
261  * Base class is __detail::_Hash_node_value_base.
262  */
263  template<typename _Value>
264  struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
265  {
266  std::size_t _M_hash_code;
267 
268  _Hash_node*
269  _M_next() const noexcept
270  { return static_cast<_Hash_node*>(this->_M_nxt); }
271  };
272 
273  /**
274  * Specialization for nodes without caches, struct _Hash_node.
275  *
276  * Base class is __detail::_Hash_node_value_base.
277  */
278  template<typename _Value>
279  struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
280  {
281  _Hash_node*
282  _M_next() const noexcept
283  { return static_cast<_Hash_node*>(this->_M_nxt); }
284  };
285 
286  /// Base class for node iterators.
287  template<typename _Value, bool _Cache_hash_code>
289  {
291 
292  __node_type* _M_cur;
293 
294  _Node_iterator_base(__node_type* __p) noexcept
295  : _M_cur(__p) { }
296 
297  void
298  _M_incr() noexcept
299  { _M_cur = _M_cur->_M_next(); }
300  };
301 
302  template<typename _Value, bool _Cache_hash_code>
303  inline bool
304  operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
306  noexcept
307  { return __x._M_cur == __y._M_cur; }
308 
309  template<typename _Value, bool _Cache_hash_code>
310  inline bool
311  operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
312  const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
313  noexcept
314  { return __x._M_cur != __y._M_cur; }
315 
316  /// Node iterators, used to iterate through all the hashtable.
317  template<typename _Value, bool __constant_iterators, bool __cache>
319  : public _Node_iterator_base<_Value, __cache>
320  {
321  private:
323  using __node_type = typename __base_type::__node_type;
324 
325  public:
326  typedef _Value value_type;
327  typedef std::ptrdiff_t difference_type;
329 
330  using pointer = typename std::conditional<__constant_iterators,
331  const _Value*, _Value*>::type;
332 
333  using reference = typename std::conditional<__constant_iterators,
334  const _Value&, _Value&>::type;
335 
336  _Node_iterator() noexcept
337  : __base_type(0) { }
338 
339  explicit
340  _Node_iterator(__node_type* __p) noexcept
341  : __base_type(__p) { }
342 
343  reference
344  operator*() const noexcept
345  { return this->_M_cur->_M_v(); }
346 
347  pointer
348  operator->() const noexcept
349  { return this->_M_cur->_M_valptr(); }
350 
352  operator++() noexcept
353  {
354  this->_M_incr();
355  return *this;
356  }
357 
359  operator++(int) noexcept
360  {
361  _Node_iterator __tmp(*this);
362  this->_M_incr();
363  return __tmp;
364  }
365  };
366 
367  /// Node const_iterators, used to iterate through all the hashtable.
368  template<typename _Value, bool __constant_iterators, bool __cache>
370  : public _Node_iterator_base<_Value, __cache>
371  {
372  private:
374  using __node_type = typename __base_type::__node_type;
375 
376  public:
377  typedef _Value value_type;
378  typedef std::ptrdiff_t difference_type;
380 
381  typedef const _Value* pointer;
382  typedef const _Value& reference;
383 
384  _Node_const_iterator() noexcept
385  : __base_type(0) { }
386 
387  explicit
388  _Node_const_iterator(__node_type* __p) noexcept
389  : __base_type(__p) { }
390 
391  _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
392  __cache>& __x) noexcept
393  : __base_type(__x._M_cur) { }
394 
395  reference
396  operator*() const noexcept
397  { return this->_M_cur->_M_v(); }
398 
399  pointer
400  operator->() const noexcept
401  { return this->_M_cur->_M_valptr(); }
402 
404  operator++() noexcept
405  {
406  this->_M_incr();
407  return *this;
408  }
409 
411  operator++(int) noexcept
412  {
413  _Node_const_iterator __tmp(*this);
414  this->_M_incr();
415  return __tmp;
416  }
417  };
418 
419  // Many of class template _Hashtable's template parameters are policy
420  // classes. These are defaults for the policies.
421 
422  /// Default range hashing function: use division to fold a large number
423  /// into the range [0, N).
425  {
426  typedef std::size_t first_argument_type;
427  typedef std::size_t second_argument_type;
428  typedef std::size_t result_type;
429 
430  result_type
431  operator()(first_argument_type __num,
432  second_argument_type __den) const noexcept
433  { return __num % __den; }
434  };
435 
436  /// Default ranged hash function H. In principle it should be a
437  /// function object composed from objects of type H1 and H2 such that
438  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
439  /// h1 and h2. So instead we'll just use a tag to tell class template
440  /// hashtable to do that composition.
442 
443  /// Default value for rehash policy. Bucket size is (usually) the
444  /// smallest prime that keeps the load factor small enough.
446  {
448 
449  _Prime_rehash_policy(float __z = 1.0) noexcept
450  : _M_max_load_factor(__z), _M_next_resize(0) { }
451 
452  float
453  max_load_factor() const noexcept
454  { return _M_max_load_factor; }
455 
456  // Return a bucket size no smaller than n.
457  std::size_t
458  _M_next_bkt(std::size_t __n) const;
459 
460  // Return a bucket count appropriate for n elements
461  std::size_t
462  _M_bkt_for_elements(std::size_t __n) const
463  { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
464 
465  // __n_bkt is current bucket count, __n_elt is current element count,
466  // and __n_ins is number of elements to be inserted. Do we need to
467  // increase bucket count? If so, return make_pair(true, n), where n
468  // is the new bucket count. If not, return make_pair(false, 0).
470  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
471  std::size_t __n_ins) const;
472 
473  typedef std::size_t _State;
474 
475  _State
476  _M_state() const
477  { return _M_next_resize; }
478 
479  void
480  _M_reset() noexcept
481  { _M_next_resize = 0; }
482 
483  void
484  _M_reset(_State __state)
485  { _M_next_resize = __state; }
486 
487  static const std::size_t _S_growth_factor = 2;
488 
489  float _M_max_load_factor;
490  mutable std::size_t _M_next_resize;
491  };
492 
493  /// Range hashing function assuming that second arg is a power of 2.
495  {
496  typedef std::size_t first_argument_type;
497  typedef std::size_t second_argument_type;
498  typedef std::size_t result_type;
499 
500  result_type
501  operator()(first_argument_type __num,
502  second_argument_type __den) const noexcept
503  { return __num & (__den - 1); }
504  };
505 
506  /// Compute closest power of 2 not less than __n
507  inline std::size_t
508  __clp2(std::size_t __n) noexcept
509  {
510  // Equivalent to return __n ? std::ceil2(__n) : 0;
511  if (__n < 2)
512  return __n;
513  const unsigned __lz = sizeof(size_t) > sizeof(long)
514  ? __builtin_clzll(__n - 1ull)
515  : __builtin_clzl(__n - 1ul);
516  // Doing two shifts avoids undefined behaviour when __lz == 0.
517  return (size_t(1) << (numeric_limits<size_t>::digits - __lz - 1)) << 1;
518  }
519 
520  /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
521  /// operations.
523  {
525 
526  _Power2_rehash_policy(float __z = 1.0) noexcept
527  : _M_max_load_factor(__z), _M_next_resize(0) { }
528 
529  float
530  max_load_factor() const noexcept
531  { return _M_max_load_factor; }
532 
533  // Return a bucket size no smaller than n (as long as n is not above the
534  // highest power of 2).
535  std::size_t
536  _M_next_bkt(std::size_t __n) noexcept
537  {
538  const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
539  const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
540  std::size_t __res = __clp2(__n);
541 
542  if (__res == __n)
543  __res <<= 1;
544 
545  if (__res == 0)
546  __res = __max_bkt;
547 
548  if (__res == __max_bkt)
549  // Set next resize to the max value so that we never try to rehash again
550  // as we already reach the biggest possible bucket number.
551  // Note that it might result in max_load_factor not being respected.
552  _M_next_resize = std::size_t(-1);
553  else
554  _M_next_resize
555  = __builtin_ceil(__res * (long double)_M_max_load_factor);
556 
557  return __res;
558  }
559 
560  // Return a bucket count appropriate for n elements
561  std::size_t
562  _M_bkt_for_elements(std::size_t __n) const noexcept
563  { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
564 
565  // __n_bkt is current bucket count, __n_elt is current element count,
566  // and __n_ins is number of elements to be inserted. Do we need to
567  // increase bucket count? If so, return make_pair(true, n), where n
568  // is the new bucket count. If not, return make_pair(false, 0).
570  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
571  std::size_t __n_ins) noexcept
572  {
573  if (__n_elt + __n_ins >= _M_next_resize)
574  {
575  long double __min_bkts = (__n_elt + __n_ins)
576  / (long double)_M_max_load_factor;
577  if (__min_bkts >= __n_bkt)
578  return std::make_pair(true,
579  _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
580  __n_bkt * _S_growth_factor)));
581 
582  _M_next_resize
583  = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
584  return std::make_pair(false, 0);
585  }
586  else
587  return std::make_pair(false, 0);
588  }
589 
590  typedef std::size_t _State;
591 
592  _State
593  _M_state() const noexcept
594  { return _M_next_resize; }
595 
596  void
597  _M_reset() noexcept
598  { _M_next_resize = 0; }
599 
600  void
601  _M_reset(_State __state) noexcept
602  { _M_next_resize = __state; }
603 
604  static const std::size_t _S_growth_factor = 2;
605 
606  float _M_max_load_factor;
607  std::size_t _M_next_resize;
608  };
609 
610  // Base classes for std::_Hashtable. We define these base classes
611  // because in some cases we want to do different things depending on
612  // the value of a policy class. In some cases the policy class
613  // affects which member functions and nested typedefs are defined;
614  // we handle that by specializing base class templates. Several of
615  // the base class templates need to access other members of class
616  // template _Hashtable, so we use a variant of the "Curiously
617  // Recurring Template Pattern" (CRTP) technique.
618 
619  /**
620  * Primary class template _Map_base.
621  *
622  * If the hashtable has a value type of the form pair<T1, T2> and a
623  * key extraction policy (_ExtractKey) that returns the first part
624  * of the pair, the hashtable gets a mapped_type typedef. If it
625  * satisfies those criteria and also has unique keys, then it also
626  * gets an operator[].
627  */
628  template<typename _Key, typename _Value, typename _Alloc,
629  typename _ExtractKey, typename _Equal,
630  typename _H1, typename _H2, typename _Hash,
631  typename _RehashPolicy, typename _Traits,
632  bool _Unique_keys = _Traits::__unique_keys::value>
633  struct _Map_base { };
634 
635  /// Partial specialization, __unique_keys set to false.
636  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
637  typename _H1, typename _H2, typename _Hash,
638  typename _RehashPolicy, typename _Traits>
639  struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
640  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
641  {
642  using mapped_type = typename std::tuple_element<1, _Pair>::type;
643  };
644 
645  /// Partial specialization, __unique_keys set to true.
646  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
647  typename _H1, typename _H2, typename _Hash,
648  typename _RehashPolicy, typename _Traits>
649  struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
650  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
651  {
652  private:
653  using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
654  _Select1st,
655  _Equal, _H1, _H2, _Hash,
656  _Traits>;
657 
658  using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
659  _Select1st, _Equal,
660  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
661 
662  using __hash_code = typename __hashtable_base::__hash_code;
663  using __node_type = typename __hashtable_base::__node_type;
664 
665  public:
666  using key_type = typename __hashtable_base::key_type;
667  using iterator = typename __hashtable_base::iterator;
668  using mapped_type = typename std::tuple_element<1, _Pair>::type;
669 
670  mapped_type&
671  operator[](const key_type& __k);
672 
673  mapped_type&
674  operator[](key_type&& __k);
675 
676  // _GLIBCXX_RESOLVE_LIB_DEFECTS
677  // DR 761. unordered_map needs an at() member function.
678  mapped_type&
679  at(const key_type& __k);
680 
681  const mapped_type&
682  at(const key_type& __k) const;
683  };
684 
685  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
686  typename _H1, typename _H2, typename _Hash,
687  typename _RehashPolicy, typename _Traits>
688  auto
689  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
690  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
691  operator[](const key_type& __k)
692  -> mapped_type&
693  {
694  __hashtable* __h = static_cast<__hashtable*>(this);
695  __hash_code __code = __h->_M_hash_code(__k);
696  std::size_t __n = __h->_M_bucket_index(__k, __code);
697  __node_type* __p = __h->_M_find_node(__n, __k, __code);
698 
699  if (!__p)
700  {
701  __p = __h->_M_allocate_node(std::piecewise_construct,
703  std::tuple<>());
704  return __h->_M_insert_unique_node(__n, __code, __p)->second;
705  }
706 
707  return __p->_M_v().second;
708  }
709 
710  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
711  typename _H1, typename _H2, typename _Hash,
712  typename _RehashPolicy, typename _Traits>
713  auto
714  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
715  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
716  operator[](key_type&& __k)
717  -> mapped_type&
718  {
719  __hashtable* __h = static_cast<__hashtable*>(this);
720  __hash_code __code = __h->_M_hash_code(__k);
721  std::size_t __n = __h->_M_bucket_index(__k, __code);
722  __node_type* __p = __h->_M_find_node(__n, __k, __code);
723 
724  if (!__p)
725  {
726  __p = __h->_M_allocate_node(std::piecewise_construct,
727  std::forward_as_tuple(std::move(__k)),
728  std::tuple<>());
729  return __h->_M_insert_unique_node(__n, __code, __p)->second;
730  }
731 
732  return __p->_M_v().second;
733  }
734 
735  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
736  typename _H1, typename _H2, typename _Hash,
737  typename _RehashPolicy, typename _Traits>
738  auto
739  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
740  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
741  at(const key_type& __k)
742  -> mapped_type&
743  {
744  __hashtable* __h = static_cast<__hashtable*>(this);
745  __hash_code __code = __h->_M_hash_code(__k);
746  std::size_t __n = __h->_M_bucket_index(__k, __code);
747  __node_type* __p = __h->_M_find_node(__n, __k, __code);
748 
749  if (!__p)
750  __throw_out_of_range(__N("_Map_base::at"));
751  return __p->_M_v().second;
752  }
753 
754  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
755  typename _H1, typename _H2, typename _Hash,
756  typename _RehashPolicy, typename _Traits>
757  auto
758  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
759  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
760  at(const key_type& __k) const
761  -> const mapped_type&
762  {
763  const __hashtable* __h = static_cast<const __hashtable*>(this);
764  __hash_code __code = __h->_M_hash_code(__k);
765  std::size_t __n = __h->_M_bucket_index(__k, __code);
766  __node_type* __p = __h->_M_find_node(__n, __k, __code);
767 
768  if (!__p)
769  __throw_out_of_range(__N("_Map_base::at"));
770  return __p->_M_v().second;
771  }
772 
773  /**
774  * Primary class template _Insert_base.
775  *
776  * Defines @c insert member functions appropriate to all _Hashtables.
777  */
778  template<typename _Key, typename _Value, typename _Alloc,
779  typename _ExtractKey, typename _Equal,
780  typename _H1, typename _H2, typename _Hash,
781  typename _RehashPolicy, typename _Traits>
783  {
784  protected:
785  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
786  _Equal, _H1, _H2, _Hash,
787  _RehashPolicy, _Traits>;
788 
789  using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
790  _Equal, _H1, _H2, _Hash,
791  _Traits>;
792 
793  using value_type = typename __hashtable_base::value_type;
794  using iterator = typename __hashtable_base::iterator;
795  using const_iterator = typename __hashtable_base::const_iterator;
796  using size_type = typename __hashtable_base::size_type;
797 
798  using __unique_keys = typename __hashtable_base::__unique_keys;
799  using __ireturn_type = typename __hashtable_base::__ireturn_type;
801  using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
802  using __node_gen_type = _AllocNode<__node_alloc_type>;
803 
804  __hashtable&
805  _M_conjure_hashtable()
806  { return *(static_cast<__hashtable*>(this)); }
807 
808  template<typename _InputIterator, typename _NodeGetter>
809  void
810  _M_insert_range(_InputIterator __first, _InputIterator __last,
811  const _NodeGetter&, true_type);
812 
813  template<typename _InputIterator, typename _NodeGetter>
814  void
815  _M_insert_range(_InputIterator __first, _InputIterator __last,
816  const _NodeGetter&, false_type);
817 
818  public:
819  __ireturn_type
820  insert(const value_type& __v)
821  {
822  __hashtable& __h = _M_conjure_hashtable();
823  __node_gen_type __node_gen(__h);
824  return __h._M_insert(__v, __node_gen, __unique_keys());
825  }
826 
827  iterator
828  insert(const_iterator __hint, const value_type& __v)
829  {
830  __hashtable& __h = _M_conjure_hashtable();
831  __node_gen_type __node_gen(__h);
832  return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
833  }
834 
835  void
836  insert(initializer_list<value_type> __l)
837  { this->insert(__l.begin(), __l.end()); }
838 
839  template<typename _InputIterator>
840  void
841  insert(_InputIterator __first, _InputIterator __last)
842  {
843  __hashtable& __h = _M_conjure_hashtable();
844  __node_gen_type __node_gen(__h);
845  return _M_insert_range(__first, __last, __node_gen, __unique_keys());
846  }
847  };
848 
849  template<typename _Key, typename _Value, typename _Alloc,
850  typename _ExtractKey, typename _Equal,
851  typename _H1, typename _H2, typename _Hash,
852  typename _RehashPolicy, typename _Traits>
853  template<typename _InputIterator, typename _NodeGetter>
854  void
855  _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
856  _RehashPolicy, _Traits>::
857  _M_insert_range(_InputIterator __first, _InputIterator __last,
858  const _NodeGetter& __node_gen, true_type)
859  {
860  size_type __n_elt = __detail::__distance_fw(__first, __last);
861  if (__n_elt == 0)
862  return;
863 
864  __hashtable& __h = _M_conjure_hashtable();
865  for (; __first != __last; ++__first)
866  {
867  if (__h._M_insert(*__first, __node_gen, __unique_keys(),
868  __n_elt).second)
869  __n_elt = 1;
870  else if (__n_elt != 1)
871  --__n_elt;
872  }
873  }
874 
875  template<typename _Key, typename _Value, typename _Alloc,
876  typename _ExtractKey, typename _Equal,
877  typename _H1, typename _H2, typename _Hash,
878  typename _RehashPolicy, typename _Traits>
879  template<typename _InputIterator, typename _NodeGetter>
880  void
881  _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
882  _RehashPolicy, _Traits>::
883  _M_insert_range(_InputIterator __first, _InputIterator __last,
884  const _NodeGetter& __node_gen, false_type)
885  {
886  using __rehash_type = typename __hashtable::__rehash_type;
887  using __rehash_state = typename __hashtable::__rehash_state;
888  using pair_type = std::pair<bool, std::size_t>;
889 
890  size_type __n_elt = __detail::__distance_fw(__first, __last);
891  if (__n_elt == 0)
892  return;
893 
894  __hashtable& __h = _M_conjure_hashtable();
895  __rehash_type& __rehash = __h._M_rehash_policy;
896  const __rehash_state& __saved_state = __rehash._M_state();
897  pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
898  __h._M_element_count,
899  __n_elt);
900 
901  if (__do_rehash.first)
902  __h._M_rehash(__do_rehash.second, __saved_state);
903 
904  for (; __first != __last; ++__first)
905  __h._M_insert(*__first, __node_gen, __unique_keys());
906  }
907 
908  /**
909  * Primary class template _Insert.
910  *
911  * Defines @c insert member functions that depend on _Hashtable policies,
912  * via partial specializations.
913  */
914  template<typename _Key, typename _Value, typename _Alloc,
915  typename _ExtractKey, typename _Equal,
916  typename _H1, typename _H2, typename _Hash,
917  typename _RehashPolicy, typename _Traits,
918  bool _Constant_iterators = _Traits::__constant_iterators::value>
919  struct _Insert;
920 
921  /// Specialization.
922  template<typename _Key, typename _Value, typename _Alloc,
923  typename _ExtractKey, typename _Equal,
924  typename _H1, typename _H2, typename _Hash,
925  typename _RehashPolicy, typename _Traits>
926  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
927  _RehashPolicy, _Traits, true>
928  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
929  _H1, _H2, _Hash, _RehashPolicy, _Traits>
930  {
931  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
932  _Equal, _H1, _H2, _Hash,
933  _RehashPolicy, _Traits>;
934 
935  using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
936  _Equal, _H1, _H2, _Hash,
937  _Traits>;
938 
939  using value_type = typename __base_type::value_type;
940  using iterator = typename __base_type::iterator;
941  using const_iterator = typename __base_type::const_iterator;
942 
943  using __unique_keys = typename __base_type::__unique_keys;
944  using __ireturn_type = typename __hashtable_base::__ireturn_type;
945  using __hashtable = typename __base_type::__hashtable;
946  using __node_gen_type = typename __base_type::__node_gen_type;
947 
948  using __base_type::insert;
949 
950  __ireturn_type
951  insert(value_type&& __v)
952  {
953  __hashtable& __h = this->_M_conjure_hashtable();
954  __node_gen_type __node_gen(__h);
955  return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
956  }
957 
958  iterator
959  insert(const_iterator __hint, value_type&& __v)
960  {
961  __hashtable& __h = this->_M_conjure_hashtable();
962  __node_gen_type __node_gen(__h);
963  return __h._M_insert(__hint, std::move(__v), __node_gen,
964  __unique_keys());
965  }
966  };
967 
968  /// Specialization.
969  template<typename _Key, typename _Value, typename _Alloc,
970  typename _ExtractKey, typename _Equal,
971  typename _H1, typename _H2, typename _Hash,
972  typename _RehashPolicy, typename _Traits>
973  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
974  _RehashPolicy, _Traits, false>
975  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
976  _H1, _H2, _Hash, _RehashPolicy, _Traits>
977  {
978  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
979  _Equal, _H1, _H2, _Hash,
980  _RehashPolicy, _Traits>;
981  using value_type = typename __base_type::value_type;
982  using iterator = typename __base_type::iterator;
983  using const_iterator = typename __base_type::const_iterator;
984 
985  using __unique_keys = typename __base_type::__unique_keys;
986  using __hashtable = typename __base_type::__hashtable;
987  using __ireturn_type = typename __base_type::__ireturn_type;
988 
989  using __base_type::insert;
990 
991  template<typename _Pair>
993 
994  template<typename _Pair>
996 
997  template<typename _Pair>
998  using _IFconsp = typename _IFcons<_Pair>::type;
999 
1000  template<typename _Pair, typename = _IFconsp<_Pair>>
1001  __ireturn_type
1002  insert(_Pair&& __v)
1003  {
1004  __hashtable& __h = this->_M_conjure_hashtable();
1005  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
1006  }
1007 
1008  template<typename _Pair, typename = _IFconsp<_Pair>>
1009  iterator
1010  insert(const_iterator __hint, _Pair&& __v)
1011  {
1012  __hashtable& __h = this->_M_conjure_hashtable();
1013  return __h._M_emplace(__hint, __unique_keys(),
1014  std::forward<_Pair>(__v));
1015  }
1016  };
1017 
1018  template<typename _Policy>
1019  using __has_load_factor = typename _Policy::__has_load_factor;
1020 
1021  /**
1022  * Primary class template _Rehash_base.
1023  *
1024  * Give hashtable the max_load_factor functions and reserve iff the
1025  * rehash policy supports it.
1026  */
1027  template<typename _Key, typename _Value, typename _Alloc,
1028  typename _ExtractKey, typename _Equal,
1029  typename _H1, typename _H2, typename _Hash,
1030  typename _RehashPolicy, typename _Traits,
1031  typename =
1032  __detected_or_t<std::false_type, __has_load_factor, _RehashPolicy>>
1034 
1035  /// Specialization when rehash policy doesn't provide load factor management.
1036  template<typename _Key, typename _Value, typename _Alloc,
1037  typename _ExtractKey, typename _Equal,
1038  typename _H1, typename _H2, typename _Hash,
1039  typename _RehashPolicy, typename _Traits>
1040  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1041  _H1, _H2, _Hash, _RehashPolicy, _Traits,
1042  std::false_type>
1043  {
1044  };
1045 
1046  /// Specialization when rehash policy provide load factor management.
1047  template<typename _Key, typename _Value, typename _Alloc,
1048  typename _ExtractKey, typename _Equal,
1049  typename _H1, typename _H2, typename _Hash,
1050  typename _RehashPolicy, typename _Traits>
1051  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1052  _H1, _H2, _Hash, _RehashPolicy, _Traits,
1053  std::true_type>
1054  {
1055  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1056  _Equal, _H1, _H2, _Hash,
1057  _RehashPolicy, _Traits>;
1058 
1059  float
1060  max_load_factor() const noexcept
1061  {
1062  const __hashtable* __this = static_cast<const __hashtable*>(this);
1063  return __this->__rehash_policy().max_load_factor();
1064  }
1065 
1066  void
1067  max_load_factor(float __z)
1068  {
1069  __hashtable* __this = static_cast<__hashtable*>(this);
1070  __this->__rehash_policy(_RehashPolicy(__z));
1071  }
1072 
1073  void
1074  reserve(std::size_t __n)
1075  {
1076  __hashtable* __this = static_cast<__hashtable*>(this);
1077  __this->rehash(__builtin_ceil(__n / max_load_factor()));
1078  }
1079  };
1080 
1081  /**
1082  * Primary class template _Hashtable_ebo_helper.
1083  *
1084  * Helper class using EBO when it is not forbidden (the type is not
1085  * final) and when it is worth it (the type is empty.)
1086  */
1087  template<int _Nm, typename _Tp,
1088  bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1090 
1091  /// Specialization using EBO.
1092  template<int _Nm, typename _Tp>
1093  struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1094  : private _Tp
1095  {
1096  _Hashtable_ebo_helper() = default;
1097 
1098  template<typename _OtherTp>
1099  _Hashtable_ebo_helper(_OtherTp&& __tp)
1100  : _Tp(std::forward<_OtherTp>(__tp))
1101  { }
1102 
1103  static const _Tp&
1104  _S_cget(const _Hashtable_ebo_helper& __eboh)
1105  { return static_cast<const _Tp&>(__eboh); }
1106 
1107  static _Tp&
1108  _S_get(_Hashtable_ebo_helper& __eboh)
1109  { return static_cast<_Tp&>(__eboh); }
1110  };
1111 
1112  /// Specialization not using EBO.
1113  template<int _Nm, typename _Tp>
1114  struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1115  {
1116  _Hashtable_ebo_helper() = default;
1117 
1118  template<typename _OtherTp>
1119  _Hashtable_ebo_helper(_OtherTp&& __tp)
1120  : _M_tp(std::forward<_OtherTp>(__tp))
1121  { }
1122 
1123  static const _Tp&
1124  _S_cget(const _Hashtable_ebo_helper& __eboh)
1125  { return __eboh._M_tp; }
1126 
1127  static _Tp&
1128  _S_get(_Hashtable_ebo_helper& __eboh)
1129  { return __eboh._M_tp; }
1130 
1131  private:
1132  _Tp _M_tp;
1133  };
1134 
1135  /**
1136  * Primary class template _Local_iterator_base.
1137  *
1138  * Base class for local iterators, used to iterate within a bucket
1139  * but not between buckets.
1140  */
1141  template<typename _Key, typename _Value, typename _ExtractKey,
1142  typename _H1, typename _H2, typename _Hash,
1143  bool __cache_hash_code>
1145 
1146  /**
1147  * Primary class template _Hash_code_base.
1148  *
1149  * Encapsulates two policy issues that aren't quite orthogonal.
1150  * (1) the difference between using a ranged hash function and using
1151  * the combination of a hash function and a range-hashing function.
1152  * In the former case we don't have such things as hash codes, so
1153  * we have a dummy type as placeholder.
1154  * (2) Whether or not we cache hash codes. Caching hash codes is
1155  * meaningless if we have a ranged hash function.
1156  *
1157  * We also put the key extraction objects here, for convenience.
1158  * Each specialization derives from one or more of the template
1159  * parameters to benefit from Ebo. This is important as this type
1160  * is inherited in some cases by the _Local_iterator_base type used
1161  * to implement local_iterator and const_local_iterator. As with
1162  * any iterator type we prefer to make it as small as possible.
1163  *
1164  * Primary template is unused except as a hook for specializations.
1165  */
1166  template<typename _Key, typename _Value, typename _ExtractKey,
1167  typename _H1, typename _H2, typename _Hash,
1168  bool __cache_hash_code>
1170 
1171  /// Specialization: ranged hash function, no caching hash codes. H1
1172  /// and H2 are provided but ignored. We define a dummy hash code type.
1173  template<typename _Key, typename _Value, typename _ExtractKey,
1174  typename _H1, typename _H2, typename _Hash>
1175  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
1176  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1177  private _Hashtable_ebo_helper<1, _Hash>
1178  {
1179  private:
1182 
1183  protected:
1184  typedef void* __hash_code;
1186 
1187  // We need the default constructor for the local iterators and _Hashtable
1188  // default constructor.
1189  _Hash_code_base() = default;
1190 
1191  _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
1192  const _Hash& __h)
1193  : __ebo_extract_key(__ex), __ebo_hash(__h) { }
1194 
1195  __hash_code
1196  _M_hash_code(const _Key& __key) const
1197  { return 0; }
1198 
1199  std::size_t
1200  _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
1201  { return _M_ranged_hash()(__k, __n); }
1202 
1203  std::size_t
1204  _M_bucket_index(const __node_type* __p, std::size_t __n) const
1205  noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
1206  (std::size_t)0)) )
1207  { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); }
1208 
1209  void
1210  _M_store_code(__node_type*, __hash_code) const
1211  { }
1212 
1213  void
1214  _M_copy_code(__node_type*, const __node_type*) const
1215  { }
1216 
1217  void
1218  _M_swap(_Hash_code_base& __x)
1219  {
1220  std::swap(_M_extract(), __x._M_extract());
1221  std::swap(_M_ranged_hash(), __x._M_ranged_hash());
1222  }
1223 
1224  const _ExtractKey&
1225  _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1226 
1227  _ExtractKey&
1228  _M_extract() { return __ebo_extract_key::_S_get(*this); }
1229 
1230  const _Hash&
1231  _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
1232 
1233  _Hash&
1234  _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
1235  };
1236 
1237  // No specialization for ranged hash function while caching hash codes.
1238  // That combination is meaningless, and trying to do it is an error.
1239 
1240  /// Specialization: ranged hash function, cache hash codes. This
1241  /// combination is meaningless, so we provide only a declaration
1242  /// and no definition.
1243  template<typename _Key, typename _Value, typename _ExtractKey,
1244  typename _H1, typename _H2, typename _Hash>
1245  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1246 
1247  /// Specialization: hash function and range-hashing function, no
1248  /// caching of hash codes.
1249  /// Provides typedef and accessor required by C++ 11.
1250  template<typename _Key, typename _Value, typename _ExtractKey,
1251  typename _H1, typename _H2>
1252  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1253  _Default_ranged_hash, false>
1254  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1255  private _Hashtable_ebo_helper<1, _H1>,
1256  private _Hashtable_ebo_helper<2, _H2>
1257  {
1258  private:
1262 
1263  // Gives the local iterator implementation access to _M_bucket_index().
1264  friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1265  _Default_ranged_hash, false>;
1266 
1267  public:
1268  typedef _H1 hasher;
1269 
1270  hasher
1271  hash_function() const
1272  { return _M_h1(); }
1273 
1274  protected:
1275  typedef std::size_t __hash_code;
1277 
1278  // We need the default constructor for the local iterators and _Hashtable
1279  // default constructor.
1280  _Hash_code_base() = default;
1281 
1282  _Hash_code_base(const _ExtractKey& __ex,
1283  const _H1& __h1, const _H2& __h2,
1284  const _Default_ranged_hash&)
1285  : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1286 
1287  __hash_code
1288  _M_hash_code(const _Key& __k) const
1289  {
1290  static_assert(__is_invocable<const _H1&, const _Key&>{},
1291  "hash function must be invocable with an argument of key type");
1292  return _M_h1()(__k);
1293  }
1294 
1295  std::size_t
1296  _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1297  { return _M_h2()(__c, __n); }
1298 
1299  std::size_t
1300  _M_bucket_index(const __node_type* __p, std::size_t __n) const
1301  noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
1302  && noexcept(declval<const _H2&>()((__hash_code)0,
1303  (std::size_t)0)) )
1304  { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); }
1305 
1306  void
1307  _M_store_code(__node_type*, __hash_code) const
1308  { }
1309 
1310  void
1311  _M_copy_code(__node_type*, const __node_type*) const
1312  { }
1313 
1314  void
1315  _M_swap(_Hash_code_base& __x)
1316  {
1317  std::swap(_M_extract(), __x._M_extract());
1318  std::swap(_M_h1(), __x._M_h1());
1319  std::swap(_M_h2(), __x._M_h2());
1320  }
1321 
1322  const _ExtractKey&
1323  _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1324 
1325  _ExtractKey&
1326  _M_extract() { return __ebo_extract_key::_S_get(*this); }
1327 
1328  const _H1&
1329  _M_h1() const { return __ebo_h1::_S_cget(*this); }
1330 
1331  _H1&
1332  _M_h1() { return __ebo_h1::_S_get(*this); }
1333 
1334  const _H2&
1335  _M_h2() const { return __ebo_h2::_S_cget(*this); }
1336 
1337  _H2&
1338  _M_h2() { return __ebo_h2::_S_get(*this); }
1339  };
1340 
1341  /// Specialization: hash function and range-hashing function,
1342  /// caching hash codes. H is provided but ignored. Provides
1343  /// typedef and accessor required by C++ 11.
1344  template<typename _Key, typename _Value, typename _ExtractKey,
1345  typename _H1, typename _H2>
1346  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1347  _Default_ranged_hash, true>
1348  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1349  private _Hashtable_ebo_helper<1, _H1>,
1350  private _Hashtable_ebo_helper<2, _H2>
1351  {
1352  private:
1353  // Gives the local iterator implementation access to _M_h2().
1354  friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1355  _Default_ranged_hash, true>;
1356 
1360 
1361  public:
1362  typedef _H1 hasher;
1363 
1364  hasher
1365  hash_function() const
1366  { return _M_h1(); }
1367 
1368  protected:
1369  typedef std::size_t __hash_code;
1371 
1372  // We need the default constructor for _Hashtable default constructor.
1373  _Hash_code_base() = default;
1374  _Hash_code_base(const _ExtractKey& __ex,
1375  const _H1& __h1, const _H2& __h2,
1376  const _Default_ranged_hash&)
1377  : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1378 
1379  __hash_code
1380  _M_hash_code(const _Key& __k) const
1381  {
1382  static_assert(__is_invocable<const _H1&, const _Key&>{},
1383  "hash function must be invocable with an argument of key type");
1384  return _M_h1()(__k);
1385  }
1386 
1387  std::size_t
1388  _M_bucket_index(const _Key&, __hash_code __c,
1389  std::size_t __n) const
1390  { return _M_h2()(__c, __n); }
1391 
1392  std::size_t
1393  _M_bucket_index(const __node_type* __p, std::size_t __n) const
1394  noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
1395  (std::size_t)0)) )
1396  { return _M_h2()(__p->_M_hash_code, __n); }
1397 
1398  void
1399  _M_store_code(__node_type* __n, __hash_code __c) const
1400  { __n->_M_hash_code = __c; }
1401 
1402  void
1403  _M_copy_code(__node_type* __to, const __node_type* __from) const
1404  { __to->_M_hash_code = __from->_M_hash_code; }
1405 
1406  void
1407  _M_swap(_Hash_code_base& __x)
1408  {
1409  std::swap(_M_extract(), __x._M_extract());
1410  std::swap(_M_h1(), __x._M_h1());
1411  std::swap(_M_h2(), __x._M_h2());
1412  }
1413 
1414  const _ExtractKey&
1415  _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1416 
1417  _ExtractKey&
1418  _M_extract() { return __ebo_extract_key::_S_get(*this); }
1419 
1420  const _H1&
1421  _M_h1() const { return __ebo_h1::_S_cget(*this); }
1422 
1423  _H1&
1424  _M_h1() { return __ebo_h1::_S_get(*this); }
1425 
1426  const _H2&
1427  _M_h2() const { return __ebo_h2::_S_cget(*this); }
1428 
1429  _H2&
1430  _M_h2() { return __ebo_h2::_S_get(*this); }
1431  };
1432 
1433  /**
1434  * Primary class template _Equal_helper.
1435  *
1436  */
1437  template <typename _Key, typename _Value, typename _ExtractKey,
1438  typename _Equal, typename _HashCodeType,
1439  bool __cache_hash_code>
1441 
1442  /// Specialization.
1443  template<typename _Key, typename _Value, typename _ExtractKey,
1444  typename _Equal, typename _HashCodeType>
1445  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1446  {
1447  static bool
1448  _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1449  const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1450  { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); }
1451  };
1452 
1453  /// Specialization.
1454  template<typename _Key, typename _Value, typename _ExtractKey,
1455  typename _Equal, typename _HashCodeType>
1456  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1457  {
1458  static bool
1459  _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1460  const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1461  { return __eq(__k, __extract(__n->_M_v())); }
1462  };
1463 
1464 
1465  /// Partial specialization used when nodes contain a cached hash code.
1466  template<typename _Key, typename _Value, typename _ExtractKey,
1467  typename _H1, typename _H2, typename _Hash>
1468  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1469  _H1, _H2, _Hash, true>
1470  : private _Hashtable_ebo_helper<0, _H2>
1471  {
1472  protected:
1474  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1475  _H1, _H2, _Hash, true>;
1476 
1477  _Local_iterator_base() = default;
1480  std::size_t __bkt, std::size_t __bkt_count)
1481  : __base_type(__base._M_h2()),
1482  _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1483 
1484  void
1485  _M_incr()
1486  {
1487  _M_cur = _M_cur->_M_next();
1488  if (_M_cur)
1489  {
1490  std::size_t __bkt
1491  = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1492  _M_bucket_count);
1493  if (__bkt != _M_bucket)
1494  _M_cur = nullptr;
1495  }
1496  }
1497 
1498  _Hash_node<_Value, true>* _M_cur;
1499  std::size_t _M_bucket;
1500  std::size_t _M_bucket_count;
1501 
1502  public:
1503  const void*
1504  _M_curr() const { return _M_cur; } // for equality ops
1505 
1506  std::size_t
1507  _M_get_bucket() const { return _M_bucket; } // for debug mode
1508  };
1509 
1510  // Uninitialized storage for a _Hash_code_base.
1511  // This type is DefaultConstructible and Assignable even if the
1512  // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1513  // can be DefaultConstructible and Assignable.
1514  template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1515  struct _Hash_code_storage
1516  {
1517  __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1518 
1519  _Tp*
1520  _M_h() { return _M_storage._M_ptr(); }
1521 
1522  const _Tp*
1523  _M_h() const { return _M_storage._M_ptr(); }
1524  };
1525 
1526  // Empty partial specialization for empty _Hash_code_base types.
1527  template<typename _Tp>
1528  struct _Hash_code_storage<_Tp, true>
1529  {
1530  static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1531 
1532  // As _Tp is an empty type there will be no bytes written/read through
1533  // the cast pointer, so no strict-aliasing violation.
1534  _Tp*
1535  _M_h() { return reinterpret_cast<_Tp*>(this); }
1536 
1537  const _Tp*
1538  _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1539  };
1540 
1541  template<typename _Key, typename _Value, typename _ExtractKey,
1542  typename _H1, typename _H2, typename _Hash>
1543  using __hash_code_for_local_iter
1544  = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1545  _H1, _H2, _Hash, false>>;
1546 
1547  // Partial specialization used when hash codes are not cached
1548  template<typename _Key, typename _Value, typename _ExtractKey,
1549  typename _H1, typename _H2, typename _Hash>
1550  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1551  _H1, _H2, _Hash, false>
1552  : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
1553  {
1554  protected:
1555  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1556  _H1, _H2, _Hash, false>;
1557 
1558  _Local_iterator_base() : _M_bucket_count(-1) { }
1559 
1560  _Local_iterator_base(const __hash_code_base& __base,
1561  _Hash_node<_Value, false>* __p,
1562  std::size_t __bkt, std::size_t __bkt_count)
1563  : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1564  { _M_init(__base); }
1565 
1566  ~_Local_iterator_base()
1567  {
1568  if (_M_bucket_count != -1)
1569  _M_destroy();
1570  }
1571 
1572  _Local_iterator_base(const _Local_iterator_base& __iter)
1573  : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
1574  _M_bucket_count(__iter._M_bucket_count)
1575  {
1576  if (_M_bucket_count != -1)
1577  _M_init(*__iter._M_h());
1578  }
1579 
1580  _Local_iterator_base&
1581  operator=(const _Local_iterator_base& __iter)
1582  {
1583  if (_M_bucket_count != -1)
1584  _M_destroy();
1585  _M_cur = __iter._M_cur;
1586  _M_bucket = __iter._M_bucket;
1587  _M_bucket_count = __iter._M_bucket_count;
1588  if (_M_bucket_count != -1)
1589  _M_init(*__iter._M_h());
1590  return *this;
1591  }
1592 
1593  void
1594  _M_incr()
1595  {
1596  _M_cur = _M_cur->_M_next();
1597  if (_M_cur)
1598  {
1599  std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
1600  _M_bucket_count);
1601  if (__bkt != _M_bucket)
1602  _M_cur = nullptr;
1603  }
1604  }
1605 
1606  _Hash_node<_Value, false>* _M_cur;
1607  std::size_t _M_bucket;
1608  std::size_t _M_bucket_count;
1609 
1610  void
1611  _M_init(const __hash_code_base& __base)
1612  { ::new(this->_M_h()) __hash_code_base(__base); }
1613 
1614  void
1615  _M_destroy() { this->_M_h()->~__hash_code_base(); }
1616 
1617  public:
1618  const void*
1619  _M_curr() const { return _M_cur; } // for equality ops and debug mode
1620 
1621  std::size_t
1622  _M_get_bucket() const { return _M_bucket; } // for debug mode
1623  };
1624 
1625  template<typename _Key, typename _Value, typename _ExtractKey,
1626  typename _H1, typename _H2, typename _Hash, bool __cache>
1627  inline bool
1628  operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1629  _H1, _H2, _Hash, __cache>& __x,
1630  const _Local_iterator_base<_Key, _Value, _ExtractKey,
1631  _H1, _H2, _Hash, __cache>& __y)
1632  { return __x._M_curr() == __y._M_curr(); }
1633 
1634  template<typename _Key, typename _Value, typename _ExtractKey,
1635  typename _H1, typename _H2, typename _Hash, bool __cache>
1636  inline bool
1637  operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1638  _H1, _H2, _Hash, __cache>& __x,
1639  const _Local_iterator_base<_Key, _Value, _ExtractKey,
1640  _H1, _H2, _Hash, __cache>& __y)
1641  { return __x._M_curr() != __y._M_curr(); }
1642 
1643  /// local iterators
1644  template<typename _Key, typename _Value, typename _ExtractKey,
1645  typename _H1, typename _H2, typename _Hash,
1646  bool __constant_iterators, bool __cache>
1648  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1649  _H1, _H2, _Hash, __cache>
1650  {
1651  private:
1652  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1653  _H1, _H2, _Hash, __cache>;
1654  using __hash_code_base = typename __base_type::__hash_code_base;
1655  public:
1656  typedef _Value value_type;
1657  typedef typename std::conditional<__constant_iterators,
1658  const _Value*, _Value*>::type
1659  pointer;
1660  typedef typename std::conditional<__constant_iterators,
1661  const _Value&, _Value&>::type
1662  reference;
1663  typedef std::ptrdiff_t difference_type;
1665 
1666  _Local_iterator() = default;
1667 
1668  _Local_iterator(const __hash_code_base& __base,
1670  std::size_t __bkt, std::size_t __bkt_count)
1671  : __base_type(__base, __p, __bkt, __bkt_count)
1672  { }
1673 
1674  reference
1675  operator*() const
1676  { return this->_M_cur->_M_v(); }
1677 
1678  pointer
1679  operator->() const
1680  { return this->_M_cur->_M_valptr(); }
1681 
1683  operator++()
1684  {
1685  this->_M_incr();
1686  return *this;
1687  }
1688 
1690  operator++(int)
1691  {
1692  _Local_iterator __tmp(*this);
1693  this->_M_incr();
1694  return __tmp;
1695  }
1696  };
1697 
1698  /// local const_iterators
1699  template<typename _Key, typename _Value, typename _ExtractKey,
1700  typename _H1, typename _H2, typename _Hash,
1701  bool __constant_iterators, bool __cache>
1703  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1704  _H1, _H2, _Hash, __cache>
1705  {
1706  private:
1707  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1708  _H1, _H2, _Hash, __cache>;
1709  using __hash_code_base = typename __base_type::__hash_code_base;
1710 
1711  public:
1712  typedef _Value value_type;
1713  typedef const _Value* pointer;
1714  typedef const _Value& reference;
1715  typedef std::ptrdiff_t difference_type;
1717 
1718  _Local_const_iterator() = default;
1719 
1720  _Local_const_iterator(const __hash_code_base& __base,
1722  std::size_t __bkt, std::size_t __bkt_count)
1723  : __base_type(__base, __p, __bkt, __bkt_count)
1724  { }
1725 
1726  _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1727  _H1, _H2, _Hash,
1728  __constant_iterators,
1729  __cache>& __x)
1730  : __base_type(__x)
1731  { }
1732 
1733  reference
1734  operator*() const
1735  { return this->_M_cur->_M_v(); }
1736 
1737  pointer
1738  operator->() const
1739  { return this->_M_cur->_M_valptr(); }
1740 
1742  operator++()
1743  {
1744  this->_M_incr();
1745  return *this;
1746  }
1747 
1749  operator++(int)
1750  {
1751  _Local_const_iterator __tmp(*this);
1752  this->_M_incr();
1753  return __tmp;
1754  }
1755  };
1756 
1757  /**
1758  * Primary class template _Hashtable_base.
1759  *
1760  * Helper class adding management of _Equal functor to
1761  * _Hash_code_base type.
1762  *
1763  * Base class templates are:
1764  * - __detail::_Hash_code_base
1765  * - __detail::_Hashtable_ebo_helper
1766  */
1767  template<typename _Key, typename _Value,
1768  typename _ExtractKey, typename _Equal,
1769  typename _H1, typename _H2, typename _Hash, typename _Traits>
1770  struct _Hashtable_base
1771  : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1772  _Traits::__hash_cached::value>,
1773  private _Hashtable_ebo_helper<0, _Equal>
1774  {
1775  public:
1776  typedef _Key key_type;
1777  typedef _Value value_type;
1778  typedef _Equal key_equal;
1779  typedef std::size_t size_type;
1780  typedef std::ptrdiff_t difference_type;
1781 
1782  using __traits_type = _Traits;
1783  using __hash_cached = typename __traits_type::__hash_cached;
1784  using __constant_iterators = typename __traits_type::__constant_iterators;
1785  using __unique_keys = typename __traits_type::__unique_keys;
1786 
1787  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1788  _H1, _H2, _Hash,
1789  __hash_cached::value>;
1790 
1791  using __hash_code = typename __hash_code_base::__hash_code;
1792  using __node_type = typename __hash_code_base::__node_type;
1793 
1794  using iterator = __detail::_Node_iterator<value_type,
1795  __constant_iterators::value,
1796  __hash_cached::value>;
1797 
1798  using const_iterator = __detail::_Node_const_iterator<value_type,
1799  __constant_iterators::value,
1800  __hash_cached::value>;
1801 
1802  using local_iterator = __detail::_Local_iterator<key_type, value_type,
1803  _ExtractKey, _H1, _H2, _Hash,
1804  __constant_iterators::value,
1805  __hash_cached::value>;
1806 
1807  using const_local_iterator = __detail::_Local_const_iterator<key_type,
1808  value_type,
1809  _ExtractKey, _H1, _H2, _Hash,
1810  __constant_iterators::value,
1811  __hash_cached::value>;
1812 
1813  using __ireturn_type = typename std::conditional<__unique_keys::value,
1815  iterator>::type;
1816  private:
1817  using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1818  using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1819  __hash_code, __hash_cached::value>;
1820 
1821  protected:
1822  _Hashtable_base() = default;
1823  _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1824  const _Hash& __hash, const _Equal& __eq)
1825  : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1826  { }
1827 
1828  bool
1829  _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1830  {
1831  static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
1832  "key equality predicate must be invocable with two arguments of "
1833  "key type");
1834  return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1835  __k, __c, __n);
1836  }
1837 
1838  void
1839  _M_swap(_Hashtable_base& __x)
1840  {
1841  __hash_code_base::_M_swap(__x);
1842  std::swap(_M_eq(), __x._M_eq());
1843  }
1844 
1845  const _Equal&
1846  _M_eq() const { return _EqualEBO::_S_cget(*this); }
1847 
1848  _Equal&
1849  _M_eq() { return _EqualEBO::_S_get(*this); }
1850  };
1851 
1852  /**
1853  * struct _Equality_base.
1854  *
1855  * Common types and functions for class _Equality.
1856  */
1858  {
1859  protected:
1860  template<typename _Uiterator>
1861  static bool
1862  _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1863  };
1864 
1865  // See std::is_permutation in N3068.
1866  template<typename _Uiterator>
1867  bool
1868  _Equality_base::
1869  _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1870  _Uiterator __first2)
1871  {
1872  for (; __first1 != __last1; ++__first1, ++__first2)
1873  if (!(*__first1 == *__first2))
1874  break;
1875 
1876  if (__first1 == __last1)
1877  return true;
1878 
1879  _Uiterator __last2 = __first2;
1880  std::advance(__last2, std::distance(__first1, __last1));
1881 
1882  for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1883  {
1884  _Uiterator __tmp = __first1;
1885  while (__tmp != __it1 && !bool(*__tmp == *__it1))
1886  ++__tmp;
1887 
1888  // We've seen this one before.
1889  if (__tmp != __it1)
1890  continue;
1891 
1892  std::ptrdiff_t __n2 = 0;
1893  for (__tmp = __first2; __tmp != __last2; ++__tmp)
1894  if (*__tmp == *__it1)
1895  ++__n2;
1896 
1897  if (!__n2)
1898  return false;
1899 
1900  std::ptrdiff_t __n1 = 0;
1901  for (__tmp = __it1; __tmp != __last1; ++__tmp)
1902  if (*__tmp == *__it1)
1903  ++__n1;
1904 
1905  if (__n1 != __n2)
1906  return false;
1907  }
1908  return true;
1909  }
1910 
1911  /**
1912  * Primary class template _Equality.
1913  *
1914  * This is for implementing equality comparison for unordered
1915  * containers, per N3068, by John Lakos and Pablo Halpern.
1916  * Algorithmically, we follow closely the reference implementations
1917  * therein.
1918  */
1919  template<typename _Key, typename _Value, typename _Alloc,
1920  typename _ExtractKey, typename _Equal,
1921  typename _H1, typename _H2, typename _Hash,
1922  typename _RehashPolicy, typename _Traits,
1923  bool _Unique_keys = _Traits::__unique_keys::value>
1924  struct _Equality;
1925 
1926  /// Specialization.
1927  template<typename _Key, typename _Value, typename _Alloc,
1928  typename _ExtractKey, typename _Equal,
1929  typename _H1, typename _H2, typename _Hash,
1930  typename _RehashPolicy, typename _Traits>
1931  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1932  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1933  {
1934  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1935  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1936 
1937  bool
1938  _M_equal(const __hashtable&) const;
1939  };
1940 
1941  template<typename _Key, typename _Value, typename _Alloc,
1942  typename _ExtractKey, typename _Equal,
1943  typename _H1, typename _H2, typename _Hash,
1944  typename _RehashPolicy, typename _Traits>
1945  bool
1946  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1947  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1948  _M_equal(const __hashtable& __other) const
1949  {
1950  const __hashtable* __this = static_cast<const __hashtable*>(this);
1951 
1952  if (__this->size() != __other.size())
1953  return false;
1954 
1955  for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1956  {
1957  const auto __ity = __other.find(_ExtractKey()(*__itx));
1958  if (__ity == __other.end() || !bool(*__ity == *__itx))
1959  return false;
1960  }
1961  return true;
1962  }
1963 
1964  /// Specialization.
1965  template<typename _Key, typename _Value, typename _Alloc,
1966  typename _ExtractKey, typename _Equal,
1967  typename _H1, typename _H2, typename _Hash,
1968  typename _RehashPolicy, typename _Traits>
1969  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1970  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1971  : public _Equality_base
1972  {
1973  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1974  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1975 
1976  bool
1977  _M_equal(const __hashtable&) const;
1978  };
1979 
1980  template<typename _Key, typename _Value, typename _Alloc,
1981  typename _ExtractKey, typename _Equal,
1982  typename _H1, typename _H2, typename _Hash,
1983  typename _RehashPolicy, typename _Traits>
1984  bool
1985  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1986  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1987  _M_equal(const __hashtable& __other) const
1988  {
1989  const __hashtable* __this = static_cast<const __hashtable*>(this);
1990 
1991  if (__this->size() != __other.size())
1992  return false;
1993 
1994  for (auto __itx = __this->begin(); __itx != __this->end();)
1995  {
1996  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1997  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1998 
1999  if (std::distance(__xrange.first, __xrange.second)
2000  != std::distance(__yrange.first, __yrange.second))
2001  return false;
2002 
2003  if (!_S_is_permutation(__xrange.first, __xrange.second,
2004  __yrange.first))
2005  return false;
2006 
2007  __itx = __xrange.second;
2008  }
2009  return true;
2010  }
2011 
2012  /**
2013  * This type deals with all allocation and keeps an allocator instance through
2014  * inheritance to benefit from EBO when possible.
2015  */
2016  template<typename _NodeAlloc>
2017  struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
2018  {
2019  private:
2020  using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
2021  public:
2022  using __node_type = typename _NodeAlloc::value_type;
2023  using __node_alloc_type = _NodeAlloc;
2024  // Use __gnu_cxx to benefit from _S_always_equal and al.
2025  using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
2026 
2027  using __value_alloc_traits = typename __node_alloc_traits::template
2028  rebind_traits<typename __node_type::value_type>;
2029 
2030  using __node_base = __detail::_Hash_node_base;
2031  using __bucket_type = __node_base*;
2032  using __bucket_alloc_type =
2033  __alloc_rebind<__node_alloc_type, __bucket_type>;
2034  using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
2035 
2036  _Hashtable_alloc() = default;
2037  _Hashtable_alloc(const _Hashtable_alloc&) = default;
2038  _Hashtable_alloc(_Hashtable_alloc&&) = default;
2039 
2040  template<typename _Alloc>
2041  _Hashtable_alloc(_Alloc&& __a)
2042  : __ebo_node_alloc(std::forward<_Alloc>(__a))
2043  { }
2044 
2045  __node_alloc_type&
2046  _M_node_allocator()
2047  { return __ebo_node_alloc::_S_get(*this); }
2048 
2049  const __node_alloc_type&
2050  _M_node_allocator() const
2051  { return __ebo_node_alloc::_S_cget(*this); }
2052 
2053  template<typename... _Args>
2054  __node_type*
2055  _M_allocate_node(_Args&&... __args);
2056 
2057  void
2058  _M_deallocate_node(__node_type* __n);
2059 
2060  void
2061  _M_deallocate_node_ptr(__node_type* __n);
2062 
2063  // Deallocate the linked list of nodes pointed to by __n
2064  void
2065  _M_deallocate_nodes(__node_type* __n);
2066 
2067  __bucket_type*
2068  _M_allocate_buckets(std::size_t __n);
2069 
2070  void
2071  _M_deallocate_buckets(__bucket_type*, std::size_t __n);
2072  };
2073 
2074  // Definitions of class template _Hashtable_alloc's out-of-line member
2075  // functions.
2076  template<typename _NodeAlloc>
2077  template<typename... _Args>
2078  typename _Hashtable_alloc<_NodeAlloc>::__node_type*
2079  _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
2080  {
2081  auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
2082  __node_type* __n = std::__to_address(__nptr);
2083  __try
2084  {
2085  ::new ((void*)__n) __node_type;
2086  __node_alloc_traits::construct(_M_node_allocator(),
2087  __n->_M_valptr(),
2088  std::forward<_Args>(__args)...);
2089  return __n;
2090  }
2091  __catch(...)
2092  {
2093  __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
2094  __throw_exception_again;
2095  }
2096  }
2097 
2098  template<typename _NodeAlloc>
2099  void
2100  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
2101  {
2102  __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
2103  _M_deallocate_node_ptr(__n);
2104  }
2105 
2106  template<typename _NodeAlloc>
2107  void
2108  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_type* __n)
2109  {
2110  typedef typename __node_alloc_traits::pointer _Ptr;
2111  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
2112  __n->~__node_type();
2113  __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
2114  }
2115 
2116  template<typename _NodeAlloc>
2117  void
2118  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
2119  {
2120  while (__n)
2121  {
2122  __node_type* __tmp = __n;
2123  __n = __n->_M_next();
2124  _M_deallocate_node(__tmp);
2125  }
2126  }
2127 
2128  template<typename _NodeAlloc>
2129  typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
2130  _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n)
2131  {
2132  __bucket_alloc_type __alloc(_M_node_allocator());
2133 
2134  auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n);
2135  __bucket_type* __p = std::__to_address(__ptr);
2136  __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
2137  return __p;
2138  }
2139 
2140  template<typename _NodeAlloc>
2141  void
2142  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
2143  std::size_t __n)
2144  {
2145  typedef typename __bucket_alloc_traits::pointer _Ptr;
2146  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2147  __bucket_alloc_type __alloc(_M_node_allocator());
2148  __bucket_alloc_traits::deallocate(__alloc, __ptr, __n);
2149  }
2150 
2151  //@} hashtable-detail
2152 } // namespace __detail
2153 _GLIBCXX_END_NAMESPACE_VERSION
2154 } // namespace std
2155 
2156 #endif // _HASHTABLE_POLICY_H
_GLIBCXX20_CONSTEXPR complex< _Tp > operator*(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x times y.
Definition: complex:387
integral_constant< bool, false > false_type
The type used as a compile-time boolean with false value.
Definition: type_traits:78
Range hashing function assuming that second arg is a power of 2.
std::size_t __clp2(std::size_t __n) noexcept
Compute closest power of 2 not less than __n.
ISO C++ entities toplevel namespace is std.
Forward iterators support a superset of input iterator operations.
Properties of fundamental types.
Definition: limits:312
constexpr iterator_traits< _Iter >::iterator_category __iterator_category(const _Iter &)
Base class for node iterators.
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:75
Define a member typedef type to one of two argument types.
Definition: type_traits:92
tuple_element
Definition: array:359
constexpr _Tp && forward(typename std::remove_reference< _Tp >::type &__t) noexcept
Forward an lvalue.
Definition: move.h:74
integral_constant
Definition: type_traits:57
is_constructible
Definition: type_traits:883
constexpr tuple< _Elements &&... > forward_as_tuple(_Elements &&... __args) noexcept
std::forward_as_tuple
Definition: tuple:1482
Common iterator class.
Uniform interface to all allocator types.
Default range hashing function: use division to fold a large number into the range [0...
Uniform interface to all pointer-like types.
Definition: ptr_traits.h:78
initializer_list
_GLIBCXX17_INLINE constexpr piecewise_construct_t piecewise_construct
piecewise_construct
Definition: stl_pair.h:79
is_empty
Definition: type_traits:703
Primary class template, tuple.
Definition: tuple:53
Uniform interface to C++98 and C++11 allocators.
Default value for rehash policy. Bucket size is (usually) the smallest prime that keeps the load fact...
Node const_iterators, used to iterate through all the hashtable.
constexpr pair< typename __decay_and_strip< _T1 >::__type, typename __decay_and_strip< _T2 >::__type > make_pair(_T1 &&__x, _T2 &&__y)
A convenience wrapper for creating a pair from two objects.
Definition: stl_pair.h:524
_GLIBCXX17_CONSTEXPR iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
Marking input iterators.
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:208
Rehash policy providing power of 2 bucket numbers. Avoids modulo operations.
_Iterator __base(_Iterator __it)
Default ranged hash function H. In principle it should be a function object composed from objects of ...
Node iterators, used to iterate through all the hashtable.
_GLIBCXX17_CONSTEXPR void advance(_InputIterator &__i, _Distance __n)
A generalization of pointer arithmetic.
Define a member typedef type only if a boolean constant is true.
Definition: type_traits:2045